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Menagerie of options in plasticity/damage models:

Plasticity can influence damage:
1) indirectly through influencing the stress and strain
2) directly through influencing activation threshold for damage.
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Menagerie of options in plasticity/damage models:

Plasticity can influence damage:
1) indirectly through influencing the stress and strain
2) directly through influencing activation threshold for damage.

Damage can influence: 1) elasticity (through decaying elastic moduli)
2) plasticity (through decaying plastic yield stress)
3) both.

Damage evolution can be: 1) unidirectional,
2) with healing.

Plasticity/damage can be considered: 1) rate-independent
2) rate-dependent (visco-plasticity, viscous damage)

(4 options altogether, or more in damage/healing)
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Plasticity/damage can be considered: 1) rate-independent
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(4 options altogether, or more in damage/healing)

Plasticity can be: 1) with hardening,
2) without hardening (so-called perfect plasticity).
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Menagerie of options in plasticity/damage models:

Plasticity can influence damage:
1) indirectly through influencing the stress and strain
2) directly through influencing activation threshold for damage.

Damage can influence: 1) elasticity (through decaying elastic moduli)
2) plasticity (through decaying plastic yield stress)
3) both.

Damage evolution can be: 1) unidirectional,
2) with healing.

Plasticity/damage can be considered: 1) rate-independent
2) rate-dependent (visco-plasticity, viscous damage)

(4 options altogether, or more in damage/healing)

Plasticity can be: 1) with hardening,
2) without hardening (so-called perfect plasticity).

Length scale (gradients) in plasticity or/and damage, small vs large strains,.
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Plasticity with damage: two basic scenarios of the response
under increasing mechanical load:

1) first plasticity,

then damage:

a) damage-activation threshold constant, reached by
increasing stress after enough hardening
b) damage-activation threshold decreasing,
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Plasticity with damage: two basic scenarios of the response
under increasing mechanical load:

1) first plasticity, then damage:

a) damage-activation threshold constant, reached by
increasing stress after enough hardening
b) damage-activation threshold decreasing,
depending on plastification
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2) first damage, then plasticity:
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...and a combination of a) and b) possible, too.

yield stress undergoing (=decreasing with) damage
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The plot:

Part |: basic scenario: rate-independent plasticity + rate-independent damage

Part II: perfect plasticity with rate dependent damage with a possible healing

Part Ill: rate-independent unidirectional damage with visco-plasticity,
thermodynamics, etc.

Part IV: tutorial — further outlooks
(combination with other processes, large strains, etc.)
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o Rate-independent plasticity, hardening, damage
@ Linearized plasticity and gradient damage
@ Weak solutions and various refinements
@ Dilemma: Global or local, energy or force?

@ Discretisation in time and convergence analysis outlined
@ Approximate max-diss principle for the semi-implicit scheme
@ Implicit discretisation — energetic solution

e Stress-driven scenario, gradient plasticity and gradient damage
@ A fractional-step semi-implicit discretisation
@ Convergence towards local solutions
@ Numerical simulations - approximate maximum-dissipation principle
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

General scheme of mathematical modelling procedure:

various various
ah(ra?]a:)l;r\?ieor:l)i —  mathematical — concepts
P models of solution

A solution concept may be a vital part of the model itself!
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

General scheme of mathematical modelling procedure:

various various
ah(ra?]a:)l;r\?ieor:l)i —  mathematical — concepts
P models of solution

A solution concept may be a vital part of the model itself!

Evolution governed formally by a generalized gradient-flow equations (inclusions):

€OR'(E) with €€ -0.E(tu,2),

dt -admissible driving force available driving force

dz

0,E(t,u,z) 20 and

where the symbol “0" refers to a (partial) (sub)differential, relying on
that £(t,-,z), £(t, u,-), and R* (=conjugate to R) are convex functionals.

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

General scheme of mathematical modelling procedure:

various various
ah(ra?]a:)l;r\?ieor:l)i —  mathematical — concepts
P models of solution

A solution concept may be a vital part of the model itself!

Equivalently, evolution governed formally by Biot-type equations (inclusions):
d
9,E(t,u,z) >0 and 3R(d—i) +0,E(tu,2) 30,

where the symbol “0" refers to a (partial) (sub)differential, relying on
that £(t,-, z), £(t, u,-), and R(:) are convex functionals.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

General scheme of mathematical modelling procedure:

various various
ah(ra?]a:)l;r\?ieor:l)i —  mathematical — concepts
P models of solution

A solution concept may be a vital part of the model itself!

Equivalently, evolution governed formally by Biot-type equations (inclusions):
d
9,E(t,u,z) >0 and 3R(d—i) +0,E(tu,2) 30,

where the symbol “0" refers to a (partial) (sub)differential, relying on
that £(t,-, z), £(t, u,-), and R(:) are convex functionals.

The main focuse in today's talk:

E(t,-,-) nonconvex, but at least £(t, -, z) convex,
or possibly also &(t, u, ) convex,

R > 0 convex, positively homogenous of degree 1 (called 1-homogenous).
(such-R is called a gauge)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:

Q c IR? a bounded domain,
u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

— div(C(e(v)—)) = f, (momentum equilibrium)
= H o
3R( %) + (Cﬂ-;;? W) > ((Ceéu))j (Biot inclusion)
t

with e(u) = 1(Vu)T + 1Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:
Q c RY a bounded domain,

u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

divo+f =0 with o = C(e(u)—7), (momentum equilibrium)

0 (m «f o—Hrm
&(n)eaR< by ), (flow rule)

with e(u) = 1(Vu)T + 1Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
Hr is a back stress to the elastic stress o.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:

Q c IR? a bounded domain,
u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

divo+f =0 with o = C(e(u)—7), (momentum equilibrium)

0 (m «f o—Hrm
&(n)eaR< by ), (flow rule)

with e(u) = 1(Vu)T + 1Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
Hr is a back stress to the elastic stress o.

If R is degree-1 positively homogeneous, i.e. IR is degree-0 homogeneous,
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:

Q c IR? a bounded domain,
u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

divo+f =0 with o = C(e(u)—7), (momentum equilibrium)

0 (m «f o—Hrm
ar(ﬂ)eaR( by ), (flow rule)

with e(u) = 1(Vu)T + 1Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
Hr is a back stress to the elastic stress o.

If R = 6%, with S C IR IR be a convex closed neighbourhood of 0,

dev
ds is its indicator function, and ¢% the conjugate functional to Js.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:

Q c IR? a bounded domain,
u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

divo+f =0 with o = C(e(u)—7), (momentum equilibrium)

0 (m «f o—Hrm
&(n)eaR< by ), (flow rule)

with e(u) = 1(Vu)T + 1Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
Hr is a back stress to the elastic stress o.

If R = 6%, with S C IR IR be a convex closed neighbourhood of 0,

dev
ds is its indicator function, and ¢% the conjugate functional to Js.

Then OR* =00&* = 06s = Ns =the normal cone to S.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Linearized plasticity with hardening of Prager/Ziegler's type at small strains:

Q c IR a bounded domain,
u =displacement,
z = (m,n) =the plastic strain and the isotropic-hardening parameter,

divo+f =0 with ¢ = C(e(u)—m), (momentum equilibrium)

0 (m o — Hn
at(n)e Ns( by ), (flow rule)

with e(u) = 1(Vu)T + 2Vu small-strain tensor,
b > 0 isotropic-hardening coefficient,
H > 0 kinematic-hardening coefficient (a dxdxdxd-tensor),
Hir is a back stress to the elastic stress o.

If R =0%, with S C IRG*"xIR be a convex closed neighbourhood of 0,

dev
ds is its indicator function, and 6% the conjugate functional to Js.

Then OR* =005* = 06s = Ns =the normal cone to S.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

3y 5" *
| | K BSK
| |
[ [
[ [
| | .
e £ x
0 [ —W z

An illustration of an indicator function of K acting on a driving force o,
its convex conjugate (1-homogeneous), and
its subdifferential (maximally responsive) =inverse to the normal cone to K
used here for K = S, later e.g. for K = [—a1,00) or K = [—a, b].

=

A schematic response on cycling loading (left) of plastic material
without hardening, i.e. perfect (also called Prandtl-Reuss) plasticity,
with kinematic hardening, and
with isotropic hardening.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The concept of internal variables
P. DUHEM (1903), C. ECKART (1940), P.W. BRIDGMAN (1943)

G.A. Maugin: The saga of internal variables of state in continuum
thermo-mechanics (1893-2013), Mech. Res. Communic., 69 (2015), 79-86.

here now z = (7, n)
The state of the system: g = (v, z) = (u, m,n).
Energy E(t,u,z) = 3C(e(u)—) : (e(u)—m)+ 3Hm : 7+ 2 bn? — f(¢) - u.

The driving force { = —0, ;) E(t, u, 2)

Biot equation:
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The concept of internal variables
P. DUHEM (1903), C. ECKART (1940), P.W. BRIDGMAN (1943)

G.A. Maugin: The saga of internal variables of state in continuum
thermo-mechanics (1893-2013), Mech. Res. Communic., 69 (2015), 79-86.

here now z = (7, n)
The state of the system: g = (v, z) = (u, m,n).
Energy E(t,u,z) = 3C(e(u)—) : (e(u)—m)+ 3Hm : 7+ 2 bn? — f(¢) - u.

The driving force { = —0, ;) E(t, u, 2)

(onze )+ (omren )20 ):

Note: E(t,-,-) convex quadratic
C, H positive definite = uniformly convex ...rather boring :-((

Biot equation:
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

R =05 = rate-independency: the system is invariant
under monotone re-scaling time.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

=0¢ = rate-independency: the system is invariant
under monotone re-scaling time.
(R.HILL for convex problems, 1948):

= The Maximum-dissipation principle
maximal monotonicity of R =

0z
aR( )

&€ ot

VvV edR(v): <f & v— > > 0 with the driving force £ € —0,E(t, u, z).

— in particular for v =0:

<%,5>: max<(a9t f> for &€ —0,E(t,u,z)

fes

Plasticity and damage: PART |
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

=0¢ = rate-independency: the system is invariant
under monotone re-scaling time.

= The Maximum-dissipation principle (R.HILL for convex problems, 1948):

maximal monotonicity of OR =
0z

¢ < R ()

VvV edR(v): <f & v— T > > 0 with the driving force £ € —0,E(t, u, z).

— in particular for v =10: (if R only convex but not 1-homogeneous, then “>")

(Gre)=papGir) o ce-netcus

fes
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Linearized plasticity and gradient damage
Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Rate-independent plasticity, hardening, damage

R =05 = rate-independency: the system is invariant
under monotone re-scaling time.

= The Maximum-dissipation principle (R.HILL for convex problems, 1948):

maximal monotonicity of OR =
0z
¢ < R ()
VvV edR(v): <f & v— T > > 0 with the driving force £ € —0,E(t, u, z).

— in particular for v =10: (if R only convex but not 1-homogeneous, then “>")

(o) =m(ons) for ec-detus
— also known as an orthogonality principle (H.ZIEGLER, 1958)

— or the isothermal variant of the maximal entropy production principle
(K.R.RAJAGOPAL, A.SRINIVASA, 2004)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

R =05 = rate-independency: the system is invariant
under monotone re-scaling time.

= The Maximum-dissipation principle (R.HILL for convex problems, 1948):
maximal monotonicity of OR =
0z
¢ 0R(5;)
VvV edR(v): <f & v— T > > 0 with the driving force £ € —0,E(t, u, z).

— in particular for v =10: (if R only convex but not 1-homogeneous, then “>")
<%,§>: rfné'asx<gt f> for &€ —0,E(t,u,z)
— also known as an orthogonality principle (H.ZIEGLER, 1958)

— or the isothermal variant of the maximal entropy production principle
(K.R.RAJAGOPAL, A.SRINIVASA, 2004)

— An important message from the max.-diss. principle:

e —intS = % =0 (a force-driven evolution)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

— Yet max.-diss. principle itself does not say much
= must be combined with a (local) stability.
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Linearized plasticity and gradient damage
Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Rate-independent plasticity, hardening, damage

— Yet max.-diss. principle itself does not say much
= must be combined with a (local) stability.

By the definition of the subdifferential:
OR(%) > g & Wi R(v)>(v—2Z)+R
forv— v+ 8t. (& v) < R(v+ 8t) R(%) < R(v)
/
(triangle inequality < 1-homogeneity of R)
= Local stability: Yv: R(v) > (&, v).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

— Yet max.-diss. principle itself does not say much
= must be combined with a (local) stability.

By the definition of the subdifferential:

OR(%) > g & Wi R(v)>(v—2Z)+R

forv— v+ 8t. (& v) < R(v+ 8t) R(%) < R(v)

e

(triangle inequality < 1-homogeneity of R)

= Local stability: Yv: R(v) > (&, v).

If combined with the maximum-dissipation principle: S = dR(0) =

<8t’£> = maxses <g§, f> R(%) (again 1-homogeneity of R used)

= OR(%) > -¢
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

— Yet max.-diss. principle itself does not say much
= must be combined with a (local) stability.

By the definition of the subdifferential:

OR(%) > g & Vv R(v) > <§,vf—>+R

forv— v+ 8t. (& v) < R(v+ t) R(%) < R(v)
/

(triangle inequality < 1-homogeneity of R)
= Local stability: Yv: R(v) > (&, v).
If combined with the maximum-dissipation principle: S = dR(0) =
<8t’£> = maxses <g§, f> R(%) (again 1-homogeneity of R used)
= OR(%) > -¢

When integrated R(z) = [, R(z)dx and &(t,u,z) = [, E(t,u,z)dx:
dz

<E’£>2xz* B ferg%)EO) <E’ f>2xz* e €€ —BLele, o 7))

— analytically only very formal because gi is typically not valued in Z

and, as a function for time, is a measure but & jumps (+ is set-valued).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A combination with damage: a scalar parameter ¢ valued in [0, 1].

(the concept of L.M. KACHANOV 1958)
Now the internal variables are z = (, 7, ().
Stored energy 1

Et, u,m,m, ) = 5C(C)(e(v)—m):(e(u)—)

1 1 1
+ EHWW + §b772 + a0(C) + §“|VCV — g(t)u.

C(-) elastic moduli subjected to damage
ao(+) energy of damage (microscopically interpreted as
an energy of microcracks/microvoids).
Typically: C(-) and ag(-) monotone (in Lowner ordering),
C(0) = 0 complete damage, but we will assume C(0) > 0 uncomplete damage.

Dissipation potential:
R(7,n,¢) = {

55(m, )+ a|¢] if <0
00 if otherwise

a; > 0 an activation energy for damage.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A combination with damage: a scalar parameter ¢ valued in [0, 1].

(the concept of L.M. KACHANOV 1958)
Now the internal variables are z = (, 7, ().
Stored energy 1

Et, u,m,m, ) = 5C(C)(e(v)—m):(e(u)—)

1 1 1
+ EHWW + §b772 + a0(C) + §“|VCV — g(t)u.

C(-) elastic moduli subjected to damage
ao(+) energy of damage (microscopically interpreted as
an energy of microcracks/microvoids).
Typically: C(-) and ag(-) monotone (in Lowner ordering),
C(0) = 0 complete damage, but we will assume C(0) > 0 uncomplete damage.

55(,m) +a1l¢] ifE<0
o

if otherwise

Dissipation potential:
R(7,n,¢) = {

a; > 0 an activation energy for damage.

Note: E(t,-,-) nonconvex, possibly only separately convex and quadratic,
unidirectional damage (no healing allowed).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The classical formulation of the Biot equation /inclusions 873(%) + 04E(t,q) 3 0:

div(C(¢)e) +g=0 with  eq = e(u) —, (momentum equilibrium)

85;(%7{:) + (%;) E) (dev((CéC)eel))’ (plastic flow rule)
Caoo (25) + 2C e e

— kdiv(|V¢]"2VC) + N1y (¢) 2 a5(¢),  (damage flow rule)

Boundary conditions: u = up, (t) on I'p;, C 09,
V(¢-i=0onT :=090%Q.

A transformation to time-constant boundary condition: v =0 on I'p;, C 09
by a shift u — u+ up, (t)  (with up, (t) defined on Q).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Weak solution:

OR(5%) + 9,&(t, u, z) > 0 which, assuming £ smooth for a moment, means

Vv e Z: R(%) < <<‘,';(t7 u,z),v—%

T >+R(v).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Weak solution:

OR(%) + 9,&(t, u, z) > 0 which, assuming £ smooth for a moment, means

Vv e Z: R(%) <5’(t u,z),v j >—|—R( ).

substitute the troublesome term (E.(t, u, z), $%) by integration over time
interval [t1, t2] and using the chain rule

E(t, u(t), 2(t2)) :/tz<8;(t, u(t), z(t)), j >+<5L(t, u(t),z(t))v%>
! + EU(t, u(t), z(t)) dt + E(tr, u(tr), 2(t1)),
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Weak solution:

OR(%) + 9,&(t, u, z) > 0 which, assuming £ smooth for a moment, means

Vv e Z: R(%) < <<‘,';(t7 u,z),v—%> + R(v).

substitute the troublesome term (E.(t, u, z), $%) by integration over time
interval [t1, t2] and using the chain rule

et u(t),2(e) = [ (€2t u(e)2(0). o) + (e w0 20). 5
+ &(t, u(t), z(t)) dt + E(tr, u(tr), z(t1)),
and, using &, (t, u(t), z(t)) = 0, it eventually yields
WEZ Vo 0<t1<tr<T: &E(tp,u(tr),z(tr))+ Varg(z; [t1, t2])

< &(t1,u(tr),z(t1)) + /t 2(é‘;(t, u(t), z(t)) — (&, v) + R(v)) de.

~ fttf R(4E)dt

with the available driving force for evolution of z: & = —&L(t, u(t), z(t)).

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Weak solution:

OR(4%) + 9,&(t, u, z) > 0 which, assuming £ smooth for a moment, means
d d
Vv e Z: R(é) < <5;(t, u,z),v—£>+R(v).

substitute the troublesome term (E.(t, u, z), $%) by integration over time
interval [t1, t2] and using the chain rule

8t ele),2(e)) = [ (Eule,u(e). 2(0), 55) + (Eule. ). 2(0). 5 )
1 +E((t u(t), 2(1)) dt + £(t1, u(t), 2(t)),
and, using 0,&(t, u(t),z(t)) > 0 for a.a. t, it eventually yields

WEZV,a0<th<tr<T: E&(tr,u(tr),z(tr))+ VarR(z; [t1, t2])
< 5(t1,u(t1),z(t1))+/t (5 (t,u(t), —{&v)y + )) dt.

with the available driving force for evolution of z: £ € =0,E(t, u(t), z(1)).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A special case: R 1-homogeneous, £(t, u, ) convex:

Yv: OR(v) C OR(0) =
Vaa.t: OR(0)D&(t) with (some) driving force &(t) € —0,E(t, u(t), z(t))-
by convexity of R & R(0) =0, this is equivalent to
Vv e Z: R(v) — (&(t),v) > R(0) = 0.
Substituting v =z — z(t) & convexity of £(t,u,-) =
0 < R(z—2(1)) — (&(1), 2—2()) < &(¢, u(t),2) + R(z—2(t)) — £(t, u(t), 2(t))
= semi-stability:

VaatVZE Z: E(t, u(t), z(t)) < E(t,u(t),z) + R(z—z(t)).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A special case: R 1-homogeneous, £(t, u,-) convex:
Yv: OR(v) C OR(0) =
Vaa.t: OR(0)2&(t) with (some) driving force &(t) € —0,E(t, u(t), z(t)).
by convexity of R & R(0) =0, this is equivalent to
WweZ:  R(v)— (&), v) > R(0) = 0.
Substituting v =z — z(t) & convexity of £(t,u,-) =
0 < R(z—2(1)) — (&(1),z—2(t)) < E(t, u(t),2) + R(z—2(t)) — £(t, u(t), 2(1))
= semi-stability:
VaatVZE Z: E(t, u(t), z(t)) < E(t,u(t),z) + R(z—z(t)).
Recall the property of the weak solution: 9,E(t, u,z) 2 0 for a.a. t and
WEZ V,a0<ti<tr<T: &E(tp,u(tr),z(tp))+ Varg(z; [t1, t2])

< E(ty,u(tr),z(t1)) + / 2(5{(1‘, u(t), z(t)) — (&, v) + R(v)) de.

: . . t N -
with Varp (z; [t1, to]) := Suppartitioas n<tO<tl<..<tN<p > k=1 R(z(tk)—z(tk71)).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A special case: R 1-homogeneous, £(t, u,-) convex:
Yv: OR(v) C OR(0) =
Vaa.t: OR(0)D&(t) with (some) driving force &(t) € —0,E(t, u(t), z(t))-
by convexity of R & R(0) =0, this is equivalent to
WweZ:  R(v)— (&), v) > R(0) = 0.
Substituting v =z — z(t) & convexity of £(t,u,-) =
0 < R(z—2(1)) — (&(t), z—=(t)) < &(t, u(t),Z) + R(z—2(t)) — £(t, u(t), z(t))
= semi-stability:
VaatVZE Z: E(t,u(t), z(t)) < E(t,u(t),z) + R(z—z(t)).
Recall the property of the weak solution: 9,E(t, u,z) 2 0 for a.a. t and

Voo <t1 <tr<T: 5(1’27 U(tz), Z(tz)) aF VarR(z; [i’l7 t2])
%]

< &ty u(t), 2(6) + [ EL(t u(t), 2(6)) e
w2 s Gl 6= S“ppartiticis n<t<tl.. <tV<r, Ske1 R(2(E9)—2(t71)).

For v =0, it defines the a.e.-local solution  (to use even for £(t, u,-) nonconvex).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A special case: R 1-homogeneous, £(t, u,-) convex:
Yv: OR(v) C OR(0) =
Vaa.t: OR(0)2&(t) with (some) driving force &(t) € —0,E(t, u(t), z(t)).
by convexity of R & R(0) =0, this is equivalent to
WweZ:  R(v)— (&), v) > R(0) = 0.
Substituting v =z — z(t) & convexity of £(t,u,-) =
0 < R(z—2(1)) — (&(1),z—2(t)) < E(t, u(t),2) + R(z—2(t)) — £(t, u(t), 2(1))
= semi-stability:
VaatVZE Z: E(t,u(t), z(t)) < E(t,u(t),z) + R(z—z(t)).
Recall the property of the weak solution: 9,E(t, u,z) 2 0 for a.a. t and

V 0<ti<t<T: &(t,u(tr),z(t2))+ Varg(z; [t1, t2])
%]

< &ty u(t) 2(6) + [ EL(t u(t), 2(6))de
ol Vexizn (e [y G]) 5= S“ppartiticis <<t <tN<r, Skor R(2(t4)—2(t571)).

A bit strenghtened version: the local solution (to use even for £(t, u, -) nonconvex).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A special case: R 1-homogeneous, £(t, u,-) convex:

Yv: OR(v) C OR(0) =
Vaa.t: OR(0)D&(t) with (some) driving force &(t) € —0,E(t, u(t), z(t))-
by convexity of R & R(0) =0, this is equivalent to
Vv e Z: R(v) — (&(t),v) > R(0) = 0.
Substituting v =z — z(t) & convexity of £(t,u,-) =
0 < R(z—2(1)) — (&(1), 2—2()) < &(¢, u(t),2) + R(z2—2(t)) — £(¢, u(t), 2(t))
= semi-stability:

VaautVzeE Z: E(t,u(t), z(t)) < E(t, u(t),z) + R(z—z(t)).
Recall the property of the weak solution: 9,E(t, u,z) 2 0 for a.a. t and
V 0<t1<tr<T: 5(1’27U(tg),Z(tz))+VaIR(Z; [t17t2])

%]
< E(ty, u(tr), z(tr)) + Ei(t, u(t), z(t))dt
with Varg (z; [t1, &2]) :== Suppartiticis n<tO<il<..<tN<p Zk:l R(2(tk)—z(tk71)).
A bit strenghtened version: the local solution (to use even for £(t, u, -) nonconvex).
(a'la R.Toader & C.Zanini (2009) for crack problem, U.Stefanelli (2009), A.Mielke (2011)).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

If domR =2
or
B et [ 9E( 0,2) 12+ € L(0, T) for any r >0,

= the a.e.-local solutions coincide with the weak solutions.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

If domR =2
or
B et [ 9E( 0,2) 12+ € L(0, T) for any r >0,

= the a.e.-local solutions coincide with the weak solutions.

Proof. 1) a.e.-local solutions = weak solutions proved (essentially) above

2) weak solutions = a.e.-local solutions:

2a) put v = 0: energy inequality proved above.
2b) put v = kZ and use 1-homogeneity of R:

VvezZ Va.a.0§t1<t2§ T:
E(t2, u(t2), 2(12)) + Varg (z; [t1, t2])

< &ty u(ty), 2(t)) + [ EL(E u(t), 2(8)) d + k

t
2c) send k — oo = and use t; < tp arbitrary =
Vz: 0 < R(2) — (& 2),
i.e. £ € OR(0).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Functional setting: after transformation u +— u+up,,.
New boundary conditions: v =0 on I'p;, C ONQ:

The Banach state spaces:
U= {W2QR; ulry,, =0},
Z = [2(Q R x R) x Whr(Q),
with R{X? := {Ac R, AT = A, tr(A) =0},

dev
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Functional setting: after transformation u +— u+up,,.

New boundary conditions: v =0 on I'p;, C ONQ:
The Banach state spaces:
u = {W172(Q' ]R‘d)’ u|rD1r = 0}
= L2(Q; R x R) x WH(Q),
with IRggvd = {Ae]RdXd, AT = A, tr(A) =0},
fQ +uD1r(t X) (X)777(X)) dX'

Energies: €(t u,m,mn)
fsz (x)) dx.

Plasticity and damage: PART |
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Functional setting: after transformation u +— u+up,,.
New boundary conditions: v =0 on I'p;, C ONQ:
The Banach state spaces:
U= {W2(QR; ulr,, =0},
Z = [2(Q R x R) x Whr(Q),
with RGX? = {Ae]RdXd; AT = A, tr(A) =0},

dev
Energies: &(t, u,m,1n) fQ x)+up;.(t, x), m(x), n(x)) dx,
R(7, 1) = [o R( )7 7(x)) dx.
(u,m) — E(t, u,m, () is smooth
= OR(5%) + 04€(t,q) > 0 is more specifically as the system:
g[;(ta u,m, C) = 07
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A more selective concept uses a so-called stability condition:
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A more selective concept uses a so-called stability condition:
by 1-homogeneity and
= positivity of 85 (-)

—&l, (t,u,2) € (o, 573(5)) c (0, aR(O))
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

A more selective concept uses a so-called stability condition:
by 1-homogeneity and
= positivity of 85 (-)

—&l, (t,u,2) € (o, 573(5)) c (0, aR(O))

.
0="R(0) < R(2) — (E(t,u,z),u) — (€L(t,u,2),2) V(%)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A more selective concept uses a so-called stability condition:

by 1—homogeneity(a)nd
d positivity of 8 (-
~Euntun e (0R(SD) < (0,0R(0))
=
0="R(0) < R(2) — (E(t,u,z),u) — (€L(t,u,2),2) V(%)

write I—u(t) instead of u
and Z—z(t) instead of z

0 < R(z—2z(t)) — (EL(t, u,2),2—2(t)) — (E(t, u,2), G—u(t))  V(0,2)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A more selective concept uses a so-called stability condition:
by 1-homogeneity and
= positivity of 85 (-)
—&l, (t,u,2) € (o, 573(5)) c (0, aR(O))
=
0="R(0) < R(2) — (E(t,u,z),u) — (€L(t,u,2),2) V(%)

write I—u(t) instead of u
and Z—z(t) instead of z

0 < R(z—2z(t)) — (EL(t, u,2),2—2(t)) — (E(t, u,2), G—u(t))  V(0,2)

if £(t,-,+) is convex, then it is equivalent to:
E(tu,z) < E(t,0,2)+ R(2—z(t)) Y(@, 2)

which is called stability (and is used even when £(t, -, -),is not convex).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

We call g = (u,z) : [0, T] = Q@ =U x Z an energetic solution to

El(t,u,z) =0, 87%(5) +EL(t,u,2) 20, w(0) = ug, z(0) = z,
@ the energy equality holds, i.e.

E(T, u(T),z( T)) + Varg(z;0, T) -
= 5(0, Uo,Zo) T /o E(t’ u(t), z(t))dt7
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements

Dilemma: Global or local, energy or force?
We call g = (u,z) : [0, T] = Q@ =U x Z an energetic solution to

jz) +EL(t,u,2) 30, u(0) = up, 2(0) = 2,

E(t,u,z) =0, OR(
@ the energy equality holds, i.e.

E(T,u(T), (T))JrVarRzOT
— £(0, uo, 20) /a (t, u(t), 2(t))dt

@ the stability holds for all i € U, z € Z and for t€[:

E(t,u(t), z(t)) < E(t,0,2) + R(2—2(t))
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

We call g = (u,z) : [0, T] = Q@ =U x Z an energetic solution to

dz

El(t,u,z) =0, 8R(d

)+ EL(t,u,2) 20, u(0) = wp, z(0) = z,
@ the energy equality holds, i.e.

E(T,u(T),z(T)) + Varg(z; 0, T
= £(0.00.7) + [ % (t,u(0) 2

@ the stability holds for all i € U, z € Z and for t€[:
E(t,u(t),z(t)) < &E(t,0,2) + R(2—2(t))

@ the initial conditions u(0) = up and z(0) = zy are satisfied.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

We call g = (u,z) : [0, T] = Q@ =U x Z an energetic solution to

dz

El(t,u,z) =0, 8R(d

)+ EL(t,u,2) 20, u(0) = wp, z(0) = z,
@ the energy equality holds, i.e.

E(T,u(T),z(T)) + Varg(z; 0, T
= £(0.00.7) + [ % (t,u(0) 2

@ the stability holds for all i € U, z € Z and for t€[:
E(t,u(t),z(t)) < &E(t,0,2) + R(2—2(t))

@ the initial conditions u(0) = up and z(0) = zy are satisfied.

dz

Advantage: no <2 and &/, and &, explicitly involved.

Convexity of £(t,-,-): energetic solutions with $2€L!(/; Z) are weak solutions.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

We call g = (u,z) : [0, T] = Q@ =U x Z an energetic solution to

El(tyu,z) =0, 873((312

)+ EL(t,u,2) 20, u(0) = up, z(0) = z,
@ the energy equality holds, i.e.

E(T,u(T),z(T)) + Varg(z;0, T
=£(0, uo, 20) / 5 (t,u(t), z(t))dt,

@ the stability holds for all 1 € U, z € Z and for t€[:

E(t,u(t), z(t)) < E(t,0,2) + R(2—2(t))

@ the initial conditions u(0) = up and z(0) = z; are satisfied.

Remark: it works even without convexity (our case here if damage is considered

Remark: energetic solutions are (very special type of) local solutions.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A physically-justified attempt to get back the energy conservation:
a small (“vanishing” in the limit) viscosity in u or z:

518R1(d )+0,E(t,u,2) 50 and 628722( )+8R( )+8 E(t,u,z) >0

with Ry > 0 and R» > 0 convex quadratic.
Again, semi-implicit time discretisation works efficiently.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A physically-justified attempt to get back the energy conservation:
a small (“vanishing” in the limit) viscosity in u or z:

518R1(d )+0,E(t,u,2) 50 and 628722( )+8R( )+5 E(t,u,z) >0

with Ry > 0 and R» > 0 convex quadratic.
Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or R, > 0) for (ue, z.) with € := (51,52):

5(t27u€(t2),z€(t2))+VarR(zs;[t1,t2])+/2517?,1( I )+252R2( )dt

51 tr dt
:5(t1,u5(t1),ze(t1))+/ E(t, us(t), z-(t)) dt.

5%
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A physically-justified attempt to get back the energy conservation:
a small (“vanishing” in the limit) viscosity in u or z:

du
518R1( )+8 E(t,u,z) >0 and 628722( )+8R( )+5 E(t,u,z) >0
with Ry > 0 and R5 > 0 convex quadratic.

Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or R, > 0) for (e, zE) with € = (51,52):

ty
E(tr, ue(t2), z-(t2)) + Varg (z:; [t1, t2]) + / 2517?,1( I ) + 2€2R2( i
51 tr

:5(t1,u5(t1),ze(t1))+/ E(t, us(t), z-(t)) dt.

In the vanishing-viscosity limit for € — 0 (as subsequences) = “defect measure”

)dt

due dz.
2€1R1( d )+252R2( dt

The “semi-energetic solution” (u, z, 1) satisfies the energy equality

E(t2, u(t2), 2(t2)) + Varg(z; [t17t2])+/t2u(dt):5(t17U(t1)7Z(t1))+ E(t, u(), 2(1) dt.

t1

°) - >0 weakly* as a measure on [0, T].
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A physically-justified attempt to get back the energy conservation:
a small (“vanishing” in the limit) viscosity in u or z:

du
518R1( )+8 E(t,u,z) >0 and 628722( )+8R( )+8 E(t,u,z) >0
with Ry > 0 and R5 > 0 convex quadratic.

Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or R, > 0) for (ue, z.) with € := (51,52):

5(t27u5(t2),z€(t2))+VarR(zg;[t1,t2])+/t22€1721( )+252R2( )dt

: dt dt
:5(t1,u5(t1),ze(t1))+/ E(t, us(t), z-(t)) dt.

In the vanishing-viscosity limit for € — 0 (as subsequences) = “defect measure”

du, dz.
2 2
ElRl( dt )+ Esz( dt
The “semi-energetic solution” (u, z, 1) satisfies the energy equality
t
E(ta, u(ta), 2(t2)) + Varr (zi [t 2]) <&t u(t), 2(t) + | EL(t, u(t), 2(2)) de.

t1

°) - >0 weakly* as a measure on [0, T].

Forgetting 1, mere (u, z) is a special local solution (vanishing-viscosity-solution).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Sometimes nonconvexity of £(t,-,-) & global minimization = too early jumps.
General dilemma: energy vs force (global vs local),

well recognized in mechanics, e.g. in
D.LEGUILLON, Strength or toughness? (Europ.J.Mech. A) 2002:

“...the incremental form of the energy criterion gives a lower bound
of admissible crack lengths. On the contrary, the stress criterion
leads to an upper bound.”

and in math too — a comparison e.g. in
D.KNEES, A.MIELKE, C.ZANINI 2008,
M.NEGRI, C.ORTNER 2008,
U. STEFANELLI, 2009, etc.

A concept of force-driven local solutions amenable by rigorous analysis
and allowing for efficient computational schemes is desirable.
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Rate-independent plasticity, hardening, damage

Linearized plasticity and gradient damage

Weak solutions and various refinements

Dilemma: Global or local, energy or force?

A 0-dimensional example: two elastic springs gradually stretched, one damageable
(healing formally allowed).

E(tyu,z) =

T.Roubitek

Up — U

'Vb/'\/\/

\]K,a

(Aug.29, 2016, HUB, CENTRAL)

C

1zKu? + LClu—wotf? if1>2z>0,
+00

otherwise,

I'p

up(t) = vot

R(5) =l

Plasticity and damage: PART |



Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

A 0-dimensional example: two elastic springs gradually stretched, one damageable
(healing formally allowed).

e 'Vb/_\_/—\/ o
N K, a C up(t) = wvot
1 2 1 2 .
&, m,2) = 5zKu? 4 5Clu—wot| |f122.2 0, (%)ZQE.
+00 otherwise, dt dt

Local solutions:

1) semi-stability (Vz € [0,1] : 3K(z—z)u? + a|z—z| > 0) = the rupture
time of the local solution (= t ) will be at most the time (= t,,)
when the elastic energy of the undamaged spring reaches the activation

threshold «, i.e. 3Ku? = « (i.e. also 1K (v Ct,,,, /(K+C))? = a)
2) t,, cannot be earlier than when energetic solution ruptures (= t)
because then the energy balance would be violated.
/arbitrary
= oy S g € G (and also t,y < t,, = tw).

t,, =time when vanishing-viscosity solutions rupture.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Energetic solution: time of break t,
Analysing the incremental problem: min of J(t,z) — az subj. to
z€]0,1] with the reduced functional J(t,z) = £(t,u(t, z), z) with

u(t, z) .= wCt/(zK+C), i.e. T(t,7) = KC2zt2 + CK222t2
. 20K+2aC 7 2(Kz+C)?
= =

s ZKC
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Energetic solution: time of break t,
Analysing the incremental problem: min of J(t,z) — az subj. to
z€]0,1] with the reduced functional J(t,z) = £(t,u(t, z), z) with

u(t, z) .= wCt/(zK+C), i.e. T(t,7) = KC2zt2 + CK222t2
. 20K+2aC 7 2(Kz+C)?
= =

=S ZKC

The upper bound for rupture of local solutions t,, :
Analysing the semi-stability: %Kuzz a with u=u(t,z) = t

MD
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Energetic solution: time of break t,
Analysing the incremental problem: min of J(t,z) — az subj. to
z€]0,1] with the reduced functional J(t,z) = £(t,u(t, z), z) with
u(t, z) .= wCt/(zK+C), i.e. _ KC2zt? + CK22%¢?

J(t,z) =
20K+2aC 2(Kz +C)?
= s T\ TZRC

The upper bound for rupture of local solutions t,, :

K+C /2
Analysing the semi-stability: 1Ku?= a with u=u(t,z) = t,,= %\/ %
Vo

s Kv2Ct v¥KC
the work of external loading = Gl o
€ WOrK OfT external loa lng A e + (C 2K+2(C LS

Rupture at t_,: minimal dissipation
(all the work is dissipated into damaging)
Rupture at t,,,,: maximal dissipation
(the extra energy is due to neglected mechanisms like viscosity)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Energetic solution: time of break t,
Analysing the incremental problem: min of J(t,z) — az subj. to
z€]0,1] with the reduced functional J(t,z) = £(t,u(t, z), z) with
u(t, z) .= wCt/(zK+C), i.e. _ KC2zt? + CK22%¢?

J(t,z) =
20K+2aC 2(Kz +C)?
= s T\ TZRC

The upper bound for rupture of local solutions t,, :

K+C /2
Analysing the semi-stability: 1Ku?= a with u=u(t,z) = t,,= %\/ %
Vo

s Kv2Ct v¥KC
the work of external loading = Gl o
€ WOrK OfT external loa lng A e + (C 2K+2(C LS

Rupture at t_,: minimal dissipation
(all the work is dissipated into damaging)
Rupture at t,,,,: maximal dissipation
(the extra energy is due to neglected mechanisms like viscosity)

Vanishing-viscosity solution: time of break t.., when 0,7 (tyy,1) = a:. to = typ-
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The vanishing-viscosity in the zero-dimensional example:

L up —u=:¢ |
[ I |
T'e I — I'p
| IS —
\\ wp(t) = vot
K, a C, v e

The energies £ : IxXIRxIR — RU{+oc} and R, R; : R — IRU{+o0} as:

%Kzu2 + %C|uvairt|2 if0<z<1,

E(tyu,z) = .
+00 otherwise,
dz a9 if 42 <0 du du
R*)Z dt dt — 'R(7>: — . RZO,
(dt +o00  otherwise, \de v dt 2

with K > 0 and C > 0 just scalars and vp;, > 0 a constant.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The vanishing-viscosity in the zero-dimensional example:

L up —u=:¢ |
[ I |
T'e I — I'p
| IS —
\\ wp(t) = vot
K, a C, v e

The energies £ : IxXIRxIR — RU{+oc} and R, R; : R — IRU{+o0} as:

%Kzu2 + %C|uvairt|2 if0<z<1,

E(tyu,z) = .
+00 otherwise,
dz a9 if 42 <0 du du
R*)Z dt dt — 'R(7>: — . RZO,
(dt +o00  otherwise, \de v dt 2

with K > 0 and C > 0 just scalars and vp;, > 0 a constant.

A combination with time-discretisation very difficult:
note lim,_olim,_g Rl(%) =0 p in general!
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The vanishing-viscosity in the zero-dimensional example:

L up —u=:¢ |
[ I |
T'e I — I'p
| IS —
\\ wp(t) = vot
K, a C, v e

The energies £ : IxXIRxIR — RU{+oc} and R, R; : R — IRU{+o0} as:

%Kzu2 + %C|uvairt|2 if0<z<1,

E(tyu,z) = .
+00 otherwise,
dz a9 if 42 <0 du du
R*)Z dt dt — 'R(7>: — . RZO,
(dt +o00  otherwise, \de v dt 2

with K > 0 and C > 0 just scalars and vp;, > 0 a constant.

A combination with time-discretisation very difficult:
note lim,_olim,_g Rl(%) =0 p in general!

Explicit solutions are known for the viscous variant.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

rate of viscous

dissipation defect

measure

P,

T ViKa

0 b o Thew ¢ t t
Fig. 2. A schematic response of the stress o, the strain in the bulk e, and the rate of viscous
dissipation vC¢? depending on gradually decreasing v > 0 (two values of v are depicted by
gradually increasing thickness) and the limit for v — 0 {depicted by the thickest line); the
last picture shows schematically the defect measure (as a Dirac supported at ¢ = #,.,.).

In this inviscid limit, the energetical picture during rupture is now clear:

de, |2 1

and EKU?(V = q,

%(Cefw = a% - c‘
all energy stored in the bulk goes to the defect measure during the rupture
all energy stored in the damageable spring is dissipated by the delamination.
stress-driven delamination rather than the energy-driven one.

This is perfectly in accord with conventional engineering handling of
fracture mechanics (which, however, typically ignores any energy balance).

tkv,V

4
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Computational simulation: (made by C.G. PANAGIOTOPOULOS)

L

£ 100405

Z 100405

strain

8.0e+04| 806404

6.0e+04] 600404
400404

4.0e+00]

2.0e+04] 206404

R R S U U Rk Rk R %; Tao
time t t
Fig.4: The strain (left) and stress (right) response; due to the symmetry, these
tensors have only one nonzero component.
= 25
g S
B x S
20 — x=125my ]
. — x=2%ms 2,300
] &
5 g
§ 259
g s i
= 8
H R e
2
T M
4 g i
3 5 100
2 05 ]
g 5
AN e
& 4 L ) . o
S Do om 0w om oam om o 0w ox o o6 010 015 0w 0z 0% 03 060
time 3 time t

Fig. 5 Left. Convergence of the viscous dissipation rate ., = yCeliy, . )ie(tiy,, ) towards
the defect measure 4 from (4.8), i.c. here the Dirac at f,,p, = 0.322s for
x = 0.025 x 2% with k = 0,1,2,3 and decreasing 7 chosen according the
strategy from Table 1, zoomed in and depicted on a selected time subinterval
0.3, 0.375].
Right. Encrey dissipated by viscosity over [0,¢], i.c. [} xCe(tly . ):elaty
ing to the jump at 1,

) dt, converg-
0.3225 of the magnitude &, = 803.75J Also

_— sneAk
the convergence £, A, 0. from (4.6) is well documented.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The one-dimensional example discretised: (all simulations made
g;mﬂ = by C.G. PANAGIOTOPOULOS)
N x=viscosity coefficient,
: T=time step of discretisation,
&, residuum in energy balance

%6 005 01 015 02 025 030 035 040
time t

Fig. 2. Tlustration of the time-dependent residuum —&, () in the energy bal-
ance (3.8¢) for y = 0.00625s fixed and = gradually decreasing as de-
picted. The numerical error occurs especially around suden rupture but
is shown to converge to 0 for 7 — 0, as also proved in (3.10).

. .
2 3 5
)
o 35002 - s - x=0 g 70001
° + o x=0.1953ms a
g + : . . x=0.3906 ms= g soem
1 + x=0.7813ms g
5 S = 5 0e01]
g . T . x=1.5625 ms v
a very fine time
H H N N 1 5e-02 3 0e-01
discretisation is
is needed if
8 . S0 100
viscosity — 0
100 200 300 100 200 800

- 700 0 00 400 500 , 600 700
number of time steps T/ number of time steps T'/7

Fig.3: Left. the convergence of L'-norm of ¢, , parameterized by x, documenting the
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

A comparison of the maximally-dissipative local sIn with the vanishing-viscosity sin:

Recall the figure: '
sacsoy = A b
4 A
Fig. 4: The strain (h»n)“::d stress (right) response; due to the \\mm::‘:\, these

tensors have only one nonzero component

1

g n
21 gesas £ 10e05)
~ =
@ i
]
8.0e+04| 8.0e+04|
6.0e+04| 6.0e+04]
40404 4.08+04
2.0e+04| 2.0e+04|
o 03200 03205 03210 03215 0 3220 03225 03230 03235 03240 03200 03205 03210 03215 0. 3220 03225 0.3230 03235 03240
time it time t

Fig. 6. A comparison of the strain (left) and stress (right) response of a energetically justified
small-viscosity solution with an unphysical result without any viscosity obtained by a
semi-implicit formula; strongly zoomed in and depicted on a selected short time subin-
terval around rupture [0.320, 0.324]: a suprisingly good match is achieved although
energy does not match at all (since p = 0 without viscosity), cf. also Fig. 3 for x = 0.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional example - the maximally dissipative local solution:

3 a continuous selection £(t) € —0,&(t, u(t), z(t))

<e_g_ £(t) = —0,&(t,u(t),1) fort<t,, >

=« for t >t

such that the maximum dissipation principle

(F0€0) = i, (T 1), ..~ R(50)

holds in the sense of distributions  (namely the Dirac a4, ).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional example - the maximally dissipative local solution:

3 a continuous selection £(t) € —0,&(t, u(t), z(t))

<e_g_ £(t) = —0,&(t,u(t),1) fort<t,, >

=« for t >t

such that the maximum dissipation principle

(F0€0) = i, (T 1), ..~ R(50)

holds in the sense of distributions  (namely the Dirac a4, ).

But for other local solutions the violation of the maximum principle is not obvious
- e.g. for energetic solution, a driving force of magnitude oz may occur
already immediately after this break time.

= 1) only left-continuous local solutions (reflecting also causality)
= 2) a “suitably” integrated maximum dissipation principle (IMDP).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The lower Riemann-Stieltjes integral for £ and z scalar-valued, z monotone, s
N

t)dz(t) = - D 2tz (t
JECL R S o S CE U
r=ty <ty <..<ty_,<ty=s JIT

lower Darboux sum

@ Sub-additivity in € and z, and additivity in the integration domain, too.

@ The sum depends monotonically on the partition:
finer partition = bigger (or equal) sum.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The lower Riemann-Stieltjes integral generalized a'la H.E. Moore & S. Pollard is
s N
t)dz(t) := lims inf t), z(tj)—z(t;—
[ etwazte map 30 (€(0).2(t)-2(-)
- r=ty<t;<.<ty_,<ty=s J=I

lower Darboux sum
@ Sub-additivity in € and z, and additivity in the integration domain, too.

@ The sum does not depend monotonically on the partition:
so we use the ordering by C of partitions to define “limsup”

° dz € AC([r,s];Z) & €EeC([r,s]; Z%)

dt
:>/r§(t)dz(t):/r <§(t),%(t)>dt (the Lebesgue integral).

. S . . .
(but we will use [* also for ¢ discontinuous and 4 a measure not valued in Z)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The lower Riemann-Stieltjes integral generalized a'la H.E. Moore & S. Pollard is

s N
t)dz(t) := lim su inf t), z(tj)—z(t;—
[ etwazte msup > i (€0 2(e)—2(5-0)
r=ty<t;<..<ty_<ty=s I

lower Darboux sum
@ Sub-additivity in € and z, and additivity in the integration domain, too.
@ The sum does not depend monotonically on the partition:
so we use the ordering by C of partitions to define “limsup”

° dz € AC([r,s];Z2) & &€ C([r,s];Z%)

dt
= /r &(t)dz(t) :/r <§(t) jt( )>dt (the Lebesgue integral).

. S . .
(but we will use [* also for ¢ discontinuous and 4 a measure not valued in Z)

The maximum dissipation principle (32(t),&(t)) = R(42(t))

|ntegrated over any [t, to] C [0, T]:  Tselection £(t) eR(0) Vi, < to:
&(8)dz(t) = Varg(z: [t 6]) & E() € —0,E(t, u(t), 2(2)).

i

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

[llustration of selectivity of the integrated maximum-dissipation principle (IMDP):
left-continuous local solution which makes a complete rupture at time t,, i.e.

_—— = —1Ku(t)? or
u(t):{w ot z(t)={1’ f(t){ Rl frtshs,

Vot, € [~a,a] arbitrary for t > ¢, .

A 28 LS

=0 + sup inf 'f(t)(z(th+‘€) - Z(tLS))

0<e<T—t, o tE[t gt g te]

—0 +  sup min(_g(tLS), inf _g(t))g_g(th).

0<e<T—t; 4 te(ty, gty g tel

to <ty, = —&(ts) <a=Varg(z;[0,T]) = (IMDP) not satisfied.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

[llustration of selectivity of the integrated maximum-dissipation principle (IMDP):
left-continuous local solution which makes a complete rupture at time t,, i.e.

_—— = —1Ku(t)? or
u(t):{w ot z(t)={1’ f(t){ Rl frtshs,

Vot, € [~a,a] arbitrary for t > ¢, .

A 28 LS

=0 + sup inf 'f(t)(z(th+‘€) - Z(tLS))

0<e<T—t, o tE[t gt g te]

—0 +  sup min(_g(tLS), inf _g(t))g_g(th).

0<e<T—t; 4 te(ty, gty g tel

to <ty, = —&(ts) <a=Varg(z;[0,T]) = (IMDP) not satisfied.

= —¢(t,s)=a = (IMDP) satisfied (e.g.with & constant on [t

MD?

)
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional example modified:

both springs damageable, two internal parameters z; and z,
fully symmetric (C =K, z(0) =1 = z(0)):
Left-continuous local solutions:
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional example modified:

both springs damageable, two internal parameters z; and z,
fully symmetric (C =K, z(0) =1 = z(0)):
Left-continuous local solutions:

Number of energetic solutions: 2
both breaks at t = t, either z; or z, jumps to 0.

No energetic solution is symmetric.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

The 0-dimensional example modified:

both springs damageable, two internal parameters z; and z,
fully symmetric (C =K, z(0) =1 = z(0)):
Left-continuous local solutions:

Number of maximally-dissipative solutions: co
all breaks at t = t,,, when z or z (meaning that possibly both) jump to 0,

but either z; or z, may possibly not jump completely up to 0.

21‘33s < tfm = One of these solutions is symmetric (both springs completely damaged
and dissipate maximal energy during the break (U.STEFANELLI's principle)

Although all these solutions rupture at t = t,,, and dissipate maximal
work of external load, the contribution to Varg(z;0, T) varies from
« to 2a for the symmetric maximal-dissipative local solutions.

The later one is also the vanishing-viscosity solution (with symmetric viscosity)
and “generically” obtained (for 7 — 0) by semi-implicit discretisation.
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional damage example - the maximally dissipative local solution

e
N K a c up(t) = wot
1 2,1 2
E(t,u,2) = { 27K HoClu—wtl® 12220, pdzy ) dz)
400 otherwise, dt dt

3 a continuous selection £(t) € —0,&(t, u(t), z(t))
= —0,&(t,u(t),1) fort < t,,
e.g. &(t) S € —0,E(t,u(t),1) fort =t,,
= for t >t

such that the maximum dissipation principle

<%(t)’§(t)> B ferg%?o) <%(t)’ f>2xz*: R(%(t))

holds in the sense of distributions ~(namely the Dirac ad; ).

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

The 0-dimensional damage example - the maximally dissipative local solution

Ll up —u |
=1 |
l'e W/\_/—\/ I'n
N\ K a c up(t) = vot
1 20 10 u—wetl2 if1> 2> d d
E(t,u,2) = 5ZKu? 4 5Clu—vot| |f1_z-_0, R(—Z :aj .
+00 otherwise, dt dt

But for other local solutions the violation of the maximum principle is not obvious
- e.g. for energetic solution, a driving force of magnitude oz may occur
already immediately after this break time.

1) only left-continuous local solutions (reflecting also causality)

=
= 2) a “suitably” integrated maximum dissipation principle (IMDP).
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage
Weak solutions and various refinements

Dilemma: Global or local, energy or force?

Maximal-dissipation principle — a counterexample:

two parallel damageable springs of the same stiffness K but different
fracture toughness a; and a, coupled by an elastic spring of the stiffness 2C:

K a1 e 2c
=VAVAVAVAVAVA
m
:: o o up(t) = vot
K+C)?
zj 2((K++2(C))2 = one max.-diss. left-continuous local solution
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Maximal-dissipation principle — a counterexample:

two parallel damageable springs of the same stiffness K but different
fracture toughness a; and a, coupled by an elastic spring of the stiffness 2C:

K a1 e 2c

EVAVAVAVAVAVA

m

:: o o up(t) = vot

K+C)?
zj 2((K++2(C))2 = one max.-diss. left-continuous local solution
ap<a 231(K+(C)2 = no max.-diss. left-continuous local solution
—_— x.-diss. = inuou uti

1592 = T(K+2C)?

the 2nd-spring breaks immediately when the 1st-spring breaks,

the jump of z = (z1, z2) from (1,1) to (0, 0) is not orthogonal to the
elastic domain 9R(0,0) = [—a1,0) X [az,00) .
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Rate-independent plasticity, hardening, damage Linearized plasticity and gradient damage

Weak solutions and various refinements
Dilemma: Global or local, energy or force?

Maximal-dissipation principle — a counterexample:

two parallel damageable springs of the same stiffness K but different
fracture toughness a; and a, coupled by an elastic spring of the stiffness 2C:

K a1 e 2c
M\/\/\/\/\/\/\
m
,: ~ - _.__un(t) = wvot
K+C)?
22 > 2u = one max.-diss. left-continuous local solution
a1 (K+2C)2
2a;(K+C)?
a < ap < m = no max.-diss. left-continuous local solution

the 2nd-spring breaks immediately when the 1st-spring breaks,

the jump of z = (z1, z2) from (1,1) to (0, 0) is not orthogonal to the
elastic domain 9R(0,0) = [—a1,0) X [az,00) .

yet the semi-implicit formula approximates the correct solution.
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Approximate max-diss principle for the semi-implicit scheme
Implicit discretisation — energetic solution

Discretisation in time and convergence analysis outlined

Maximum-dissipation principle for approximate solutions
= Approximate maximum-dissipation principle (AMDP):

-
| &0z (0) L Vara(z 0. TY) with (1) € 0.8 (5,3.(0). 21 (1),
Jo

We can explicitly evaluate the left-hand side as

T T/t
[E iz = Y A-ak ) with € € —0.e((k-1)r, w2,
Jo

k=1
the supremum in T attained just on the partition {k7; k=0, ..., T/T
0
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Approximate max-diss principle for the semi-implicit scheme
Implicit discretisation — energetic solution

Discretisation in time and convergence analysis outlined

Maximum-dissipation principle for approximate solutions
= Approximate maximum-dissipation principle (AMDP):

-
| &0z (0) L Vara(z 0. TY) with (1) € 0.8 (5,3.(0). 21 (1),
Jo
We can explicitly evaluate the left-hand side as
T/t

T
/OE_T(t)dET(t) = Z(ff_l,sz—zf_1> with 571 € —9,&((k—1)r, uk=1, Zk71).
4 k=1

(the supremum in IOTattained just on the partition {k7; k=0,..., T/7})

Unfortunately: one cannot expect equality even in the limit —

the (even left-continuously modified) limit not maximally-dissipative in general.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Discretization in time by a fully implicit formula

augﬁ(uﬁﬂzﬁ) =0,

Zk—l

an(zﬁ%) +0,EK(uk, 2 50

where £X(u, z) := &, (kT,u,z) with E.(t,u,z) = %fETc‘,’(H—{, u,z)d¢,
for k=1,..., T/7 and using, for k =1,

0 _
Zr = 20,

The existence of the discrete solution (uX, z¥):

the direct method: (uX,z¥) can be taken as a solution to:

_ k-1
minimize TR(%) Jré'f(u,z) (PX

subject to  (u,z) € Q=U X Z.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Discretization in time by a fully implicit formula

augvl—((uvlfvz'rlf) =0,

k k-1
8R(i> +9,EX (K, 2X) 3 0
T

T

where EX(u, 2) := E.(kT,u,z) with &(t,u,z) = %f_OTfJ(H—S, u, z)d¢,
for k=1,..., T/7 and using, for k =1,

0 _
Zr = 20,

The existence of the discrete solution (uX, z¥):

the direct method: (uX,z¥) can be taken as a solution to:
minimize R(zfszl) + EX(u, 2) (P4)
subject to  (u,z2) € Q=U X Z.
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Discretization in time by a fully implicit formula and in space by Py/P1-FEM
0 g‘rh( Urp, Z ) - O

k 1

3R<Zﬂ7 = ) + 085 (ukp, 25) 2 0

where EK, (u, 2) := &, (kT,u,z) + 00,(u,2) »
for k=1,..., T/7 and using, for k =1,

0o _
z‘r,h = 20,h,

The existence of the discrete solution (uX,, z%,):
the direct method: (u¥,,zX,) can be taken as a solution to:
P k—1 k
minimize R(z z, ) +EX(u, 2) (PX.)
subject to  (u,z) € Qp =Up X Zp.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Properties of the discrete solution:
@ Comparing values (P%,) at the level k with those in a general (i, 2)

EX(ukh 24) < EX(B,2) + R(2-257) — R(ZKy—245)

T

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Properties of the discrete solution:

@ Comparing values (P%,) at the level k with those in a general (i, 2)
and using degree-1 homogeneity of R, we obtain the discrete stability:

EX(ufn, 25) < EX(0,2) + R(2-2 ") = Rz —25 ")
< E(0,2) + R(2—27%,);
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Properties of the discrete solution:

@ Comparing values (P%,) at the level k with those in a general (i, 2)
and using degree-1 homogeneity of R, we obtain the discrete stability:

EX(ukh 24) < EX(B,2) + R(2-257) — R(ZKy—245)
< £5(8,2) + R(z—2,):

we thus get the stability for the discrete solution, i.e.:

Er(t,Trn(t), Zrn(t)) < &-(,10,2) + R(2 — Z04(2))

holds for all i1 e U, Zz € Z, and t € [0, T].
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp . 5 P! P P

Implicit discretisation — energetic solution

@ Comparing values of (PX,) at the level k with those in (uf;l,th_l)

67{(( Urps Z. Th)+R( Zrh— k 1)
< Ef(utz )+R( ~z5 )
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

@ Comparing values of (PX,) at the level k with those in (uf; !, 25 1)

o
gives an upper estimate of the energy balance:

67{(( Urp, Z Th)+R( Zrh™ ) gvlf 1( ﬁhl Z’fh_l)
< EX(ury iz ) S el
kT 0 k—1 _k—1
= =&(t,u7, ",z 7 )dt.
/(k—l)T ot h h
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

@ Comparing values of (PX,) at the level k with those in (u*; !, 25

gives an upper estimate of the energy balance:

EX(urn, 28) + R(zfp—251) — €5 H w5 25 )

o
k¢, k—1 _k—1 k—1/, k=1 _k—1
SST(UTh v Zrh ) —57' (UTh 1 Zrh )
kT b
k—1 _k—1
:/ a—g(t,u_rh ’ZTh )dt
(k—1)r Ot

@ Eventually, written the stability at the level k—1 and test it by
~ o~ _ k k
(0, 2) = (urp, 27p)

5 by 280) + RUty—2ty ) - 5wl 25

2 0.
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

@ Comparing values of (PX,) at the level k with those in (u*; !, 25

gives an upper estimate of the energy balance:

57,'(( Urp, 2 'rh) +R( Zrh™ 1) - 571_<—1(ui<;1,271_<;1)

< EF(uyt 2 ) = &N 25 )
9 k=1 _k—1
= =E(tusy, 7,z 7 )dt
\/(kl)'r ot " h

@ Eventually, written the stability at the level k—1 and test it by
(0, 2) = (uk,, z¥,) gives a lower estimate of the energy balance:

57,'(( Th’ Th)+R( Th 1)757671(U7If;1’z7l'(h_1):

kT
_ _ _ 0
EX M ukp, z8) + R(z5— 1)*51( l(Uihlath 1)+/ —E(t, uky, 25, )de
(k—1)r Ot

kT 8 .
> —&(t ”T ,zyp)dt.
/(kl)T ot (£ urh 271)
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Summing it for k =1,...,s/7 € IN, we get the
two-sided approximate energy balance:

5(0, Uo,Zo) +/ 8t€7-(t, Hfh(t),fq-h(t))dt
0
< E(s, urn(s), zrn(s)) + Varg (z-4; 0, s)

< 5(07 uo,zo) —|—/ 8t57(t,g7h(t),;7h(t))dt,
0

where
u,p ;= piecewise affine interpolation of {u b kT/g,
TUrp ;= “forward” piecewise constant interpolation of {u h ,(T/g,
U, = "backward" piecewise constant interpolation of {u¥, kT/g,

and similarly for z;4, Z;4, and z_,
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Summing it for k =1,...,s/7 € IN, we get the
two-sided approximate energy balance:

5(0, Uo,Zo) +/ 8t€7-(t, Hfh(t),fq-h(t))dt
0
< E(s, urn(s), zrn(s)) + Varg (z-4; 0, s)

< 5(07 uo,zo) —|—/ 8t57(t,g7h(t),;7h(t))dt,
0

where
u,p ;= piecewise affine interpolation of {u b kT/g,
TUrp ;= “forward” piecewise constant interpolation of {u h ,(T/g,
U, = "backward" piecewise constant interpolation of {u¥, kT/g,

and similarly for z;4, Z;4, and z_,

Possibility of certain a-posteriori information about the discretisation error.
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Approximate max-diss principle for the semi-implicit scheme

Discretisation in time and convergence analysis outlined = oo 5 5
g analy: Implicit discretisation — energetic solution

Convergence analysis outlined

Step 1: a-priori estimates: from the approximate energy balance by
Gronwall inequality:

HuT’"HLOO([O,T];Z/I)) <G,

E-(t, TUrn(t), Zrn(t)) < G,
o (¢, Ton(t), 2r4(8)) < Co

HZThHLOO([O,T];Z) < G,

Varg (Z;4;0, T) < G4.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Step 2: selection of subsequences

weakly* converging (Banach's selection principle) to some u and z,

pointwise converging (Helly's selection principle):

z:p(t) — z(t) weakly in Z for all t.

the uniform monotonicity of 9,E(t, -, z) also

u-p, — u strongly in L2([0, T];U).
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Step 3: limit passage in the stability:

An essential assumption:
Mutual recovery sequence (MRS) exists, (MIELKE, R., STEFANELLI, 2008):

V(tg, Uz,Zg) — (t, U,Z) V(E,E) EUXZ H(ﬂe,fe)zem :
lim sup (5(&,5@,2@)-%73(?@ = Zg)—g(tg, Ug72g))

£— 00

< &(t,0,2)+R(z — z)—-&(t, u, 2).
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For plasticity only:
MRS by the “binominal trick” (H = 0 and no t-dependence for simplicity):

lim sup (5(te,ﬁe,3z)+R(Ez — 2¢)—E&(te, ue, Zz))

l— 00

= limsup </Q %C(e(ﬁzﬂrue) —me—ig) : (e(Ue—ue) + me—T0)

£— 00

580410 e—0) x + R )

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For plasticity only:
MRS by the “binominal trick” (H = 0 and no t-dependence for simplicity):

lim sup (5(te,ﬁe,3z)+R(Ez — 2¢)—E&(te, ue, Zz))

l— 00

= lim (/Q %C(e(ﬂﬁu@) —mp—7g) : (e(u —u ) +7 —7)

£— 00

+ 3BT~ ) dx-+ RGE ~m .7 -n) )

if we choose Uy . =0 —u+up, Tp =7 —7+mpand 77, ;=77 — 1+ 1.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For plasticity only:
MRS by the “binominal trick” (H = 0 and no t-dependence for simplicity):

lim sup (5(te,ﬁe,3z)+R(Ez — 2¢)—E&(te, ue, Zz))

£—00
= ZILn;O (/Q %(C(e(ﬁpLu@) —mp—7e) : (e(U —u ) +7 —7)
+ 3BT~ ) dx-+ RGE ~7 7 -n) )
- %(C(e(lﬂ—u) M=) o)
Q

+ S+ (-7) dx + R(F—m, 7-n)
=&(t,u,2)+R(z — z)—-E(t, u, z),

if we choose Uy . =0 —u+up, Tp =7 —7+mpand 77, ;=77 — 1+ 1.
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For plasticity only:
MRS by the “binominal trick” (H = 0 and no t-dependence for simplicity):

lim sup (5(te,ﬁe,3z)+R(Ez — 2¢)—E&(te, ue, Zz))

l— 00

= lim (/Q %C(e(ﬂﬁu@) —mp—7g) :(e(u —u ) +7m —7)

=00

+ 3BT~ ) dx-+ RGE ~x 7 -n) )
- Q%(C(e(lﬂ-u) M=) o)

+ 3B () dx + R(F—, )
=&(t,0,2)+R(z — z)-&(t, u, z),
if we choose ty :=u—u+up, 7p:=7 — 7+ 7 and g =1 — 1+ .
We use it for T, (t) — u(t) weakly in H*(Q; R?)
and 7, (t) — 7(t) weakly in L2(Q; IRIX?)

dev

and 7, (t) — n(t) weakly in L?(Q)!
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For mere damage:
lim sup (g(tl,m,ze) +R(Z—2) — E(ty, ug, zz))

£— 00

— Fier /Q SC(G)el@): () + ZIVEl

{— 00
1

— SC(G)e(ur):e(ue) — Z[VGl" + a1(Ge—Ce) dx
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For mere damage:
lim sup (g(tl,m,ze) +R(Z—2) — E(ty, ug, zz))

£— 00 1 _ . _
—imsup | 3C(Go)e(@)el@) + VGl
t—oo Ja 2 ] r B
- E(C(Cz)e(uz)ie(ue) - 7|VCLJ\' + a1(Ce—Ce) dx
<&(t,u,z2) +R(z—2z) — &(t, u, 2),
Now we choose U := uy (resp. T fixed) and also ¢, = ({ — [¢e—Cllc@)™
Notethat0<<@<g if<¢

and that {; — ¢ in WH(Q) if ¢ — ¢ weakly in W1(Q).
VE) i &) > ee—Clle@y

W Vo(x) =
e use 6e() {0 otherwise.
Thus, as ||Cg—(|\c(§-2) — 0, we have V¢, — V( a.e. on Q and
thus fQ |Vf¢ — Vf| — 0 by Lebesgue theorem with the integrable
majorant: |VZz—Vz|" < 271(|VZ | +|VZ|") < 27|VZ|".
We use it for U, (t) — u(t) strongly (resp. weakly) in H(Q; RY)
and (- (t) — ¢(t) weakly in W1r(Q).
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

For mere damage alternatively if C monotonically dependent on (:
mnwp(gubﬁbzy+neg—zg—gubub4g

£— 00

~timsup | 2 CC@)G(UZ (i) + Vel
**C(Cz)e( 0): (Ue)**WCe\ + a1(Ce—Ce) dx
< limsup / CQ)E(U (@) + ZIVEl
- fC(Q)e(u[) e(ur) — *|VCtz\ + a1(Co—Ce) dx
:|i£nl)solip/n§ (Ce)e(Up+up):e(te—ug) + 7|VC~€|r
- 7|VCe|r + a1(Ce—Cr) dx
< £(t,7,3)+R( — 2)—E(t, u, 7).

Now we choose Uy := &1 — u + ug and ¢ = (€ — I¢e—Cll @)™

We use it for @-(t) — u(t) weakly in H1(Q;IRY)
and (. (t) — ¢(t) weakly in W11 (Q).
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. P . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

And for plasticity with damage if C monotonically dependent on (:
lim sup (5(tz,ﬁe,3e)+73(§z — 20)—E(te, ue, Ze))

£—00

_ I|?1_>sogp/ 2C(Ge) o)) (i) ~7e) + T VGl
- *C (Ce)(e(ue)—me):(e(ue)—me) — 7|VC2|r + a1(Ce—Ce) + 85 (Fe—me) dx
< ||msup/ 2C(Ge) ()~ (o) ) + TVl
— 20 () e elur) )  ZIVGL + ar(Ge—Ge) + 55—
= |l?l>solip/ C(¢e)(e (UeJrUéLf%e*?Tz)i(E(Ue*ﬁe)*%wrw) + é\vgdr
= IVCl" + a1(Ce—Ce) + 05 (e —e) dx
< E(t, T, 2)+R(E — 2)=E(t, 1, 2).
We choose Ty := Ti—u+up, Ty := T—n+my, and ¢ = ( — [<e—=Cllc@)) ™
(R.TOADER, 3.2.2015, personal communication)
We use it for T, (t) — u(t) in HY(Q; RY), 7,(t) — «(t) in L2(Q;RIXY),

dev

and (,(t) — ¢(t) weakly in WL (Q). (For isotropichardening=works too:)
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Step 4: limit passage in the upper energy inequality:
<€'(T7 urp(T), Z.,-h(T)) + Varg (Z.,-h; 0, T)

.
< &(0, ug,n, Zo,n) +/ &+ (t, urp(t), zrn(t))dt.
0
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Step 4: limit passage in the upper energy inequality:
E(T,u (T),z (T))+ Varg(z ;0,T)

< &(0, uo,n, z0,n) +/O € (t, (1), (r))dt

by lower semicontinuity in the I.h.s. and continuity in the r.h.s.
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Step 5: the lower energy inequality:

stability (suffices a.e.) allows
by Riemann-sum approximation of Lebesgue integral to show

the opposite inequality = the energy equality!
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Approximate max-diss principle for the semi-implicit scheme

Discretisation in time and convergence analysis outlined = oo 5 5
g analy: Implicit discretisation — energetic solution

Step 6: Improved convergence.

Vte|[0, T]: Varg(z-4; [0, t]) — Varg(z; [0, t]);
Vtel0,T]: E(t,urn(t), z-n(t)) = E(t, u(t), z(t));
OeE (-, urn(+), zrh(+)) = O:E(, u(-), 2(+)) in L}((0, T)).
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Mere convergence (W.HAN, B.D.REDDY, 1999, A.MIELKE, T.R., 2009):

Rate of convergence (D.KNEES, 2009):

[Ju— ”ThHLoo (HY(QRY)) T |z— ZThHLoo(/ L2(;RI*4 X R)) O(vT+"Vh), e>0.
for smooth Q and time-regular loading, based on regularity

ue LKW (@ RY)),  zel®(LWYV (R xR)), e>0,
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. T . . Approximate max-diss principle for the semi-implicit scheme
Discretisation in time and convergence analysis outlined pp " 5 P! P P

Implicit discretisation — energetic solution

Mere convergence (W.HAN, B.D.REDDY, 1999, A.MIELKE, T.R., 2009):

Rate of convergence (D.KNEES, 2009):

- - 2 C 4—c
H”_”TJ'HLoo(/;Hl(Q;]Rd))+ Hz_z‘r’hHLOO(I;L%Q;R”"X]R)) = Ce™%e /E(\E"’ \/E)7
for smooth Q and time-regular loading, based on regularity
ue L2 W32 RY)),  ze (WY QR xR)), >0,

with € > 0 the ellipticity constant of &(t, ., .).
(D.KNEES, personal communication, Feb.2010)
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The goal: to realize the stress-driven scenario:

TENSION/COMPRESSION SHEAR LOADING
C(1)H
o o il lope =
-+ e BRSO+
i — th\(y&\
Ly WY
[ 2a KPOAS: f
N [ ——c) st ) - [ 2a
e’ Ll = : =4 =
3 \g Ve 51— & ' AR IEI0]
N = .‘-? l" ’ [ 2
slope =C(1) _——'—\E’ I ’ e | a
) & | 1o
! 1 <= >
[SI/1E)] e =elu)

Schematic response of the mechanical stress o on the total strain e during a
“one-dimensional” tenson (left) or shear (right) loading experiment under a
stress-driven scenario. The latter option combines plasticity with eventual
(complete) damage. Dashed lines outline a response on unloading, C = C(¢)
refers to Young's modulus (left) or the shear modulus (right).

(The analysis will work only for incomplete damage, however!)
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A fractional-step semi-implicit discretisation

Convergence towards local solutions
Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A requirement: to eliminate unphysically “too early” jumps and global minimization:

1) Physically motivated option: small viscosity:
Here there are 3 options: viscosity in e, and 7, or
viscosity in (, or
viscosity in both e, and  and (.
Numerically difficult for very small viscosities (as shown above),
analytically difficult for limitting towards vanishing viscosity.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A requirement: to eliminate unphysically “too early” jumps and global minimization:

1) Physically motivated option: small viscosity:
Here there are 3 options: viscosity in e, and 7, or
viscosity in (, or
viscosity in both e, and  and (.
Numerically difficult for very small viscosities (as shown above),
analytically difficult for limitting towards vanishing viscosity.

2) Suitable semi-implicit discretisation:
A general intuitive strategy to facilitate numerical handling:
fractional splitting of variables in accord to separate convexity of £(t,-) and
in accord to additive splitting of R.
Here there are 2 options: (u,7,7n) vs (, or

uvs (m,m) vs ¢

A certain a-posteriori justification in particular simulations desired.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Global minimization is difficult if £(t, -, ) is not convex.

Various local minimization algorithms (typically alternating minimisation
algorithm = AMA) with suitable choice of initial iteration (backtracking
exploiting the double sided energy inequality).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Global minimization is difficult if £(t, -, -) is not convex.

Various local minimization algorithms (typically alternating minimisation
algorithm = AMA) with suitable choice of initial iteration (backtracking
exploiting the double sided energy inequality).

An engineering approach: mere AMA (= a sequence of convex problems).
At level k, zﬁ_l is fixed during AMA iterations. If AMA converges, then
it gives only critical points of PX and thus a solution to the Rothe formula

Sk k=1

0uEX (U, 2¥) 50 and an(%)juazgﬁ(uﬁ,zﬁ)ao.

. . . uk—uk71 Zk—zk71 .
But testing the inclusions by ==——=— and =—=— respectively does

not give any a-priori estimates unless £(t, -, -) is convex

(or unless (uk, z¥) is, in addition, a global minimizer).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Global minimization is difficult if £(t, -, -) is not convex.

Various local minimization algorithms (typically alternating minimisation
algorithm = AMA) with suitable choice of initial iteration (backtracking
exploiting the double sided energy inequality).

An engineering approach: mere AMA (= a sequence of convex problems).
At level k, zﬁ_l is fixed during AMA iterations. If AMA converges, then
it gives only critical points of PX and thus a solution to the Rothe formula
k(o k k zf—zf ! ki, k k
0uEs(ut,z7) >0 and 872(?) + 0,E(uy,zf) 2 0.
. . . uk—uk71 Zk—zk71 .
But testing the inclusions by ==——=— and =—=— respectively does

not give any a-priori estimates unless £(t, -, -) is convex

(or unless (uk, z¥) is, in addition, a global minimizer).

T 4T

Note: a semiconvexity of £(t,-,-) does not help because
the dissipation potential is not uniformly convex.
Note: the convergence of AMA is not guaranteed

(although mostly observed for small 7 > 0).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

An idea: only 1 iteration of AMA:
The semi-implicit Rothe method (7 > 0 a time step):

k_ k=1
DuEX(uk, 2" )50 and BR(i) + 9,EX(uk, Z¥) 3 0.
T

T
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A fractional-step semi-implicit discretisation

Convergence towards local solutions
Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

An idea: only 1 iteration of AMA:
The semi-implicit Rothe method (7 > 0 a time step):

Sk k=1

OuEX(uE,zZE"1) 20 and OR(T—T—) +9,EK(ut,zf) 5 0.

T

It yields two convex decoupled problems:
minimize é’f(u,sz—l) n
. ([P]7)

subject to w e U,

minimize R(z—zf_l) —l—Sf(uf,z)

subject to z € Z.

([P21)
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations 1;)proxim1te maximum-dissipation principl
An idea: only 1 iteration of AMA:
The semi-implicit Rothe method (7 > 0 a time step):

2k k1
DuEX (U, z-"1Y 50 and 873(77) + 0,E5(uk, z¥) > 0.
T

It yields two convex decoupled problems:

minimize  EX (u, zf_l) }

subject to w e U,

([P1]%)

subject to z € Z.

minimize  R(z—zK"1) + £X(uf, Z)} ([P]5)

Fractional-step strategy: q = (u, z), Rext(q) = R(u), 0EX(q) :=
Ar1(q) = (0uE%(q),0),  A¥,(q):
k—1+4i/2  k—3/2+i/2
qr —Aqr k ( k—1+i/2 .
Rext( - ) = AT’,(qT ) 07 i=1,2.
Then gt = (uf 1, 257 1)

| | N—r

SV = (uk, 2K, and gk = (uk, 25).

T 4T

» qr

(Aug.29, 2016, HUB, CENTRAL)

T.Roubitek
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A fractional-step semi-implicit discretisation

Convergence towards local solutions
Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical stability of this semi-implicit scheme:

test of ([P1]X) by uk—uX=1 and use convexity of £X(-, zK~1):
EX(uf, 277 Y) < EX(uTH 27

kT
ekl 2 ¢ / E(t, uk1, 2K V)t
(

and then compare the value of ([P,]X) at zX with the value at z5—1:

Ziat k(i k _k k(ok _k—1
R(Z2—) + eh(uk, 26) < EXuk, 7).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical stability of this semi-implicit scheme:

test of ([P1]X) by uk—uX=1 and use convexity of £X(-, zK~1):

Ef(uf, 277 S £ Z77Y)

kT
ekl 2 ¢ / E(t, uk1, 2K V)t
(

and then compare the value of ([P,]X) at zX with the value at z5—1:

Ziat k(i k _k ki, k _k—1
R(ZZE) 4 gh(uk,2) < 4wk, 247Y),

Summing it up = cancelation of +£X(uk, z5=1) and the energy imbalance:

zf—zf ! k—1(, k=1 _k—1 o k=1 _k—1
— — — 7 — —
i) < g‘r (u‘r ) Zr ) + gt(t7 ur z; )dt
T (k=1)7

EX(uk, 28) + R

= again a-priori estimates (= numerical stability).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical stability of this semi-implicit scheme:

test of ([P1]X) by uk—uX=1 and use convexity of £X(-, zK~1):

Ef(uf,zf ) S £ Z77Y)

kT
ekl 2 ¢ / E(t, uk1, 2K V)t
(

and then compare the value of ([P,]X) at zX with the value at z5—1:

k_ k-1

Zr —Zr K(yk kY < gk k k=1
R(Z2—) + eh(uk, 26) < EXuk, 7).

Summing it up = cancelation of +£X(uk, z5=1) and the energy imbalance:

zf—zf ! k—1(, k=1 _k—1 o k=1 _k—1
— — — 7 — —
i) < g‘r (u‘r ) Zr ) + gt(t7 ur z; )dt
T (k=1)7

EX(uk, 28) + R

= again a-priori estimates (= numerical stability).

Yet, we do not have the two-sided inequality
(but we do not need it for controlling global minimization).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

General strategy of convergence towards local solutions: difficult parts:

1) semi-stability: needs a mutual recovery sequences:

V semistable sequence (tx, uk, zk) — (t,u,z) VZ € Z I (Zk)ken :
limsup (E(tk, uk, Zk)+R(Zk—2zk) —E (te, uk, zi)) < E(t, u,2)+R(z—2)—E(t, u, 2).

k—o0
2) energy inequality: t
E(t2, u(t2), 2(t2)) + Varg (z; [t1, ta]) < E(t1, u(t1), (1)) +/ Ex(t, u(t), 2(1)) dt

ty

needs typically the strong convergence for u(t;) and,
if £(t, u,-) is not affine, also for z(t;).

Therefore, some “good convexity” of £(t, -, z) is needed.

Contra-intuitively, maybe more difficult than convergence to energetic solutions,
although the local solutions form the widest reasonable concept.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Here it additionally needs 1) gradient plasticity,
2) to allow (at least formally) for healing
(still as rate independent)

The governing equation/inclusions read as (no isotropic hardening for simplicity):

div(C(¢)ea) + g =0 with  eq = e(u)—m,
6% (%) 5 dev(C(¢)ea) — Hr+ri A,

.y 1, Np—
050 (57) 3 —5C (e e+ ra div (VI 2VC) — Moy (<),

with the boundary conditions:

U = Wpj, on py,

(C(¢)ea) A ="F on MNyeus
Vri=0 and V(=0 on .
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Here it additionally needs 1) gradient plasticity,
2) to allow (at least formally) for healing
(still as rate independent)

The governing equation/inclusions read as (no isotropic hardening for simplicity):

div(C(¢)ea) + g =0 with  eq = e(u)—m,
6% (%) 5 dev(C(¢)ea) — Hr+ri A,

.y 1, Np—
050 (57) 3 —5C (e e+ ra div (VI 2VC) — Moy (<),

with the boundary conditions:

U = Wpj, on py,

(C(¢)ea) A ="F on MNyeus
Vri=0 and V(=0 on .

Healing only rather formal: if C(-) monotone, b large, kp > 0 small,
= not much chance for healing (except at most very small regions).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The transformed problem with time-constant (homogeneous) Dirichlet condition:
e = e(u)—m replaces by e, = e(u+tup;,)—,
wp;. replaces by 0.

The governing functionals:

E(t,u,m, Q) : / C(¢) (e(utupi (£))—7) = (e(utups(t))—m) + %Hw s
|v [P+ Z2|9¢]"+ Go.y(¢) — F(2)-udx

- / g(t)-uds,
rNeu

R(Gq0) =) +Re(T) = [5(50) +alge) +e(5) o

with the convention z* = max(z,0) and z~ = max(—2z,0) > 0.

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



Stress-driven scenario, gradient plasticity and gradient damage

A fractional-step semi-implicit discretisation
Convergence towards local solutions
Numerical simulations - approximate maximum-dissipation principle

The fractional-step algorithm (based on the splitting (u, 7) vs ¢):

two convex minimization problems:

first

minimize

g(kTa u,m, C‘l,f_l) + Rl(ﬂ-_ﬂ.ﬁ_l)
subject to  (u,7) € HY(Q; IR?) x HY(Q; RGX?

dev /) “|rDir:0>

and, denoting the unique solution as (uX, 7%), then

minimize

subject to ¢ € W (Q),

E(kT, uk, 7k ¢) + Ra(¢C—¢k 1)
0<(¢<1,

and denote its (possibly not unique) solution by CX.

T.Roubitek

(Aug.29, 2016, HUB, CENTRAL)
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Assumptions on the data:
C(-), H € R¥*¥*9*d positive definite, symmetric,
C: [0,1] — IR¥*¥*9*d continuous,

a, b, k1,k2 >0, SC leeXVd convex, bounded, closed, intS > 0,

Wpir € Wl’l(oa T, Wl/z’z(rDir; Rd))7
>1 for d = 2,
=2d/(d+2) ford >3

>1 for d = 2,
=2-2/d ford>3.

fe Wh(0, T; LP(;IRY))  with p

g € WHHO, T; LP(Tyew; IRY))  with p
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Assumptions on the data:
C(-), H € R¥*¥*9*d positive definite, symmetric,

C: [0,1] — IR¥*¥*9*d continuous,

a, b, k1,k2 >0, SC leeXVd convex, bounded, closed, intS > 0,

Wpir € Wl’l(oa T, Wl/z’z(rDir; Rd))7

1,1 P . d . >1 FOI’d:27
feW> (0, T;LP(2;IRY)) with p Z2d/(d+2) ford >3
>1 for d = 2,

1,1 P -RY i
g€ Wh (0, T; LP(Tyew; RY))  with p —2-2/d ford>3.

A-priori estimates:

||DTHL°°(I;H1(Q;]R")) = C’
||7_TTHL°°(I;Hl(Q;IRZQXV”))QBV(/;Ll(Q;IRg:Vd)) <C,

||E"'||L°O(Q)HBV(I;L1(Q)) =6
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Discrete local solution:
Equilibrium of displacements:

vtel: 0,€(tr,u-(t),7-(t),( (t)) =0  with t;:= min{kT>t; keIN},

two separate semi-stability conditions for ¢, and 7,:
Vel VRe H QU RIZY) 1 E(tr, b-(1), 7-(1), ¢ (1))
< E(tr, T (1), 7, ¢ (t) + Ra(T—7(2)),
Vel Ve W (Q), 0<(<1: E(t, B, (t), 7r(t), C (1))
< E(t, (1), 7+ (2),C) + Ra(C—C (1)),

and the energy (im)balance (VO < t; < t, < T, t; = ki, k;€IN):

E(t2, Ur(t2), Tr(t2), G (t2)) + Varg, (7ri [t1, 2]) +VarR2(CT [t1, t2])
< 80, (1), 712, & (1)) + [ 40,5000, 70, L) .

t1
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle
Convergence:
Step 1: a (generalized) Helly's selection principle:

3¢, ¢ € B(I; WA (Q)) nBV(/; LY(Q)) and
37 € B(I; HY(Q IRIXY)) N BV(/; L1(Q; IR3X?)) and a subsequence so that:

G(t) = ¢(t) & ¢ (1) = Cu(t)  weaklyin WH(Q)  forall tel,
7 (t) = m(t) weakly in H'(Q;R$*Y) for all tel.

Then fix (for a moment) t€/: by Banach's selection principle:

i, (t) — u(t) weakly in H(Q; RY).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 1: a (generalized) Helly's selection principle:
3¢, ¢ € B(; WEH(Q))nBV(/; L1(Q)) and
37 € B(I; HY(Q IRIXY)) N BV(/; L1(Q; IR3X?)) and a subsequence so that:

G(t) = ¢(t) & ¢ (1) = Cu(t)  weaklyin WH(Q)  forall tel,
7 (t) = m(t) weakly in H'(Q;R$*Y) for all tel.

Then fix (for a moment) t€/: by Banach's selection principle:
i, (t) — u(t) weakly in H(Q; RY).

U7 (t) minimizes E(t,, -, 7-(t), ¢ (t)) with t. := min{kr > t; k € N}
= u(t) minimizes the strictly convex functional &(t, -, {.(t), 7(t))

the compactness in both 7 and ¢ due to the gradient theories involved.
= u(t) uniquely determined by (.(t) and (t)

(i.e. no other t-dependent selection needed).

u:l — HY(Q;1RY) is measurable because (s and 7 are measurable.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 2: strong convergence in u and T
the discrete momentum equilibrium div(C(¢ )&, ;) +&- =0

the discrete plastic flow-rule E_T + Hm, — dgv 0, = k1 AT, with
5, = C(¢ )8, and & (t) € 06%(%=(t)) and &, , = (T, —lpi,-) — 77

27

at time t with B.C. considered in the weak sense and tested respectively
by T, (t)—u(t) and 7, (t)—m(t).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 2: strong convergence in u and T
the discrete momentum equilibrium div(C(¢ )&, ;) + & =0
the discrete plastic flow-rule E_T + H7, — deva, = ki AT, with
5, = C(C )., and & (t) € D5(%2=(t)) and &, = e(Br—Tivir) — 7
at time t with B.C. considered in the weak sense and tested respectively
by T, (t)—u(t) and 7, (t)—m(t).
/ C(g(r))(éw(t)—eel ) (B (O)=eu()
+ H(7(t)—n(2)) : (7r(t)—n( ) %}vm(t)—W(t)Fdx

< /Q—C(g(t) ea(t) : (B, (t)—ea(t)) — (Ha(t)=&- (1)) : (7-(t)—n(t))

+ %Vﬂ(t) LV (7 (£)—7(t)) — Fr(t)-(@ (8)—u(t)) dx
— | &(t)(@-(t)—u(t))dS — O.

MNeu

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 2: strong convergence in u and T
the discrete momentum equilibrium div(C(¢ )&, ;) + & =0
the discrete plastic flow-rule &, + H7 — dev o, = k1 A7, with
&7 = C(¢ )&, , and & (t) € 065(%=(t)) and &, . = e(lr—Upi,7) — 7r
at time t with B.C. considered in the weak sense and tested respectively
by T, (t)—u(t) and 7, (t)—m(t).

/Q C(g(r))(éehu)—eel ) : (Bur (B)—ea(t))
+ H(7(t)—n(2)) : (7r(t)—n( ) %}vm(t)—W(t)Fdx

< /Q—C(g(t) ea(t) : (B, (t)—ea(t)) — (Ha(t)=&- (1)) : (7-(t)—n(t))

+ %Vﬂ(t) LV (7 (£)—7(t)) — Fr(t)-(@ (8)—u(t)) dx
= | & (O (O-u@)ds o
= 8. (t) 2 ey(t) & A (t) = w(t) strongly in  H(Q; IRL:Y)
= e(Ur(t)) = e(upi,r(t))+7-(t)+&, ,(t) — e(u(t)) strongly in L*(Q; ngxrri/)
= 0.(t) = u(t) strongly in H'(Q;IRY).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 2: strong convergence in u and T
the discrete momentum equilibrium div(C(¢ )&, ;) + & =0
the discrete plastic flow-rule E_T + H7, — deva, = ki AT, with
&7 = C(¢ )&, , and & (t) € 065(%=(t)) and &, . = e(lr—Upi,7) — 7r
at time t with B.C. considered in the weak sense and tested respectively
by T, (t)—u(t) and 7, (t)—m(t).
/ C(g(r))(ém(t)—eel ) (B (O)=eu()
+ H(7(t)—n(2)) : (7r(t)—n( ) %}vm(t)—W(t)Fdx
< /Q—C(g(t) ea(t) : (B, (t)—ea(t)) — (Ha(t)=&- (1)) : (7-(t)—n(t))

+ %Vﬂ(t) LV (7 (£)—7(t)) — Fr(t)-(@ (8)—u(t)) dx
— | &(t)(@-(t)—u(t))dS — O.

MNeu
Important note: S € R bounded = (&)~ C L=(Q; R9X?) bounded
= relatively compact in H'(Q;IR§X“)* (here Vr needed!)

= fQ gr(t) : (ﬁT(t)—F(t))dX —0
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 3: strong convergence in ¢ by using the uniform-like monotonicity of
¢ = 0 11(C) — K2 div(|V¢|™2VC) - WH(Q) = WH(Q)".
The discrete damage flow rule:
gdam T + C (g ) el 7 ° éel,T = k2 diV(|vET|r72vC_T) - 7_77-

- 0 =
with some Eqam,- € 99[_, 4 (aé ) and 7], € 90y 1)(¢r)

with the boundary condition V¢, - i = 0.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence:

Step 3: strong convergence in ¢ by using the uniform-like monotonicity of
¢ = 9yp,11(C) — r2 div(|VCI™2VC) : WH(Q) = WH(Q)*.
The discrete damage flow rule:
dam,r +C’ (€ )Eqr : &l r = K2 div(|V¢ | 2VE) — 7
with some f_dam,T € 66{"_37“ (%7) and 7, € 85[071](57)
with the boundary condition V¢, - i = 0. By Banach selection principle:

f_dam,f(t) — aam(t)  weakly* in L%°(Q)

for some t-dependent subsequence

and

C'(C, ()% - (t):20 (t) = C'(¢(t))ea(t):e-(t) strongly in L*(Q) C WH(Q)*
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Convergence:
Step 3: strong convergence in ¢ by using the uniform-like monotonicity of
¢ = 0 11(C) — K2 div(|V¢|™2VC) - WH(Q) = WH(Q)".
The discrete damage flow rule:

Eaam,r + C'(C )Eulr * Ear = k2 div(|VE|2VE) —

- 0 =
with some Eqam,- € 99[_, 4 (aé ) and 7], € 90y 1)(¢r)

with the boundary condition V¢, - i = 0. By Banach selection principle:
f_dam,f(t) — aam(t)  weakly* in L%°(Q)

for some t-dependent subsequence
here £qam,+(t) valued in [—b, a] with the (small) healing by b < co exploited!
and

C'(C, ()3 - (t):20 (t) = C'(¢(t))ea(t):e-(t) strongly in L'(Q) C WH(Q)*

already proved in Step 2 with now exploiting again the gradient-concept of (.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

the limit damage flow rule (at a time t):

Edam(t) + C'(C)ea(t) : ea(t) = k2 div(|VE(8)|"7*VE(2)) — n(t)
with some 7(t) € 99 1;(¢(t))-

and, at this t, we can estimate
w2 limsup (I1VE () haney ~ 7SO i) IV (O~ 196Dl rmsy)
< limsup /Q ra(IVC- (O] V(1) = [VE(0)2VE(1)- V(G (1) =¢(2)
+ (&) -n()(C () -C(8)) dx
= Jm_ [ € ()2 (2): B (DG (D-(0)
— k2 [VE()2TE()- T (E(8)C(8)) = (Eamn(£) + M) ()=C(8)) dx = O.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

the limit damage flow rule (at a time t):

Edam(t) + C'(C)ea(t) : ea(t) = k2 div(|VE(8)|"7*VE(2)) — n(t)
with some 7(t) € 99 1;(¢(t))-

and, at this t, we can estimate
w2 limsup (I1VE () haney ~ 7SO i) IV (O~ 196Dl rmsy)
< limsup /Q ra(IVC- (O] V(1) = [VE(0)2VE(1)- V(G (1) =¢(2)
+ (&) -n()(C () -C(8)) dx
= Jm_ [ € ()2 (2): B (DG (D-(0)
— k2 [VE()2TE()- T (E(8)C(8)) = (Eamn(£) + M) ()=C(8)) dx = O.

Thus | V(- (t) rrard) = IV r@mey- _
Uniform convexity of the space L"(Q;IRY) = V(. (t) — V((t) strongly.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle
the limit damage flow rule (at a time t):
Eaam (t) + C'(Q)ea(t) : ea(t) = r2 div(|V¢(2) "> V((2)) — n(t)
with some 7(t) € 99 1;(¢(t))-

and, at this t, we can estimate

Fllimerp (V&GO @mean = IV amay) VGOl @rey = VD) | @may)

= e /Q k2 (VG ()2 VE () = [VC(0) 2 VE(1)) -V (EH(8)—¢(1))
+ (7 (1) =n()) (G- (1) =¢(t)) dx
_ lemm/Slc'(gT(t))@cl,T(t): 81, (1) (Cr (1) —C(1))
— r2 [VC(0)| V(1) V(G (£)=¢(1) — (€aam(2) + n(£)) (& (£)—((2)) dx = 0.

important: C’(¢ ¢ ()&, (t): &, () (G (£)—¢(t)) — 0 weakly in L1(R),
or, in fact, even strongly in Ll(Q) — again r > d is exploited.
Thus [|VE ()l r@mey = IVl @me)-

Uniform convexity of the space L’(Q, ]Rd) = V(. (t) — V((t) strongly.
the t-dependent selection for E_dam,-r(t) — €dam(t).in fact not needed.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation prir

Convergence:

Step 4: Limit passage in the discrete local solution is then easy:

Equilibrium of displacements:
Vel OuE(tr,ur(t),7r(t),¢ (1)) =0  with t;:= min{kr>t; k€N},
two separate semi-stability conditions for ET and 7r:
vtel VRe H(QRIY) 1 E(tr, Tr(8), 7r(t), (1))
S g(t7'7 BT(t)7%7£T(t)) +R1 (%_ﬁT(t))v
Vil ¥ e WH(Q), 0<C<1: E(tr, br(t), 7r(t), Cr(t))
S g(t‘f‘z L_IT(t)i Zv 7T1—7'(t)) + RZ (z_ET(t))v

and the energy (im)balance (VO < t; < tr < T, t; = k7, ki €IN):

S(tz, l_lq—(t’z)7 7TI'7—(t‘2)7 C_T(tz)) —+ Va.I“R1 (ﬁ'-,—; [tl, tz]) + VarRz (57—; [1.‘]_, tz])
< &(t1,Ur(t1), 7r(t1), & (1)) +/ 25{(1“, o, (t), 7(t),C(t)) dt.

t
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A physically-justified attempt :
a small (“vanishing” in the limit) viscosity in (u,7) or in C:
dz

du
618R1 (E

with z = (¢, 7) and Ry > 0 and R, > 0 convex quadratic.

)+0uE(t,u,2) 50 and 628R2( )+8R( ) + 0,E(t,u,z) 20

Again, semi-implicit time discretisation works efficiently.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A physically-justified attempt :
a small (“vanishing” in the limit) viscosity in (u,7) or in C'
dz

du
618R1 ( dt

with z = (¢, 7) and Ry > 0 and R, > 0 convex quadratic.

)+8 E(t,u,z)30 and 628R2( )+8R( )+3 E(t,u,z)30

Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or Ry > 0) for (ue, z.) with € := (e1,€3):

t du. dz.
E(ts, (1), 2 (82)) + Varg (z: [, t2]) + /251731( - )+252R2(d )de
ty
*g(tlaus(tl) zs tl gl t us(t)vzs( )) t.

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A physically-justified attempt :
a small (“vanishing” in the limit) viscosity in (u,7) or in C'
dz

6187?,1(3 )+3 E(t,u,z)30 and 628R2( )+8R( )+3 E(t,u,z)30

with z = (¢, 7) and Ry > 0 and R, > 0 convex quadratic.

Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or Ry > 0) for (ue, z.) with € := (e1,€3):

t du. dz.
E(ts, (1), 2 (82)) + Varg (z: [, t2]) + /251731( - )+252R2(d )de
ty
*g(tlaus(tl) zs tl gl t us(t)vzs( )) t.

In the vanishing-viscosity limit for € — 0 (as subsequences) = “defect measure”

du, dz.
261 R1(— 1 =)+ 262Ro(—— T °) — >0 weakly* as a measure on [0, T].
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

A physically-justified attempt :
a small (“vanishing” in the limit) viscosity in (u,7) or in C'
dz

du
618R1 ( dt

with z = (£, 7) and Ry > 0 and R, > 0 convex quadratic.

Hors 7 () = 525 o) axond e 7 (55) = [ 51

Again, semi-implicit time discretisation works efficiently. In the limit 7 — 0:
The energy conservation (if Ry > 0 or Ry > 0) for (ue, z.) with € := (&1, €2):

)+8 E(t,u,z)30 and 628R2( )+8R( )+3 E(t,u,z)30

t2 du. dz.
5(1’27 Ug(t2), Zg(tg)) + VarR(zg; [l’l, tz]) + / 281R1( e ) i 2€2R2( T

t1 tr

=&(t1, u-(t1), z-(t1)) +/ El(t, us(t), z-(t)) dt.

t1

)dt

In the vanishing-viscosity limit for € — 0 (as subsequences) = “defect measure”

due
2€1R1(

dz.
I =)+ 269Ro(—— T °) — >0 weakly* as a measure on [0, T].
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

lllustration of a vanishing (or rather very small) viscosity solution:

two nontrivial 2D symmetry-broken computational experiments with
a surface damage (=delamination or debonding of an adhesive):

experiment

AQnd loading

250 mm

I'x

1st loading
25mm visco-elastic body €2 experime

225 mm

SﬁhEbl\e o
Fig.7. Geometry and boundary condltlons of the 2-D prohlem considered.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The defect measure distribution (the horizontal-loading experiment):

0.0
0:020 1
bl -
2 .| i
t=0.21 0.005 1
8083 L L . .
0.0
0:020 1
s 383 -
£=0.235 0.005 1
0.000
0.025 . - - :
0:020 ]
618 ]
A - ]
t=0.26 0052 ]
0.000
0.0 - - - :
0.020 ]
st '
2 q 1
t=0.285 aohs ]
0.000 - - - :
0.0
0:020 1
bl '
t=0.31 0.005 ]
0.000 - - . .
0.0
0.020 1
3883 |
£=0.335 on05 1
0.000 :
0.02 - - T
0:020
3883
£=0.36 gois : ‘
0% 6o 0.05 0.10 0.15 0.20 0.25
Tha  @mp  ar  &ep o lma o oron

Fig.9. The spatial distribution of the energy dissipated by (even very small) viscosity over the time interval [0, #],
ie. f; ¥Ce(ity - ):elit, ) dt depicted in a gray scale at 6 selected time instances as also used on Fig. 8.
(BEM implementation, calculations, visualisation: C.G.Panagiotopoulos,-U. of Seyijlle)
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The defect measure distribution (the vertical-loading experiment):

0.
+ =005 0.010

o
=
=1
i

+ =005 0.010

+ =185 0.010

2

Fig.12. The spatial distribution of the energy dissipated by viscosity over [0,¢], ie.
fnt xCelity - ):eit, ) di depicted at 6 selected time instances as on Fig. 11. Surpris-
ing tendency to a symmetry even under nonsymmetry loading can be observed.
(BEM implementation, calculations, visualisation: C.G.Panagiotopoulos,-U. of Seyijlle)
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Comparison on the 1st delamination experiment on the force response:

Left: a vanishing-viscosity solution
—in fact, a very small viscosity, energy (approximately) conserved.
Right: a maximally-dissipative local solution (by fractional-step algorithm).

2.08+ 2.0+
: cal
3 3 Lzontal|
= O R DN WU RN & 130408
= . =
£ i E
o : : : : o : : : :
@ BarOfy 55 1o 1% I 35 Jo ©.0a 0475 3 ) T35 FI Fi} 3o
time t tme t

Fig. 13. Vertical and horizontal components of the reaction force on the Dirichlet loading (left) and its comparison with the
simplified inviscid algorithm from Remark 4.2 (right), again showing a surprising match as on Figures 6 and 10.

(BEM implementation, calculations, visualisation: C.G.Panagiotopoulos, U. of Seville)

— a surprisingly good match of the mechanical response also in 2D simulations.
— a certain justification of the maximally-dissipative local sIn concept.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence: most important modifications in Steps 1-4:

Step 2: Strong convergence in u and T:

the “viscous” momentum eqU|I|br|um div(e1De( a”5) +C(¢)eq ) +&=0
the “viscous” plastic flow-rule €22 G T & +Hr. —devo. = k1 Am. with
0. = C(¢)e, . and & € 96%(%=) and €1 = e(Ue—upi) — me with

B.C. considered in the weak sense and tested respectively by u.—u and
Te—Tr.
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Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Convergence: most important modifications in Steps 1-4:

Step 2: Strong convergence in u and T:
the “viscous” momentum equilibrium div(e1De( a”5) +C(¢)eq ) +&=0
the “viscous” plastic flow-rule €22 G T & +Hr. —devo. = k1 Am. with
0. = C(¢)e, . and & € 96%(%=) and €1 = e(Ue—upi) — me with
B.C. considered in the weak sense and tested respectively by u.—u and
m.—m. Integrated over [0, T] and using ||e(24= 52 ) 12 (QREXS) = 0(1/+/)

and ”Tf”LZ(Q;Rj:j) = 0(1/4/e,), it yields:

/C(CE)(eel c—€a) : (&o1,e—€1) + H(me—7) : (me—7) + %imeVrridedt

Oue ome
< /Q— (sliD)e( o )—HC(CE)ecl) : (eee—ee1) — (52 5 = ) : (me—mr)
+ %Vﬂ' : V(me—m) — for(ue—u) dx — g(t)-(ue—u)dSdt — 0.
MNeu

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle
Convergence: most important modifications in Steps 1-4:

Step 2: Strong convergence in u and 7:

the “viscous” momentum equilibrium div(e1De(2%) + C(¢:)e 1) +&=0
the "viscous” plastic flow-rule e G +& + Hr. —devo. = k1 Am. with
=C(¢)e €. and & € 865(‘%5) and e, . = = e(u.—Up;,) — T with
B C. considered in the weak sense and tested respectively by u.—u and
7. Integrated over [0, T] and using ||e( 2= 520 12 (@R = O(1/\/e;)

and ||07r5 [ (QRExd) = 0(1/+/2,), it yields:

/C(CE)( €el,e — el) : (eel,a_eel) +H(7Ts_7r) . (7'(5_77_) i %|V7VE_V7F|2dth

Q
Oue OTe
< /Qf (ElDe( ot )+(C(C€)ee1) : (eel,sfeel) - (52 Ot ) : (7(_5771—)
+ %Vﬂ' : V(me—m) — for(ue—u) dx — g(t)-(ue—u)dSdt — 0.
I—Ncu
= Vaatieg (t) 2 e (t) &  m(t) = a(t) strongly in H(Q; IRLY)

= Vaat: e(u(t)) = e(uDlr( ))+me(t)+e, (1) — e(u(t)) strongly in L3(R; IngXn‘l"
= u.(t) = u(t) strongly in H1(Q; IRY).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Convergence: most important modifications in Steps 1-4:

Step 2: Strong convergence in u and T:
the “viscous” momentum eqU|I|br|um div(e1De( a“f) +C(¢)eq ) t&=0
the “viscous” plastic flow-rule 52 o e + £ + Hr, — devo. = k1 Am. with

0. = C(¢)e, . and & € 865(3”5) and e, . = e(u-—Up;;) — 7 with
B.C. considered in the weak sense and tested respectively by u.—u and
m.—m. Integrated over [0, T] and using ||e( 4= o )HL2 QR = 0(1//¢)

and || ||Lz QRIXY) = O(1/+/e,), it yields:
/C(CE (eel e el) : (eel s_eel) +H(7TE_7T) . (ﬂ's_ﬂ') + %|V7FE—VW{2dxdt
Ome
S /Qi (ElDe( 8 )+(C(C )eel) : (eel,afeel) - (52 87;' ) 5 (7'('5771')

+ %Vﬂ' :V(me—m) — for(ue—u) dx — g(t)-(ue—u)dSdt — 0.
MNeu
Important note: S € IRGX? bounded = (£.).-0 C L(Q;RGXY) bounded

& 7 — min LY(Q;R$XY) by Aubin-Lions’ lemma (here V' needed!)
= fofg. me—m)dxdt — 0.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Convergence: most important modifications in Steps 1-4:

Step 2: Strong convergence in u and 7:
the “viscous” momentum equilibrium div(e1De(%) + C(¢:)e, €1) +&=0
the “viscous” plastic flow-rule £2% d”S + & + Hr. — devo. = k1 Ame with
0. = (C((E)eel’e and & € 35;(3(;5) and e, . = e(us—up;i,) — e with
B.C. considered in the weak sense and tested respectively by u.—u and
.—. Integrated over [0, T] and using ||e(Z4 5t M i2(Qrexey = O(1/vEr)

and ||W||L2(Q;]Ri:\)d) = 0(1//e,), it yields:
/(C(Cs)( ol,e—€o1) ¢ (€or,e—€a1) + H(me—7) : (me—7) + %|V7T5—V7r|2dxdt
Q
Oue Ome )
< /Q— (€1De( o <) +C(¢e)ee ) : (eer,e—€a1) — (52 Bt ) : (me—mr)
F %Vﬂ' : V(me—7) — for(ue—u) dx — g(t)-(ue—u)dSdt — 0.

MNeu

Strong convergence in ¢ in W17 (Q) even for all t the same as before.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Step 4: Limit passage in the momentum equilibrium
div(e1De(%) + C(¢ e, ) +g =0 towards d1v( (Qe,))+g=0
easy again due to He( i)l 2@ QRE) = O(1//¢;).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Numerical simulations - approximate maximum-dissipation prir

Stress-driven scenario, gradient plasticity and gradient damage

Step 4: Limit passage in the momentum equilibrium
div(e1De(%) + C(¢ e, ) +g =0 towards d1v( (Qe,))+g=0
easy again due to He( )l i2(qrexe) = O(1//¢;).

gym

Limit passage in the plastic flow rule:

& 88”; + & + Hr. —devo. = k1A, with 0. = (C(Ca)eCLE and

& € 96%(%=) and €,1.. = €(Us—upi) — 7 in the weak form:
52“%5 + 5;(6”8) dxdt
o 0t
————

9
< / ey o)) = 1 Vi S o) 4 el 4 ) bl
Q W—/

for any .
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A fractional-step semi-implicit discretisation
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Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Step 4: Limit passage in the momentum equilibrium
div(e1De(%) + C(¢ e, ) +g =0 towards d1v( (Qe,))+g=0
easy again due to ||e ( )l 2 (@R = O(1//¢;).

Limit passage in the plastic flow rule:

& 88”; + & + Hr. —devo. = k1A, with 0. = (C(Ca)eCLE and

& € 96%(%=) and €,1.. = €(Us—upi) — 7 in the weak form:

/Q 52‘687;5 +5§(6”8)dxdt

9
>0
< / ey o) i) = 1 Vi S o) 4 ol 4 ) bl
Q — 0

for any 7. After e — 0,
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principl

Step 4: Limit passage in the momentum equilibrium
div(e1De(%) + C(¢ e, ) +g =0 towards d1v( (Qe,))+g=0
easy again due to ||e ( )l 2 (@R = O(1//¢;).

Limit passage in the plastic flow rule:
£,9%= 4 &, + Hr, — devo. = kiAm. with o, = (C(Ca)eCLE and

at
& € 96%(%=) and €,1.. = €(Us—upi) — 7 in the weak form:
on
+ 45 dxdt
/Q 5( ot )
< / e —deve JE— ) - Ve DG ) + 63(F) dxdt
Q

for any . After ¢ — 0, use 1-homogeneity of R + convexity of £(t,-) to
the get semi-stability.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Step 4: Limit passage in the momentum equilibrium
dlv(el]D)e(d“E) + C(¢e)e, ) + & = 0 towards d1v( (Qe,))+g=0
easy again due to ||e ( )l i2(qrexe) = O(1//¢;).

gym

Limit passage in the plastic flow rule:
& 887;5 + & + Hr. — dev o, = k1A with 0. = C(¢.)e

ol and

& € 96%(%=) and €,1.. = €(Us—upi) — 7 in the weak form:

/Q + 5;(6; ) dxdt

< /Q(HTF —devo ):(T—7 )+ s VT (V(FT—7 )+ + d5(7) dxdt
for any . After ¢ — 0, use 1-homogeneity of R + convexity of £(t,-) to

the get semi-stability.

Limit passage in the damage flow rule the same (no viscosity in ¢), and
limit passage in the energy balance: strong convergence in £(t,.) +
weak* convergence to the defect measure 1 on Q.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Approximate maximum-dissipation principle (AMDP): Recall:

z
/ &-(t)dz(t) L Varr(z-; [0, T]) with & (t) € —9.&,(t, - (t), Z(t))
Jo
where we can explicitly evaluate the left-hand side as
T T/T
/ & (0)dz (1) =D (& zi—z7h)  with &' e —0.8((k—1)r,ui 7tz 7Y,
20 k=1
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Approximate maximum-dissipation principle (AMDP): Recall:
T
/ &-(t)dz,(t) ~ Varr(z-; [0, T]) with & (t) € —9.&,(t, - (t), Z(t))
0

~where we can explicitly evaluate the left-hand side as

/57 )dz-(t) = Z(fi Lz with 57 e —a,8((k—1)T ul Tt 2.

Here (denoting z = (m,¢)):

/ E-(t)dz, (¢ VarR(ET,TrT; [0, T]) for some
E-(t) € =0, (8, 1-(1), 7 (1), & (8)) x { = [E-] (£, B (8), 7 (), (8)) },

27
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Approximate maximum-dissipation principle (AMDP): Recall:
T

/ &-(t)dz(t) L Varr(z-; [0, T]) with & (t) € —9.&,(t, - (t), Z(t))
Jo
where we can explicitly evaluate the left-hand side as
T/T

/57 )dz-(t) = Z(fi Lz with 57 e —a,8((k—1)T ul Tt 2.

Here (denoting z = (m,¢)):

/ & (t)dz,(t VarR(C_T,TrT;[O, T]) for some

&(t) € 345_7(t7 B (£), 77 (£), G (8) x { = [&-] (£, 8-(2), 7 (1), C_(£)}

27

or written for plasticity and damage separately:

;
/0 Eptast - (£)d7,(£) ~ Varg (7, [0, T])
B for gplast,‘r( t) = [g] (t, - (t )ﬁr(tLQT(t))a

i
| Gt (0096, (2) % Ve, (Gi10. T)
=0 for some Edam,r(t) € —8c&r (. r (1), T2(t), & (1)),
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The residua can be evaluated more specifically as:

T/t
R —dx = _ k=2) (k=1 _ g(yk=1 4 k-
J R = (Dbt D etut i)
— Hrk=t: (mk—n5=1) — k) Vak=L W (nk—rk ))dx > 0,
and
T/
R dx = k_k=1y= 4 p(ck_k=1y+ _ k-1
A ¢ X /{2(;3(4-7 CT ) + (C‘r C‘F ) Const‘r(C C )

— SCCE) (e ) — ) ¢ (kM) — )

_ mvd—l'—2vc¢—1-V(<f—<f—1)) dx > 0,

with some multiplier &5, . € N 1](Cf).
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

The residua can be evaluated more specifically as:

T/t
R —dx = _ k=2) (k=1 _ g(yk=1 4 k-
J R = (Dbt D etut i)
— Hrk=t: (mk—n5=1) — k) Vak=L W (nk—rk ))dx > 0,
and
T/
R dx = k_k=1y= 4 p(ck_k=1y+ _ k-1
A ¢ X /{2(;3(4-7 CT ) + (C‘r C‘F ) Const‘r(C C )

— SCCE) (e ) — ) ¢ (kM) — )

_ mvd—l'—2vc¢—1-V(<f—<f—1)) dx > 0,

with some multiplier &5, . € N 1](Cf).

It allows for a spatial localization over €.

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation princ

Numerical simulations with bulk damage + plasticity
(max-diss. local solutions by fractional step algorithm):

In I'n
In/1i
Q Ip /Iy Q b/
In
1y Ly
l<— up = 1¢D(t>—> <—uD:uD(t)—>

Two variants of geometry of a 2-dimensional square-shaped specimen to be
plastified and damaged under a tension-loading experiment.
The right-hand side of Q is free in tangential direction.

Material: isotropic, homogeneous, C = C((¢) affine in ¢, C(1) = 1000C(0),
C(1) ~ Young modulus 27 GPa, Poisson ration 0.2, H = C(1)/4,
S={oe€ Rg:vd, lo] < oy} with oy =2MPa,
the damage energy a = 1kPa, x; = 107°J/m.

Some implementation shortcuts: x; = 0 and r = 2 (instead of xk; > 0 and r > 2)

= after triangulation of Q: P1l-elements have been used for u and ¢
P0-elements suffices for 7.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .04
E——— ] EE— [ EE— ]
o 1 o Be-04 o Se+06 -8 -37.6 =1

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200 X"
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .08
L TEm— T [ TTTT——
o 1 o Se-0d4 o Se+06 —8 -37 .6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified =200 X"
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .12
| — ] EE— L [ EE— ]
o q o sSe-04a o Se+06 -8 -37.6 -=

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200 X
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .16
— [ E— | — ]
(o] l (o] Be-04 o Sae+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200 X
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .20
E——— ] EE— [ EE— ]
o 1 o 8e-04 o Se+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200 X"
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .24
L II— T [ TTIaa——
o 1 o Be-04 o Se+06 —8 -37 .6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200" X
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)
at time t = .28
CIT—— [ E—— | [ —— ]
o 1 o Be-04 o Se+06 -8 -37 .6 -5

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200"x*
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

o ECR— E— %o ) 50
von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)
at time t = .32
CTaaa—— T L [ |
o 1 o Se-04 o Se+06 —a -37 .6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200 X"
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .36
E——— ] EE— [ EE— ]
o 1 (o] Be-04 o Se+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)
at time t = .40
CIT—— B | [ —— ]
o 1 o Be-04 o Se+06 -8 -37 .6 -5

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200"x-.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,7)

at time t = .44
| — ] EE— L [ EE— ]
o q o Se-04 o Se+06 s -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200 x-.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
stress |dev o log(R¢,~+Rx,7)

at time t = .48

I
(s} Se+06 -8 -37 .6 -5

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200"x-.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,7)

at time t = .52
E——— ] EE—— | [ — ]
o 1 (o] Be-04 o Se+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200-x.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .56
| — ] [EEE—— [ EE— ]
o q o sSe-04a o Se+06 -8 -37.6 -=

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement -u magnified=200-x-
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ stress |dev o log(R¢,~+Rx,+)
at time t = .60
| E—— ] [EEE—— [ EE— ]
o 1 (e} Be-04 o Se+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement -u magnified=200-x-
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

o 10 20 30 40 50 mH 70 80
von-Mises residuum
damage ¢ stress |dev o log(R¢,~+Rx,+)
at time t = .64
T Imm— [EE——— [ E—— ]
o 1 o sSe-04a o Se+06 - -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement -u magnified=200x-.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

o 10 20 30 40 50 60 H 70 80
von-Mises residuum
damage ¢ stress |dev o log(R¢,~+Rx,+)
at time t = .68
| E—— ] T ——
o 1 (a] Be-04 o Sae+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200-x-.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

von-Mises residuum
damage ¢ plastic strain || stress |dev o log(R¢,~+Rx,+)

at time t = .72
— ] — - ———m=ma
o 1 o Be-04 o Se+06 -a -37.6 &

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified=200-x.
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

o 0 20 30 ) EY E3 7o || e
von-Mises residuum
damage ¢ stress |dev o log(R¢,~+Rx,+)
at time t = .76
T Im— [EEE—— [ E—— ]
(o] 1 (o] B8e-04 (s} S5e+06 -8 ~-37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement -u magnified=200-x.,
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Numerical simulations: Overall von-Mizes stress ﬁ Jq |dev o(t)| dx depending on t.

-
5 = 10

o o Zo % Fr %o o 7o {po
von-Mises residuum
damage ¢ stress |dev o log(R¢,~+Rx,7)
at time t = .80
[ E— ] | E— | [ —— ]
o 1 (a] Be-04 o Sae+06 -8 -37.6 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement -u magnified=200-x..
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

o5 A0S
—————————— time step—1
— — —tirme step=10 "
=2+ T e | == time step—10"=
1.5 b T -
a ra T -
r
)
r
o.s - F
¥
r
)
o(‘lﬂ A0 =] =0 -0 S0 [ el rael Y
von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,+)

at time t = .02
[ E— | — ]
(o] 1 (o] B8e-04 (s} S5e+06 -8 -3.3 -8

C—eeaa——

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

o5 E T =0
—————————— tirme step—1
— — —tirme step=10 "
2 T - == time step—=10"=
1.5 b T -
a ra T -
r
)
r
o.s - F
F
r
r
o(‘l ﬂ A0y = n ] te¥al EYel =0 [ el el Eo"al
von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,+)
at time t = .04
CIT—— | E— | [ Tmm—
o 1 o Be-04 o Sae+06 -8 -3.3 -8

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

o5 E T =0
—————————— tirme step—1
— — —tirme step=10 "
2 T - == time step—=10"=
1.5 b T ..
. ..
os|
r
o(‘l EYel =0 [ el el Eo"al
von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,+)
at time t = .06
E— ] EE— L [ EE—— ]
=] 1 o s8e-04 o Se+06 s _3.3 s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

o5 E T =0
—————————— tirme step—1
— — —tirme step=10 "
2 T - == time step—=10"=
1.5 b T .
k] ri T e
r
'l
ra
o.s - F
F
ra
r
o(‘l ’ﬂ*‘n = n ] te¥al EYel =0 [ el el Eo"al
von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,+)
at time t = .08
 — EE— [ E—— ]
o 1 o s8e-04 o Se+06 = _=3.3 =

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..

T.Roubitek (Aug.29, 2016, HUB, CENTRAL) Plasticity and damage: PART |



A fractional-step semi-implicit discretisation
Convergence towards local solutions

Stress-driven scenario, gradient plasticity and gradient damage Numerical simulations - approximate maximum-dissipation principle

Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

£
=g o 1O

—————————— tirmme step—1
— — —time step=10""

":TT E a0 =0 a0 ) A0

von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,~)
at time t = .22
L TTEm—— [ E— ] T mm—
(s} 1 (o] Be-04 (o] Se+06 -8 3.3 -5

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Alternative geometry: Overall von-Mizes stress & [, |[dev o(t)| dx depending on t.

o5 A0S
—————————— tirme step—1
— — —time step=10""
=2+ T e | == time step—10"=
1.5 b T -
a ra T -
r
)
r
oSt F L %
¥ Nl
¥ "
)
o(‘l A0 =] ﬂ =0 -0 S0 [ el rael Y
von-Mises residuum
damage ¢ plastic strain |r| stress |dev o] log(R¢,~+Rx,+)
at time t = .24
L TTEm—— [ E— ] T mm—
(s} 1 (o] Be-04 (o] Se+06 -8 3.3 -5

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified-200.x..
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Stress-driven scenario, gradient plasticity and gradient damage

Convergence of evolution of the
overall von Mises stress
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The dissipated energy and the residuum
in the approx. max.-diss. principle
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the nonuniform plastification of the specimen.

During plasticizing phase: residuum is small,
Hill's maximum dissipation principle always well satisfied.

During damaging phase: residuum is possibly larger,
it may not mean that the evolution is not stress driven:

T.Roubitek
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Some open problems:

Purely unidirectional damage known only for energetic solution.
For stress-driven type solutions open.

Complete damage known only for energetic solution without plasticity
(G. BoucHITTE, A.MIELKE, T.R., 2009)

with plasticity and/or for stress-driven type solutions open.

A limit with a big elasticity moduli C — oo towards plastic-rigid model
open.

Etc.
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More on: www.karlin.mff.cuni.cz/ roubicek/trpublic.htm
or:
https://www.researchgate.net/profile/Tomas_Roubicek?2

Thanks a lot for your attention.
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More on: www.karlin.mff.cuni.cz/ "roubicek/trpublic.htm
or:
https://www.researchgate.net/profile/Tomas_Roubicek?2

Vielen Dank fir Ihre
Aufmerksamkeit.
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