Dimension Reduction Problems for Multiscale Materials in Nonlinear Elasticity.

Part 3: simultaneous homogenization and dimension reduction

Elisa Davoli

CENTRAL Summerschool Humboldt-Universität zu Berlin, August 29th-September 2nd 2016.

Overview

- Part 1: dimension reduction problem for homogeneous nonlinearly elastic plates.
- Part 2/tutorial: static Γ -convergence, and the notion of 2-scale convergence.
- Part 3: simultaneous homogenization and dimension reduction.
 - Motivation
 - A little bit of history
 - Homogenization under physical growth conditions

Motivation

In many applications: establish the macroscopic behavior of a material which is "mycroscopically" heterogeneous, in order to study some characteristics of the heterogeneous material (for example its thermal or electrical conductivity).

Homogenization problems for thin structures.

Dimension reduction in nonlinear elasticity

Scaling of the applied loads in terms of the thickness parameter

Different scalings of the elastic energy

∜

₩

Different limit models.

3

Periodic homogenization and dimension reduction

Scaling of the applied loads in terms of the thickness parameter

Different scalings of the elastic energy & different ratio thickness/periodicity scale(s)

∜

 \Downarrow

Different limit models.

A (very) brief history of homogenization and dimension reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006), A. Braides - I. Fonseca - G. A. Francfort (2000) **p-growth**

$$\frac{1}{\beta}|F|^{p} - \beta \leq W(F) \leq \beta(1+|F|^{p}).$$

A (very) brief history of homogenization and dimension reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006), A. Braides - I. Fonseca - G. A. Francfort (2000) **p-growth**

$$\frac{1}{\beta}|F|^p - \beta \le W(F) \le \beta(1+|F|^p).$$

Incompatible with the physical requirement that the energy blows up under very strong compressions.

$$W(F) \rightarrow +\infty$$
 as det $F \rightarrow 0^+$.

Homogenization under physical growth conditions for the energy density, at least for models corresponding to very small loads $f^h \approx h^{\alpha}$, $\alpha > 2$ (Von Kàrmàn plate theories) or $\alpha = 2$ (Kirchhoff plate theories)?

イロン イロン イヨン イヨン 三日

A brief history of homogenization and dimension reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006), A. Braides - I. Fonseca - G. A. Francfort (2000) P-growth

Incompatible with the physical requirement that the energy blows up under very strong compressions.

$$W(F) \rightarrow +\infty$$
 as det $F \rightarrow 0^+$.

P. Hornung - S. Neukamm - I. Velčić (2014), S. Neukamm - I. Velčić (2013), I. Velčić (2014), L. Bufford - E.D. - I. Fonseca (2015): homogenization and dimension reduction under **physical growth conditions** for the energy density $(f^h \approx h^{\alpha}, \alpha \geq 2)$.

イロン イロン イヨン イヨン 三日

Homogenization with physical growth conditions for a multiscale thin plate

[P. Hornung - S. Neukamm - I. Velčič (2014)], [L. Bufford - E.D. - I. Fonseca (2015)]

Reference configuration:

$$\Omega_h := \omega \times \left(-\frac{h}{2}, \frac{h}{2}\right)$$

- ω =bounded Lipschitz domain in \mathbb{R}^2 , whose boundary is piecewise C^1 ,
- h > 0 =thickness parameter.

イロト 不得 トイヨト イヨト

Homogenization with physical growth conditions for a multiscale thin plate

[P. Hornung - S. Neukamm - I. Velčič (2014)], [L. Bufford - E.D. - I. Fonseca (2015)]

Reference configuration:

$$\Omega_h := \omega \times \left(-\frac{h}{2}, \frac{h}{2}\right)$$

- ω =bounded Lipschitz domain in \mathbb{R}^2 , whose boundary is piecewise C^1 ,
- h > 0=thickness parameter.
- two in plane homogeneity scales a coarser one and a finer one $\varepsilon(h)$ and $\varepsilon^2(h)$,
- {h} and {ε(h)} are monotone decreasing sequences of positive numbers, h→0, and ε(h)→0 as h→0.

イロン イロン イヨン イヨン 三日

Homogenization with physical growth conditions

The rescaled nonlinear elastic energy:

$$\mathcal{J}^{h}(v) := \frac{1}{h} \int_{\Omega_{h}} W\left(\frac{x'}{\varepsilon(h)}, \frac{x'}{\varepsilon^{2}(h)}, \nabla v(x)\right) dx$$

for every deformation $v \in W^{1,2}(\Omega_h; \mathbb{R}^3)$.

Kirchhoff's plate theory: we consider sequences of deformations $\{v^h\} \subset W^{1,2}(\Omega_h; \mathbb{R}^3)$ verifying

$$\limsup_{h\to 0}\frac{\mathcal{J}^h(v^h)}{h^2}<+\infty.$$

イロト 不得 トイヨト イヨト

Our goal

To identify the effective energy associated to the rescaled elastic energies $\left\{\frac{\mathcal{J}^{h}(v^{h})}{h^{2}}\right\}$ for different values of

$$\gamma_1 := \lim_{h \to 0} \frac{h}{\varepsilon(h)}$$

and

$$\gamma_2 := \lim_{h \to 0} \frac{h}{\varepsilon^2(h)},$$

i.e. depending on the interaction of the homogeneity scales with the thickness parameter.

Five regimes: $\gamma_1 = +\infty$, $0 < \gamma_1 < +\infty$, $\gamma_1 = 0$ and $\gamma_2 = +\infty$, $0 < \gamma_2 < +\infty$, $\gamma_2 = +\infty$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Assumptions on the stored energy density

$$W: \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{M}^{3 \times 3} \to [0, +\infty)$$

(H0) $(\cdot, \cdot, F) \mapsto W(\cdot, \cdot, F)$ is measurable and *Q*-periodic, $W(y, z, \cdot)$ is continuous, (H1) W(y, z, RF) = W(y, z, F) for every $F \in \mathbb{M}^{3 \times 3}$ and for all $R \in SO(3)$ (frame indifference),

(H2) $W(y, z, F) \ge C_1 \operatorname{dist}^2(F; SO(3))$ for every $F \in \mathbb{M}^{3 \times 3}$ (nondegeneracy),

Assumptions on the stored energy density

$$W: \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{M}^{3 \times 3} \to [0, +\infty)$$

(H0) $(\cdot, \cdot, F) \mapsto W(\cdot, \cdot, F)$ is measurable and Q-periodic, $W(y, z, \cdot)$ is continuous,

- (H1) W(y, z, RF) = W(y, z, F) for every $F \in \mathbb{M}^{3 \times 3}$ and for all $R \in SO(3)$ (frame indifference),
- (H2) $W(y, z, F) \ge C_1 \operatorname{dist}^2(F; SO(3))$ for every $F \in \mathbb{M}^{3 \times 3}$ (nondegeneracy),
- (H3) there exists $\delta > 0$ such that $W(y, z, F) \leq C_2 \operatorname{dist}^2(F; SO(3))$ for every $F \in \mathbb{M}^{3 \times 3}$ with $\operatorname{dist}(F; SO(3)) < \delta$,

(H4) $\lim_{|G|\to 0} \frac{W(y,z,ld+G)-\mathscr{Q}(y,z,G)}{|G|^2} = 0$, where $\mathscr{Q}(y,z,\cdot)$ is a quadratic form on $\mathbb{M}^{3\times 3}$.

イロン イロン イヨン イヨン 三日

Change of variables

We focus on the asymptotic behavior of sequences of deformations $\{u^h\} \subset W^{1,2}(\Omega; \mathbb{R}^3)$ satisfying the uniform energy estimate

$$\mathcal{E}^{h}(u^{h}) := \int_{\Omega} W\Big(rac{x'}{arepsilon(h)}, rac{x'}{arepsilon^{2}(h)},
abla_{h}u^{h}(x)\Big) \, dx \leq Ch^{2} \quad ext{for every } h > 0.$$

where
$$\Omega := \Omega_1 = \omega \times (-\frac{1}{2}, \frac{1}{2})$$
, and $\nabla_h u(x) := \left(\nabla' u(x) \Big| \frac{\partial_{x_3} u(x)}{h}\right)$ for a.e. $x \in \Omega$.

Remark

For W independent of y and z, such scalings of the energy lead to Kirchhoff's nonlinear plate theory [G. Friesecke - R.D James - S. Müller (2006)].

< ロ > < 同 > < 回 > < 回 > < □ > <

Compactness

Theorem (G. Friesecke - R.D James - S. Müller (2006))

Let $\{u^h\} \subset W^{1,2}(\Omega; \mathbb{R}^3)$ satisfy the uniform energy estimate. Then, there exists a map $u \in W^{2,2}(\omega; \mathbb{R}^3)$ such that, up to subsequences,

$$\begin{split} u^{h} &- \int_{\Omega} u^{h}(x) \, dx \to u \quad \text{strongly in } L^{2}(\Omega; \mathbb{R}^{3}) \\ \nabla_{h} u^{h} &\to (\nabla' u | n_{u}) \quad \text{strongly in } L^{2}(\Omega; \mathbb{M}^{3 \times 3}), \end{split}$$

with

$$\partial_{x_{\alpha}} u(x') \cdot \partial_{x_{\beta}} u(x') = \delta_{\alpha,\beta} \quad \text{for a.e. } x' \in \omega, \quad \alpha,\beta \in \{1,2\}$$

and

$$n_u(x') := \partial_{x_1} u(x') \wedge \partial_{x_2} u(x')$$
 for a.e. $x' \in \omega$.

Theorem (L. Bufford - E.D. - I. Fonseca (2015))

Let $\gamma_1 \in [0, +\infty]$ and let $\gamma_2 = +\infty$. Let $\{u^h\} \subset W^{1,2}(\Omega; \mathbb{R}^3)$ and $u \in W^{2,2}(\omega; \mathbb{R}^3)$ be as in Theorem 1. Then

$$\liminf_{h\to 0}\frac{\mathcal{E}^h(u^h)}{h^2}\geq \mathcal{E}^{\gamma_1}(u).$$

Moreover, for every $u \in W^{2,2}(\omega; \mathbb{R}^3)$ as in Theorem 1, there exists a sequence $\{u^h\} \subset W^{1,2}(\Omega; \mathbb{R}^3)$ such that

$$\limsup_{h\to 0}\frac{\mathcal{E}^h(u^h)}{h^2}\leq \mathcal{E}^{\gamma_1}(u).$$

Theorem (L. Bufford - E.D. - I. Fonseca (2015))

The effective energy is given by

$$\mathcal{E}^{\gamma_1}(u) := \begin{cases} \frac{1}{12} \int_{\omega} \overline{\mathscr{Q}}_{\hom}^{\gamma_1}(\Pi^u(x')) \, dx' & \text{if } u \text{ is as in Theorem 1,} \\ +\infty & \text{otherwise in } L^2(\Omega; \mathbb{R}^3), \end{cases}$$

where Π^u is the second fundamental form associated to u,

$$\Pi^u_{lpha,eta}(x'):=-\partial^2_{lpha,eta}u(x')\cdot n_u(x') \quad \textit{for } lpha,eta=1,2,$$

 $n_u(x') := \partial_1 u(x') \wedge \partial_2 u(x')$, and $\overline{\mathscr{Q}}_{hom}^{\gamma_1}$ is a quadratic from dependent on the value of γ_1 .

Theorem (0 < γ_1 < + ∞ .)

In particular, if $0 < \gamma_1 < +\infty$, for every $A \in \mathbb{M}^{2 \times 2}_{sym}$

$$\begin{split} \overline{\mathscr{Q}}_{\text{hom}}^{\gamma_1}(A) &:= \inf \left\{ \int_{\left(-\frac{1}{2},\frac{1}{2}\right) \times Q} \mathscr{Q}_{\text{hom}} \left(y, \begin{pmatrix} x_3A+B & 0\\ 0 & 0 \end{pmatrix} \right. \\ &+ \operatorname{sym} \left(\nabla_y \phi_1(x_3, y) \Big| \frac{\partial_{x_3} \phi_1(x_3, y)}{\gamma_1} \right) \right) : \\ &\phi_1 \in W^{1,2} \left(\left(-\frac{1}{2},\frac{1}{2}\right); W_{\text{per}}^{1,2}(Q; \mathbb{R}^3) \right), B \in \mathbb{M}_{\text{sym}}^{2 \times 2} \right\}; \end{split}$$

where

$$\mathscr{Q}_{\mathrm{hom}}(y,\mathcal{C}) := \inf \Big\{ \int_{\mathcal{Q}} \mathscr{Q}ig(y,z,\mathcal{C}+\mathrm{sym}ig(
abla \phi_2(z)ig|0ig) : \phi_2 \in W^{1,2}_{\mathrm{per}}(\mathcal{Q};\mathbb{R}^3) \Big\}$$

for a.e. $y \in Q$, and for every $C \in \mathbb{M}^{3 \times 3}_{sym}$.

イロト イロト イヨト イヨト

Theorem $(\gamma_1 = +\infty)$ If $\gamma_1 = +\infty$, for every $A \in \mathbb{M}^{2 \times 2}_{sym}$ $\overline{\mathscr{Q}}_{\mathrm{hom}}^{\infty}(A) := \inf \left\{ \int_{\left(-\frac{1}{2},\frac{1}{2}\right) \times O} \mathscr{Q}_{\mathrm{hom}}\left(y, \left(\begin{array}{cc} x_{3}A + B & 0\\ 0 & 0 \end{array}\right) \right. \right\}$ $+ \operatorname{sym} (\nabla_y \phi_1(x_3, y) | d(x_3))): d \in L^2((-\frac{1}{2}, \frac{1}{2}); \mathbb{R}^3),$ $\phi_1 \in L^2((-\frac{1}{2}, \frac{1}{2}); W^{1,2}_{per}(Q; \mathbb{R}^3)), \text{ and } B \in \mathbb{M}^{2 \times 2}_{sym} \bigg\}.$

イロン イロン イヨン イヨン 三日

Theorem $(\gamma_1 = 0)$ If $\gamma_1 = 0$, for every $A \in \mathbb{M}^{2 \times 2}_{sym}$ $\overline{\mathscr{Q}}_{\mathrm{hom}}^{0}(A) := \inf \left\{ \int_{\left(-\frac{1}{2}, \frac{1}{2}\right) \times Q} \mathscr{Q}_{\mathrm{hom}}\left(y, \left(\begin{array}{cc} x_{3}A + B & 0\\ 0 & 0 \end{array}\right)\right) \right\}$ $+ \operatorname{sym} \left(\begin{array}{cc} \operatorname{sym} \nabla_y \xi(x_3, y) + x_3 \nabla_y^2 \eta(y) & g_1(x_3, y) \\ & g_2(x_3, y) \\ g_1(x_3, y) & g_2(x_3, y) & g_3(x_3, y) \end{array} \right) \right) :$ $\xi \in L^2((-\frac{1}{2},\frac{1}{2}); W^{1,2}_{\mathrm{per}}(Q; \mathbb{R}^2)), \eta \in W^{2,2}_{\mathrm{per}}(Q),$ $g_i \in L^2\left(\left(-\frac{1}{2}, \frac{1}{2}\right) \times Q\right), i = 1, 2, 3, B \in \mathbb{M}^{2 \times 2}_{\text{sym}} \bigg\}.$

イロン イロン イヨン イヨン 三日

A few questions

- Why are there pointwise minimizations with respect to gradients in the periodicity variables?
- How does the value of γ_1 determine the different minimization problems?
- Where does two-scale convergence come into play?

3

1. Convergence of scaled stresses

$$|\sqrt{F^{T}F} - Id|^{2} \leq C \operatorname{dist}^{2}(F; SO(3)) \leq W(y, z, F)$$
 &

Uniform energy estimate

3

イロン イ団と イヨン イヨン

1. Convergence of scaled stresses

$$|\sqrt{F^{T}F} - Id|^{2} \leq C \operatorname{dist}^{2}(F; SO(3)) \leq W(y, z, F)$$
 &

Uniform energy estimate

∜

Uniform bound on the L^2 -norm of the sequence of linearized stresses

$$E^{h}(x) := \frac{\sqrt{(\nabla_{h}u^{h}(x))^{T}\nabla_{h}u^{h}(x)} - Id}{h}.$$

3

イロト イヨト イヨト イヨト

1. Convergence of scaled stresses

Linearization of the stored energy density around the identity

∜

 $\liminf_{h\to 0} \frac{\mathcal{E}^h(u^h)}{h^2} \cong \liminf_{h\to 0} \int_{\Omega} \mathscr{Q}\Big(\frac{x'}{\varepsilon(h)}, \frac{x'}{\varepsilon^2(h)}, E^h(x)\Big) \, dx.$

イロン イロン イヨン イヨン 三日

1. Convergence of scaled stresses

Linearization of the stored energy density around the identity

1

 $\liminf_{h\to 0} \frac{\mathcal{E}^h(u^h)}{h^2} \approx \liminf_{h\to 0} \int_{\Omega} \mathscr{Q}\Big(\frac{x'}{\varepsilon(h)}, \frac{x'}{\varepsilon^2(h)}, E^h(x)\Big) \, dx.$

Key point: to identify the **multiscale** limit of the sequence E^h . **Key ingredient**: multiscale convergence adapted to dimension reduction.

・ロト ・四ト ・ヨト ・ヨト 三国

Definition (G. Allaire (1992), D. Lukkassen - G. Nguetseng - P. Wall (2002), G. Nguetseng (1989), G.Allaire - M. Briane (1996)) Let $u \in L^2(\Omega \times Q \times Q)$ and $\{u^h\} \in L^2(\Omega)$. We say that $\{u^h\}$ converges weakly 3-scale to u in $L^2(\Omega \times Q \times Q)$, and we write $u^h \stackrel{3-s}{\longrightarrow} u$, if

$$\int_{\Omega} u^{h}(\xi) \varphi\left(\xi, \frac{\xi}{\varepsilon(h)}, \frac{\xi}{\varepsilon^{2}(h)}\right) d\xi \to \int_{\Omega} \int_{Q} \int_{Q} u(\xi, \eta, \lambda) \varphi(\xi, \eta, \lambda) \, d\lambda \, d\eta \, d\xi$$

for every $\varphi \in \mathit{C}^\infty_{c}(\Omega; \mathit{C}_{\mathrm{per}}(\mathit{Q} imes \mathit{Q})).$

イロト 不得 トイヨト イヨト

Definition (S. Neukamm (2010))

Let $u \in L^2(\Omega \times Q \times Q)$ and $\{u^h\} \in L^2(\Omega)$. We say that $\{u^h\}$ converges weakly *dr-3-scale to u* in $L^2(\Omega \times Q \times Q)$, and we write $u^h \stackrel{dr-3-s}{\longrightarrow} u$, if

$$\int_{\Omega} u^{h}(x)\varphi\left(x,\frac{x'}{\varepsilon(h)},\frac{x'}{\varepsilon^{2}(h)}\right) dx \to \int_{\Omega} \int_{Q} \int_{Q} u(x,y,z)\varphi(x,y,z) \, dz \, dy \, dx$$

for every $arphi \in \mathit{C}^\infty_{c}(\Omega; \mathit{C}_{\mathrm{per}}(\mathit{Q} imes \mathit{Q})).$

Remark

Bounded sequences in L² are precompact with respect to multiscale convergence

Definition (S. Neukamm (2010))

Let $u \in L^2(\Omega \times Q \times Q)$ and $\{u^h\} \in L^2(\Omega)$. We say that $\{u^h\}$ converges weakly *dr-3-scale to u* in $L^2(\Omega \times Q \times Q)$, and we write $u^h \stackrel{dr-3-s}{\longrightarrow} u$, if

$$\int_{\Omega} u^{h}(x)\varphi\left(x,\frac{x'}{\varepsilon(h)},\frac{x'}{\varepsilon^{2}(h)}\right) dx \to \int_{\Omega} \int_{Q} \int_{Q} u(x,y,z)\varphi(x,y,z) \, dz \, dy \, dx$$

for every $arphi \in \mathit{C}^\infty_c(\Omega; \mathit{C}_{\mathrm{per}}(\mathit{Q} imes \mathit{Q})).$

Remark

Bounded sequences in L² are precompact with respect to multiscale convergence

Question: how are 3-scale limits, 2-scale limits, and weak L^2 -limit related? On the blackboard!

イロト 不得下 イヨト イヨト 二日

Theorem (Multiscale limits of scaled gradients) Let $u, \{u^h\} \subset W^{1,2}(\Omega)$ be such that

 $u^h
ightarrow u$ weakly in $W^{1,2}(\Omega)$.

and

$$\limsup_{h\to 0}\int_{\Omega}|\nabla_h u^h(x)|^2\,dx<\infty.$$

Then u is independent of x_3 .

Theorem (Multiscale limits of scaled gradients)

Let $u, \{u^h\} \subset W^{1,2}(\Omega)$ be such that

 $u^h
ightarrow u$ weakly in $W^{1,2}(\Omega)$.

and

$$\limsup_{h\to 0}\int_{\Omega}|\nabla_h u^h(x)|^2\,dx<\infty.$$

Then u is independent of x₃. Moreover, there exist $u_1 \in L^2(\Omega; W^{1,2}_{per}(Q))$, $u_2 \in L^2(\Omega \times Q; W^{1,2}_{per}(Q))$, and $\bar{u} \in L^2(\omega \times Q \times Q; W^{1,2}(-\frac{1}{2}, \frac{1}{2}))$ such that, up to the extraction of a (not relabeled) subsequence,

$$abla_h u^h \stackrel{dr-3-s}{\longrightarrow} \left(
abla' u +
abla_y u_1 +
abla_z u_2 \Big| \partial_{x_3} \overline{u} \right) \quad weakly \ dr-3-scale.$$

イロト 不得下 イヨト イヨト 二日

Theorem (Multiscale limits of scaled gradients)

Moreover,

(i) if
$$\gamma_1 = \gamma_2 = +\infty$$
 (i.e. $\varepsilon(h) << h$), then $\partial_{y_i} \bar{u} = \partial_{z_i} \bar{u} = 0$, for $i = 1, 2$;
(ii) if $0 < \gamma_1 < +\infty$ and $\gamma_2 = +\infty$ (i.e. $\varepsilon(h) \sim h$), then

$$\bar{u} = \frac{u_1}{\gamma_1};$$

(iii) if $\gamma_1 = 0$ and $\gamma_2 = +\infty$ (i.e. $h << \varepsilon(h) << h^{\frac{1}{2}}$), then

 $\partial_{x_3}u_1 = 0$ and $\partial_{z_i}\bar{u} = 0, i = 1, 2.$

Theorem (Multiscale limits of scaled gradients)

Moreover,

(i) if
$$\gamma_1 = \gamma_2 = +\infty$$
 (i.e. $\varepsilon(h) << h$), then $\partial_{\gamma_i} \bar{u} = \partial_{z_i} \bar{u} = 0$, for $i = 1, 2$;
(ii) if $0 < \gamma_1 < +\infty$ and $\gamma_2 = +\infty$ (i.e. $\varepsilon(h) \sim h$), then
 $\bar{u} = \frac{u_1}{\gamma_1}$;
(iii) if $\gamma_1 = 0$ and $\gamma_2 = +\infty$ (i.e. $h << \varepsilon(h) << h^{\frac{1}{2}}$), then

$$\partial_{x_3}u_1 = 0$$
 and $\partial_{z_i}\bar{u} = 0, i = 1, 2.$

Question: why do we have such a structure for multiscale limits of scaled gradients? On the blackboard!

イロト イヨト イヨト イヨト

Proof of the limit inequality for $\gamma_1 \in (0, +\infty)$ (sketch) 2. The rigidity estimate

Theorem (G. Friesecke - R.D. James - S. Müller (2002))

Let $\gamma_0 \in (0,1]$ and let $h, \delta > 0$ be such that

$$\gamma_0 \leq rac{h}{\delta} \leq rac{1}{\gamma_0}.$$

There exists a constant *C*, depending only on ω and γ_0 , such that for every $u \in W^{1,2}(\omega; \mathbb{R}^3)$ there exists a map $R : \omega \to SO(3)$ piecewise constant on each cube $x + \delta Y$, with $x \in \delta \mathbb{Z}^2$, and there exists $\tilde{R} \in W^{1,2}(\omega; \mathbb{M}^{3\times 3})$ such that

$$\begin{aligned} \|\nabla_h u - R\|^2_{L^2(\Omega;\mathbb{M}^{3\times3})} + \|R - \tilde{R}\|^2_{L^2(\omega;\mathbb{M}^{3\times3})} \\ &+ h^2 \|\nabla' \tilde{R}\|^2_{L^2(\omega;\mathbb{M}^{3\times3}\times\mathbb{M}^{3\times3})} \le C \|\operatorname{dist}(\nabla_h u; SO(3))\|_{L^2(\Omega)}. \end{aligned}$$

3. Compactness of linearized strains

$$\gamma_1 := \lim_{h \to 0} \frac{h}{\varepsilon(h)} \in (0, +\infty)$$

$$\Downarrow$$

Apply the theorem with $\delta = \varepsilon(h)$ and construct maps R^h piecewise constant on cubes of size $\varepsilon(h)$ and centers in $\varepsilon(h)\mathbb{Z}^2$ such that

$$\begin{aligned} \|\nabla_h u^h - R^h\|_{L^2(\Omega;\mathbb{M}^{3\times 3})}^2 &\leq C \|\operatorname{dist}(\nabla_h u^h; SO(3))\|_{L^2(\Omega)} \leq Ch^2. \end{aligned}$$

The sequence of linearized strains

$$G^{h}(x) := \frac{R^{h}(x')^{T} \nabla_{h} u^{h}(x) - Id}{h}$$

is uniformly bounded in L^2 .

イロト 不得 トイヨト イヨト

4. Stress-strain relation and liminf inequality

$$E^{h}(x) := \frac{\sqrt{(\nabla_{h}u^{h}(x))^{T}\nabla_{h}u^{h}(x)} - Id}{h}$$
$$= \frac{\sqrt{(Id + hR^{h}(x')G^{h}(x))^{T}(Id + hR^{h}(x')G^{h}(x))} - Id}{h}$$
$$\approx \operatorname{sym} R^{h}(x')G^{h}(x) \approx \operatorname{sym} \frac{\nabla_{h}u^{h}(x) - R^{h}(x')}{h}.$$

The problem becomes:

to identify the multiscale limit of the sequence

sym
$$\frac{\nabla_h u^h - R^h}{h}$$
.

3

イロト イヨト イヨト イヨト

5. Identification of the limit strain

Idea: rewrite u^h as

$$u^{h}(x) =: \bar{u}^{h}(x') + hx_{3}\tilde{R}^{h}(x')e_{3} + hr^{h}(x',x_{3})$$

where

$$\bar{u}^h(x') := \int_{-\frac{1}{2}}^{\frac{1}{2}} u^h(x', x_3) \, dx_3.$$

Then

$$\frac{\nabla_h u^h - R^h}{h} = \left(\frac{\nabla' \bar{u}^h - (R^h)'}{h} + x_3 \nabla' \tilde{R}^h e_3 \right| \frac{(\tilde{R}^h - R^h)}{h} e_3 \right) + \nabla_h r^h.$$

2

イロン イロン イヨン イヨン

5. Identification of the limit strain

Bounded sequences in L^2 are precompact with respect to multiscale convergence

$$\frac{\nabla' \bar{u}^h - (R^h)'}{h} \xrightarrow{3-s} V \quad \text{weakly 3-scale.}$$

By the results by [P. Hornung - S. Neukamm - I. Velčič (2014)] and the relation between 3-scale limits and 2-scale limits we only need to show

$$V(x',y,z) - \int_Q V(x',y,\xi) d\xi = \nabla_z v(x',y,z)$$

for some $v \in L^2(\Omega \times Q; W^{1,2}_{\text{per}}(Q))$...

5. Identification of the limit strain

...that is

$$\int_{\Omega} \int_{Q} \int_{Q} \left(V(x', y, z) - \int_{Q} V(x', y, \xi) \, d\xi \right) : (\nabla')^{\perp} \varphi(z) \psi(x', y) \, dx \, dy \, dz = 0$$

for every $arphi\in \mathcal{C}^1_{\mathrm{per}}(\mathcal{Q};\mathbb{R}^3)$ and $\psi\in \mathcal{C}^\infty_c(\omega;\mathcal{C}^\infty_{\mathrm{per}}(\mathcal{Q}))$, where

$$(
abla')^{\perp} arphi(z) := \Big(-\partial_{z_2} arphi(z) |\partial_{z_1} arphi(z) \Big).$$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

5. Identification of the limit strain

...that is

$$\int_{\Omega} \int_{Q} \int_{Q} \left(V(x', y, z) - \int_{Q} V(x', y, \xi) \, d\xi \right) : (\nabla')^{\perp} \varphi(z) \psi(x', y) \, dx \, dy \, dz = 0$$

for every $\varphi \in C^1_{
m per}(Q;\mathbb{R}^3)$ and $\psi \in C^\infty_c(\omega;C^\infty_{
m per}(Q))$, where

$$(
abla')^{\perp} arphi(z) := \Big(-\partial_{z_2} arphi(z) |\partial_{z_1} arphi(z) \Big).$$

₩

Test functions of the form

$$(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big).$$

5. Identification of the limit strain We need to identify

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x')-(R^h)'(x')}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx.$$

2

イロン イヨン イヨン ・ ヨン

5. Identification of the limit strain We need to identify

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x')-(R^h)'(x')}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx.$$

• Step 1:

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x)}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx=0.$$

2

イロン イヨン イヨン ・ ヨン

5. Identification of the limit strain We need to identify

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x')-(R^h)'(x')}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx.$$

• Step 1:

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x)}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx=0.$$

• Step 2:

$$\int_{\Omega} \int_{Q} \int_{Q} \left(\int_{Q} V(x', y, \xi) \, d\xi \right) : (\nabla')^{\perp} \varphi(z) \psi(x', y) \, dx \, dy \, dz = 0.$$

2

イロン イヨン イヨン ・ ヨン

5. Identification of the limit strain We need to identify

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x')-(R^h)'(x')}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx.$$

• Step 1:

$$\lim_{h\to 0}\int_{\omega}\frac{\nabla'\bar{u}^h(x)}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^2(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx=0.$$

• Step 2:

$$\int_{\Omega}\int_{Q}\int_{Q}\left(\int_{Q}V(x',y,\xi)\,d\xi\right):(\nabla')^{\perp}\varphi(z)\psi(x',y)\,dx\,dy\,dz=0.$$

• Step 3:

$$\lim_{h\to 0}\int_{\omega}\frac{(R^{h})'(x')}{h}:(\nabla')^{\perp}\varphi\Big(\frac{x'}{\varepsilon^{2}(h)}\Big)\psi\Big(x',\frac{x'}{\varepsilon(h)}\Big)\,dx=0$$

2

イロト イヨト イヨト イヨト

5. Identification of the limit strain

Idea: the maps R^h are piecewise constant con cubes of size $\varepsilon(h)$ and centers in $\varepsilon(h)\mathbb{Z}^2...$

2

イロン イ団と イヨン イヨン

5. Identification of the limit strain

Idea: the maps R^h are piecewise constant con cubes of size $\varepsilon(h)$ and centers in $\varepsilon(h)\mathbb{Z}^2...$ Main difficulty: ...but we have oscillations on cubes of size $\varepsilon^2(h)$ and centers in $\varepsilon^2(h)\mathbb{Z}^2$.

э

5. Identification of the limit strain

Solution: to distinguish between "bad cubes" and "good cubes" and show that the measure of the intersection between ω and the set of "bad cubes" converges to zero faster than or comparable to $\varepsilon(h)$, as $h \to 0$.

Final remarks on the case $\gamma_1 = 0$.

- By G. Friesecke, R.D. James and S. Müller's rigidity estimate: work with sequences of piecewise constant rotations which are constant on cubes of size ε²(h) having centers in the grid ε²(h)Z².
- To identify the limit multiscale stress we need to deal with oscillating test functions with vanishing averages on a scale ε(h).

Final remarks on the case $\gamma_1 = 0$.

The identification of "good cubes" and "bad cubes" of size $\varepsilon^2(h)$ is not helpful as the contribution of the oscillating test functions on cubes of size $\varepsilon^2(h)$ is not negligible anymore.

We are only able to perform an identification of the multiscale limit in the case $\gamma_2 = +\infty$, extending to the **multiscale setting** the results obtained by **I. Velčič**. The identification of the effective energy in the case in which $\gamma_1 = 0$ and $\gamma_2 \in [0, +\infty)$ remains an open question.

References-1

- G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482–1518.
- G. Allaire, M. Briane. Multiscale convergence and reiterated homogenisation. *Proc. Roy. Soc. Edinburgh Sect. A* **126** (1996), 297–342.
- J.F. Babadjian, M. Baía. 3D-2D analysis of a thin film with periodic microstructure. *Proc. Roy. Soc. Edinburgh Sect. A* **136** (2006), 223–243.
- A. Braides. Homogenization of some almost periodic coercive functionals. *Rend. Naz. Accad. Sci. XL. Mem. Mat.* **5** (1985), 313–322.
- A. Braides, I. Fonseca, G.A. Francfort. 3D-2D asymptotic analysis for inhomogeneous thin films. *Indiana Univ. Math. J.* 49 (2000), 1367–1404.
- L. Bufford, E. Davoli, I. Fonseca. Multiscale homogenization in Kirchhoff's nonlinear plate theory. *Math. Models Methods Appl. Sci.* 25 (2015), 1765–1812.

3

ヘロト 人間ト 人団ト 人団ト

References-2

- S. Müller. Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. **99** (1987), 189–212.
- G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. *SIAM J. Math. Anal.* **20** (1989), 608–623.
- P. Hornung, S. Neukamm, I. Velčič. Derivation of a homogenized nonlinear plate theory from 3d elasticity. *Calc. Var. Partial Differential Equations* **51** (2014), 677–699.
- S. Neukamm. Homogenization, linearization and dimension reduction in elasticity with variational methods. PhD thesis, Technische Universität München, 2010.
- I. Velčič. On the derivation of homogenized bending plate model. *Calc. Var. Partial Differential Equations* **53** (2015), 561–586.

Thank you for your attention!

2

イロン イ団と イヨン イヨン