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Overview

@ Part 1: dimension reduction problem for homogeneous nonlinearly elastic
plates.

» Motivation and setting of the problem.
» The membrane regime.

» The bending regime.

> ...and what about the other scenarios?

@ Part 2/tutorial: static [-convergence, and the notion of 2-scale convergence.

@ Part 3: simultaneous homogenization and dimension reduction.
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Mathematical modeling of thin structures

Thin structures are three-dimensional bodies whose thickness in one direction is
much smaller than the other dimensions (membranes, plates, or shells), or
whose cross-section is much smaller than the length (strings or rods).

Applications: fuselages of aeroplanes, boat hulls and roof structures in some
buildings, aero-spatial engineering, biology...
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Dimension reduction for thin elastic plates

Consider a nonlinearly elastic thin plate whose reference configuration is described
by the set

@ i=wx (= 4.8),
w C R? bounded, open, connected,

Ow Lipschitz,

h> 0.

Aim: for h small, to find a 2D approximate model in a rigorous way.
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The variational approach

v : Qp — R3 deformation, v € W1?(Q,; R3),
7. Q) — R3 body forces, f" € L2(Qy; R?).
Total energy associated to the deformation v:

En(v) := A W(Vv(x))dx — A F(x) - v(x) dx

stored elastic energy work done by applied forces

The equilibrium configuration is given by a solution to
min {Ex(v) : v € W (Qp R} .

Question: what is the behavior of these solutions as h — 07 I'-convergence.

Elisa Davoli Multiscale Dimension Reduction 5 /38



A crash intro to I'-convergence (E. De Giorgi, early '70s)

@ a variational convergence;

@ in dimension reduction theory it allows to replace a sequence of energies with
a “limit energy"” associated to a reduced model;

@ yields convergence of minimizers of the sequence of energies to minimizers of
the limit model (the same property a priori does not hold for non
minimizing stationary points).

General strategy:

@ Establish compactness results for sequences of deformations with
equibounded energies.

@ Identify possible candidates for being the “I'-limit" by looking for a sharp
lower bound for the relaxation of the sequence of energies along sequentially
compact sequences of admissible fields.

@ Validate the optimality of the lower bound by constructing a sequence of
fields such that the energies evaluated along them asymptotically converge to
the I-limit.
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Assumptions on the stored energy density

o W :M3*3 — [0, +o0] is continuous,

o F = £ DA
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Assumptions on the stored energy density

o W :M3*3 — [0, +o0] is continuous,

o Frame-indifference:
W(RF) = W(F) for every F € M**3 and R € SO(3),

SO(3) :={ReM*>*3: RTR=RR" =Id, detR = 1}

(the energy is invariant under changes in the frame of the observer).
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Assumptions on the stored energy density

o W :M3*3 — [0, +o0] is continuous,

@ Frame-indifference:
W(RF) = W(F) for every F € M**3 and R € SO(3),
SO(3) :={ReM*>*3: RTR=RR" =Id, detR = 1}
(the energy is invariant under changes in the frame of the observer).

Different from isotropy:
W(FR) = W(F) for every F € M**3 and R € SO(3)

(the material has the same properties in every direction).
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Assumptions on the stored energy density

W(ld) = minW =0

(if we do not apply any force, then the reference configuration is an
equilibrium configuration)
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Assumptions on the stored energy density

W(ld) = minW =0

(if we do not apply any force, then the reference configuration is an
equilibrium configuration)

@ Growth conditions from below:

W(F) > Cdist® (F; SO(3)) for every F € M3*3,
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Assumptions on the stored energy density

W(ld) = minW =0

(if we do not apply any force, then the reference configuration is an
equilibrium configuration)

@ Growth conditions from below:

W(F) > Cdist® (F; SO(3)) for every F € M3*3,

@ Non-interpenetrability:

W(F)=+o0o ifdet F <0, W(F)— +oc asdetF — 0%,
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Remark

@ W can not be convex.

o F = = DA
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Remark

@ W can not be convex.

Proof.
By contradiction: W =0 on SO(3). W convex = W =0 on co SO(3).

1ld + Ldiag(—1,-1,1) = diag(0,0,1), but W/(diag(0,0,1)) = +oo.
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Remark

@ W can not be convex.

Proof.
By contradiction: W =0 on SO(3). W convex = W =0 on co SO(3).

1ld + Ldiag(—1,-1,1) = diag(0,0,1), but W/(diag(0,0,1)) = +oo.

v : Q4 — R3 deformation, v € W'?(Q,; R®),
7. Q, — R3 body forces, f" € L2(Qp; R3).
Total energy associated to the deformation v:

En(v) := W(Vv(x))dx — FA(x) - v(x) dx
Qp Qp

stored elastic energy work done by applied forces
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Change of variables
We want to identify [-limity_o Ep.

Problem: each functional Ej, is defined on a different space (W12(Q;; R?)),
dependent on h.
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Change of variables
We want to identify [-limity_o Ep.

Problem: each functional Ej, is defined on a different space (W2(Q;; R?)),
dependent on h.

Q;:wx(—%,%), X:(X/,X3)€Q, Z:(ZI7Z3)€Qha {z -
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Change of variables
We want to identify [-limity_o Ep.

Problem: each functional Ej, is defined on a different space (W2(Q;; R?)),
dependent on h.

Z=x
Q::wx(—%,%), x=(',x3)€Q, z=(Z,z)€Q, {
Z3:hX3.

ve WH(QpR3) =y € WH(QR?),  y(x) = v(X, hxs).
Thus,

where

En(v) = h/Q W(Vhy(x)) dx — h/Q Fh(x) - y(x) dx = hGa(y),
Viy(x) = (V’y

%) (0. 2) = v

Fh(x) = F'(x', hx3).
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Change of variables

We want to identify [-limity_o Ep.

Problem: each functional Ej, is defined on a different space (W2(Qj; R3)),
dependent on h.
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Change of variables

We want to identify [-limity_o Ep.

Problem: each functional Ej, is defined on a different space (W2(Qj; R3)),
dependent on h.

En(v) = h/Q W(Vhy(x)) dx — h/ﬂf”(x) y(x) dx = hG(y).

The problem becomes: to identify the [-limity_o Gp.
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Scaling of minimal energy

Assume that
||fh||L2(Q;R3) < Ch*, a >0, and / fi(x)dx =0 for every h
Q

(this last condition prevents inf G, = —o0, otherwise take y with finite energy,
and y. =y +¢).
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Scaling of minimal energy

Assume that
||);h||L2(Q;R3) < Ch*, a >0, and / fi(x)dx =0 for every h
Q

(this last condition prevents inf G, = —oo, otherwise take y with finite energy,
and y. = y + ¢). Let y" be a minimizer of G,. Then

Gn(y")
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Scaling of minimal energy
Assume that
||);h||L2(Q;R3) < Ch*, a >0, and / fi(x)dx =0 for every h
Q

(this last condition prevents inf G, = —oo, otherwise take y with finite energy,
and y. = y + ¢). Let y" be a minimizer of G,. Then

Gh(yh) < Gu(x', hx3)
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Scaling of minimal energy

Assume that
||);h||L2(Q;R3) < Ch*, a >0, and / fi(x)dx =0 for every h
Q

(this last condition prevents inf G, = —oo, otherwise take y with finite energy,
and y. = y + ¢). Let y" be a minimizer of G,. Then

Gh(yh) < Gu(x', hxs) = —/ fh(x) (X', hxg) dx < C||Fh||L2(Q;]R3).
Q
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Scaling of minimal energy

Assume that
||];h||L2(Q;R3) < Ch*, a >0, and / fi(x)dx =0 for every h
Q

(this last condition prevents inf G, = —00, otherwise take y with finite energy,
and y. = y + ¢). Let y" be a minimizer of G,. Then

Gh(yh) < Gu(x', hxs) = —/ )Eh(x) (X', hxg) dx < C||Fh||L2(Q;]R3).
Q

In particular,

| W) d < CIPP e + [ 700+ (5400 = f 57(x) o)
< Ch™(1+ IVy" |l 2@ xs))-
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Scaling of minimal energy

Now,

W(F) > Cdist® (F; SO(3)) = C|F — Re|?> > C|F|* - C,

o F = £ DA
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Scaling of minimal energy

Now,
W(F) > Cdist® (F; SO(3)) = C|F — Re|?> > C|F|* - C,

hence
||Vyh||L2(Q;M3><3) <C and / W(Vhyh(x)) dx < C.
Q
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Scaling of minimal energy

Now,
W(F) > Cdist? (F; SO(3)) = C|F — Re2 > C|F* - C,

hence
||Vyh||L2(Q;M3x3) <C and / W(Vhyh(x)) dx < C.
Q

Finally, by Poincaré inequality
‘/ Fh(x) - y"(x) dx‘ < Ch®,
Q

thus
|Gh(y™)| < Ch*.

The problem becomes: to identify the [-limit,_ ¢ hlaGh.
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[H. Le Dret - A. Raoult (1995)]

The case o = 0 (bounded forces)

o Assume " — f weakly in L2(Q;R3), with [, f"(x) dx = 0 for every h > 0.

o F = £ DA
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The case o = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

o Assume " — f weakly in L2(Q;R3), with [, f"(x) dx = 0 for every h > 0.
e W :M3*3 — [0, +0oc] continuous,
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The case o = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

o Assume " — f weakly in L2(Q;R3), with [, f"(x) dx = 0 for every h > 0.
o W :M>3*3 — [0, +0c0] continuous,

o W(F) > co|F|> — ¢ for every F € M3*3 (consequence of standard growth
conditions),

Elisa Davoli Multiscale Dimension Reduction

14 / 38



The case o = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

o Assume " — f weakly in L2(Q;R3), with [, f"(x) dx = 0 for every h > 0.
o W :M>3*3 — [0, +0c0] continuous,

o W(F) > co|F|> — ¢ for every F € M3*3 (consequence of standard growth
conditions),

o W(F) < c(|F|?+1) for every F € M3*3 (incompatible with
non-interpenetrability condition).
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The case a = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

o Assume " — f weakly in L2(Q;R3), with [, f"(x) dx = 0 for every h > 0.
o W :M>3*3 — [0, +0c0] continuous,

o W(F) > co|F|> — ¢ for every F € M3*3 (consequence of standard growth
conditions),

o W(F) < c(|F|?+1) for every F € M3*3 (incompatible with
non-interpenetrability condition).

Define
. G if y € W12(Q:R3),
G(y) = ) Y - ( 2 ) 3
+o0o  otherwise in L?(Q; R3).
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The case o = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

Theorem

...r(

é "5 g,

h—0

L QWo(V'y(x")) dx — [ F(X')-y(x)dx" ify € WhH(Q;R3),
G(y) = 83.)/ = Oa
+00 otherwise in L?(Q; R3),

1
_ 2

V'y = @uloey), 7)) = [ ) de
2
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The case o = 0 (bounded forces)
[H. Le Dret - A. Raoult (1995)]

Theorem

where

[, QWe(V'y (X)) dx' — [ F(x') - y(x')dx' ify € WE2(Q;R3),
G(y) = dzy =0,
+o0 otherwise in L?(; R3),

1
_ 2

V'y = (Oylday), f(x') = / L F(X';x3) dx,
T2

Wo(F) = anglle W(F|a) for every F € M3*?,

QW, is the quasiconvex envelope of Wj.
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Remark

@ The limit problem is 2D. The map y : w — R3 represents the deformation of
the mid-plane w into a surface in R3. The energy that we get is called a
membrane model: it depends only on the first derivatives of the
deformation, there are no bending effects.
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The case av = 2
[G. Friesecke - R.D. James - S. Miiller (2002)]

W : MB3*3 — [0, +o0] is continuous,

Frame-indifference: W(RF) = W(F) for every F € M3*3, and R € SO(3),
W is of class C? in a neighborhood of SO(3),

W(ld) =min W =0,

Growth conditions from below: W(F) > Cdist? (F; SO(3)) for every

F e M33.

No growth conditions from above!
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The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

Qp=(0,L) x (—5,—%),
v(z1,2) == v(z1) + z2b(z1), 7,b:(0,L) = R
Vv(z1,22) = (7' (21)|b(21)) + 22(b'(21)]0).
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The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

Qh = (0, L) X (—g, —g),
v(z1,2) == y(z1) + zb(z1), 7,b:(0,L) — R?,
Vv(z1,22) = (v'(21)[b(z1)) + 22(b'(21)]0).
We observe that
/ / W(Vv(z,2))dzdz; — 0
h

< (¥(z1)|b(z1)) € SO(2) for every z € (0, L)
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The case o = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

Qy = (0,L) x (-5, -3),
v(z1,2) = (1) + b(z1), 7,b:(0,L) — R?
Vv(z1,22) = (v (21)|b(21)) + z(b'(21)]0).
We observe that

// W(Vv(z1, z)) dz dzy — 0
h

< (¥ (z1)|b(z1)) € SO(2) for every z € (0, L)
< |¥(z1)|=1 forevery z; € (0,L)
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The case o = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

Qy = (0,L) x (-5, -3),
v(z1,2) = (1) + b(z1), 7,b:(0,L) — R?
Vv(z1,22) = (v (21)|b(21)) + z(b'(21)]0).
We observe that

/ /Q W(Vv(zi, z2)) dzp dz; = o(1)

< (¥ (z1)|b(z1)) € SO(2) for every z; € (0, L)
< |Y(z1)| =1 forevery z; € (0,L)

<= s an isometry, and b = v (normal vector to 7).
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The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

WVv(z,z)) = W((v'(21)|b(21)) T Vv(z1, 22))

Frame indifference

= W(ld + (7' (21)|b(21)) T (b'(21)]0))

Elisa Davoli Multiscale Dimension Reduction 20/ 38



The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

WVv(z,2)) = W((v(21)|b(21))" Vv(21, 22))

Frame indifference

W(Id + 2+ (21) b(z1)) T (5'(21)/0)
3 %D2W(/d)<7,(zl)(')b,(zl) g>:<v(z1)(-)b'<z1> g)
_BEW) e o
_?Tﬁ(v (z1) b (z1))" =

20 / 38
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The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

WVv(z,2)) = W((+'(21)[b(21)) " Vv(21, 22))

W(ld + z(v'(21)|b(21)) " (b'(21)[0))
~ By (z1) - b(z) 0 [ A(2) P(z) O
o ) (00 )

0 0

Taylor expansion
2 92 2
z O°W(ld) / 2_ 2% 2
Curvature of

20 / 38
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The case a = 2: heuristic argument in 2D
[G. Friesecke - R.D. James - S. Miiller (2002)]

1t
F/ W(Vv(z1, z2)) dzy dz; = / / 2 3k? (z1) dza dz
0o J-4

ah2 L
= E/o k2(21) dzy.

= We expect the limit energy to take into account bending.
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The case a = 2: the rigidity estimate
[G. Friesecke - R.D. James - S. Miiller (2002)]

Theorem

Let U c RN be an open bounded set with Lipschitz boundary, N > 2. Then there

exists a constant C(U) > 0 such that for every v.€ WL2(U; RN) there exists
R € SO(N) such that

/ |Vv(x) — R[?dx < C(U)/ dist? (Vv(x); SO(N)) dx.
U U
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The case a = 2: the rigidity estimate
[G. Friesecke - R.D. James - S. Miiller (2002)]

Theorem

Let U c RN be an open bounded set with Lipschitz boundary, N > 2. Then there

exists a constant C(U) > 0 such that for every v.€ WL2(U; RN) there exists
R € SO(N) such that

/ |Vv(x) — R[?dx < C(U)/ dist? (Vv(x); SO(N)) dx.
U U

Remark

The constant is invariant by translations and dilations of U, and is uniform for
families of sets which are uniform bi-Lipschitz images of a cube.
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The case a = 2: the rigidity estimate
[G. Friesecke - R.D. James - S. Miiller (2002)]

Remark

@ Quantitative version of the following.
Theorem (Liouville's theorem)

Let v € C®(U;RN), be such that Vv(x) € SO(N) for every x € U. Then v is
affine.
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The case a = 2: the rigidity estimate
[G. Friesecke - R.D. James - S. Miiller (2002)]

Remark
@ Quantitative version of the following.
Theorem (Liouville's theorem)

Let v € C®(U;RN), be such that Vv(x) € SO(N) for every x € U. Then v is
affine.

@ Nonlinear version of Korn's inequality.

Theorem (Korn's inequality)

Let U C RN be an open bounded set with Lipschitz boundary, N > 2. Then there
exists a constant C(U) > 0 such that for every w € W12(U; RN) there exists
A e M3 such that

skew

/ |Vw(x) — A2 dx < C(U)/ lsym Vw(x)|? dx.
U u
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Consequences of the rigidity estimate

Rigidity estimate on cubes of size h

I
A sequence of piecewise constant maps R" : w — SO(3), such that
[y IV = R b < i, 1)
wx(-3:2)

/ IRM(X + &) — Rh'(X)[?dx’ < C(|¢] + h)? for every S CC w. (2)
s

24 /38
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Consequences of the rigidity estimate

Viy" = (V'y|b) weakly in L*(Q;M>*3),
with (V'y(x)|b(x)) € SO(3) for a.e. x € Q.

I
yh— ]iyh(x) dx — y strongly in WH2(Q;R3?),
with y € g, where
g = {y € W2’2(OJ;R3) 20wy = |0ay| =1 and Ory - oy = 0}.

In particular,
b= 01y A Oay.
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The case av = 2
[G. Friesecke - R.D. James - S. Miiller (2002)]

Theorem

Gh e )GK:n
o

where

Grnly) = 4 28 QN ' = [ F(x) -y () dx’y € o
K oo otherwise in W'2(Q; R3),
with

g = {y € W2’2(w;]R3)  |Owy| = |0ay| =1 and 01y - Doy = O},

fx') = / 2 ) ds, D)= (VY)Y o) Aday(x) )
-2

—_
Normal vector to the deformed surface

Curvature tensor (2nd fundamental form of y(w))
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The case av = 2: main result
[G. Friesecke - R.D. James - S. Miiller (2002)]

Theorem
1 r(s—wh?)
th et GKir,
where

bty 3 QN B = [LF) <)oy € st
K oo otherwise in W2(Q; R3),
with

Qs(F) := D*W(Id)F : F  for every F € M**3,

. Gla
@(G) = aeﬂrg;:r;ER Q3 (a b) for every G € M.

Elisa Davoli
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Some remarks on the general case

I;,(y):/QW(Vhy(X))dX, Q=wx (-

N
N|—=
N———

Question: how do we characterize the I'-limit of hial"?
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Some remarks on the general case

I;,(y):/QW(Vhy(X))dX, Q=wx (-

N
N|—=
~——

Question: how do we characterize the I'-limit of h%lh?
@ o« = 0: membrane model,
o « = 2: Kirchhoff's plate theory.

Both cases are borderline.
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Some remarks on the general case

I;,(y):/QW(Vhy(X))dX, Q=wx (-

N
N|—=
~——

Question: how do we characterize the I'-limit of h%lh?
@ o = 0: membrane model,
o « = 2: Kirchhoff's plate theory.
Both cases are borderline.
Under the assumptions of [G. Friesecke - R.D. James - S. Miiller (2002)],

In(y") < Ch~.
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Some remarks on the general case

Rigidity estimate on cubes of size h

I

A sequence of piecewise constant maps R" : w — SO(3), such that

/ (-1 [Vay"(x) = R*(x)|* dx < Ch*, 3)

/ IRM(X + &) — R dx’ < Ch®2(|¢| + h)® forevery SCCw. (4)
s

Elisa Davoli Multiscale Dimension Reduction 29 /38



Some remarks on the general case

@ For a =2, by (3) and (4) there holds R" — R strongly in L2 _(w;M3*3),

loc

with R € W2(w; M3*3), and y" — y strongly in W12(Q; R3).
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Some remarks on the general case

e For =2, by (3) and (4) there holds R" — R strongly in L2 (w;M3*3),
with R € Wh2(w; M3*3), and y" — y strongly in W12(Q; R?).

@ For o < 2, (4) does not give us any information. We can only conclude that
y" — y weakly in W2(Q;R3). Thus we expect relaxation phenomena in the

energy.
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Some remarks on the general case

e For =2, by (3) and (4) there holds R" — R strongly in L2 (w;M3*3),
with R € Wh2(w; M3*3), and y" — y strongly in W12(Q; R?).

@ For o < 2, (4) does not give us any information. We can only conclude that
y" — y weakly in W2(Q;R3). Thus we expect relaxation phenomena in the
energy. Estimate (3) tells us (with some work) that

Vay" = (V'y|b) € co(SO(3)) weakly in L2(Q; M),

with (V'y)TV'y — Id < 0.
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Some remarks on the general case

e For =2, by (3) and (4) there holds R" — R strongly in L2 (w;M3*3),
with R € Wh2(w; M3*3), and y" — y strongly in W12(Q; R?).

@ For o < 2, (4) does not give us any information. We can only conclude that
y" — y weakly in W2(Q;R3). Thus we expect relaxation phenomena in the
energy. Estimate (3) tells us (with some work) that

Vay" = (V'y|b) € co(SO(3)) weakly in L2(Q; M),

with (V'y)TV'y — Id < 0.
¢

The I-limit will be finite only on those maps.
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Some remarks on the general case
[G. Friesecke - R.D. James - S. Miiller (2006)]

e For a > 2, by (4),

y" =y strongly in W2,

Viy" = (V'y|b) = R € SO(3)

o F = £ DA
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Some remarks on the general case
[G. Friesecke - R.D. James - S. Miiller (2006)]

e For a > 2, by (4),
y" =y strongly in W2,

Viy" = (V'y|b) = R € SO(3).
The limit deformation is affine:

X1

y(x') = R( )82 ) + ¢ (Rigid motion).
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Some remarks on the general case
[G. Friesecke - R.D. James - S. Miiller (2006)]

e For a > 2, by (4),
y" =y strongly in W2,

Viy" = (V'y|b) = R € SO(3).

The limit deformation is affine:

X1
y(x') = R( X2 ) +c (Rigid motion).
0
I
We expect linearization effects in the -limit around this rigid motion.

WLOG: R = Id.
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The case a > 2
[G. Friesecke - R.D. James - S. Miiller (2006)]

1
Tangential displacement: u"(x’) : = /

|
TR NI

(( 2: )(X',Xg,) - x') dxs,

1 2
Normal displacement: v"(x') := h_f’/ ) yI(xX' ) x3) dxa,
T2

where

(e}

«a a—2 f2<a<i4,
U:__lv Y= .
s if a > 4.
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The case a > 2
[G. Friesecke - R.D. James - S. Miiller (2006)]

1
Tangential displacement: u/(x") := m/

|
TR NI

(( 2: )(X',Xg) - x') dxs,

1
. 1 2

Normal displacement: v"(x') := h_f’/ ) yI(xX' ) x3) dxa,

T2

where

1 _Ja=2 if2<a<4,
7T e faza

Compactness:
uh — u weakly in W2 (w; R?),
h

vl v oweakly in W2(w), v e W(w).
X1 hui (x')

Ih(y") < Ch* = y"(x) = < X2 ) + < hYuz(x") ) +o
hxs hov(x")
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The general picture

1

h_alh lou

@ « > 4: linearized Von Karman plate theory

= 51 | QUT P .

o F = £ DA
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The general picture

1
7/ lou
R p

@ « > 4: linearized Von Karman plate theory:

(V) = 55 [ QU(TPv(x) o

@ a = 4: Von Karman plate theory:

lo(u,v) = 24/02 )2v(x)) dx’

1
s /w Qasym V() + V() © V() ¥’
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The general picture

1 r
— 1 Ioy,
o' h:)O

@ 2 < a < 4: constrained Von Karman plate theory:
1 7\2 / /
Io(u,v) = 2 Q(V')?v(x')) dx

if sym V'u(x') + 3Vv(x) @ Vv(x') =0 <= det(V')?v(x') =0 a.e. in w.
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The general picture

1 r
— 1 Ioy,
o' h:)O

@ 2 < a < 4: constrained Von Karman plate theory:
1 7\2 / /
Io(u,v) = 2 Q(V')?v(x')) dx

if sym V'u(x') + 3Vv(x) @ Vv(x') =0 <= det(V')?v(x') =0 a.e. in w.
@ 0 <a< 2:[S. Conti- F. Maggi (2008)]

Ia()’) =0

if (V'y)TV'y —1Id <0,
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The general picture

1 r
— 1 Ioy,
o' h:)O

@ 2 < a < 4: constrained Von Karman plate theory:
1 7\2 / /
Io(u,v) = 2 Q(V')?v(x')) dx

if sym V'u(x') + 3Vv(x) @ Vv(x') =0 <= det(V')?v(x') =0 a.e. in w.
@ 0 <a< 2:[S. Conti- F. Maggi (2008)]

Ia()’) =0

if (V'y)TV'y —1Id <0,
0 f<a<2:77
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Some references on static I'-convergence

@ A. Braides, [-convergence for beginners, Oxford University Press, Oxford
(2002).

o G. Dal Maso, An introduction to I-convergence, Boston, Birkhiuser (1993).
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A reference on two-scale convergence

@ S. Neukamm’s PhD thesis, which can be found here:
https://mediatum.ub.tum.de/doc/976438/976438.pdf

The approach | used to introduce '-convergence in class was taken from the PhD
thesis above, Section 2. A very thorough list of references can also be found there.
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