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The plot:

Part |: basic scenario: rate-independent plasticity + rate-independent damage

Part II: perfect plasticity with rate dependent damage with a possible healing

Part Ill: rate-independent unidirectional damage with visco-plasticity,
thermodynamics, etc.

Part IV: tutorial — further outlooks
(combination with other processes, large strains, etc.)
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o Plain damage-visco-plastic model
@ The governing equation /inclusions
@ The weak formulation
@ Analysis: time discretisation, a-priori estimates, convergence

© Some modifications and expansions
@ Phenomena like creep or fatique

e A general thermodynamics and examples
@ A general thermodynamics
@ Example: plasticity with hardening and thermal expnasion
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Main features: 1) irreversible (= unidirectional) rate-independent damage
2) visco-elastic material
3) rate-dependent plasticity (allows “cheaply” no hardening)
)

4) combination with other phenomena or processes
(creep, diffusion/swelling)
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The classical formulation of the Biot inclusion 834R(q; %) + 04E(t,q) 3 0:
“viscosity" in the plastic flow rule + visco—eI;sticity in Kelvin-Voigt rheology,
plastic-dependent damage activation, and
again gradient of 7 (as in Part ) and damageable yield stress (as in Part II).
no hyper-stresses, no healing force, and no hardening needed (though possible).
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The classical formulation of the Biot inclusion das R (q: 39) + 9,&(t, q) 2 0:
“viscosity" in the plastic flow rule + visco—eléstlaty in Kelvin-Voigt rheology,
plastic-dependent damage activation, and
again gradient of 7 (as in Part ) and damageable yield stress (as in Part II).

The governing equation/inclusions read as:
dive+g=0 with o =C(¢)eq +D(()
on . (0T
a¢
85[_3(,“. )(a ) T C,(C)eel €el
+ Nipo,11(€) > k2 d1V(|VC|’_2V() with e, = e(u)—m (damage flow rule)

with the boundary conditions:

8eel
ot’
) +Hr > devot+r Ar (plastic flow rule)

(momentum equilibrium

u = Wpjir on rDir7
O'I_'i =i on rNeu7
V(i=0 and Vai=0 on .
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The classical formulation of the Biot inclusion das R (q: 39) + 9,&(t, q) 2 0:
“viscosity" in the plastic flow rule + visco—eléstlaty in Kelvin-Voigt rheology,
plastic-dependent damage activation, and
again gradient of 7 (as in Part ) and damageable yield stress (as in Part II).

The governing equation/inclusions read as:
dive+g=0 with o =C(¢)eq +D(()
on . (0T
a¢
85[_3(,“. )(a ) T C,(C)eel €el
+ Nipo,11(€) > k2 d1V(|VC|’_2V() with e, = e(u)—m (damage flow rule)

with the boundary conditions:

8eel
ot’
) +Hr > devot+r Ar (plastic flow rule)

(momentum equilibrium

U = Wpi on M,
on="f on MNyeu,
V¢rn=0 and Vri=0 onT.
If o <1, the normal cone Njg 1j can be replaced by Njg o)
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The dependence of a on m may lead to a scenario first plasticizing and then
damaging under loading (like in Part I, but) even without any hardening.

STRESS © o_= Gcm(n)
_______ faster loading
— = = = - slow loading
plasticity
2 threshold for
S ©
S & damage may decay
? g wih plasticization
) k=]
STRAIN
PLASTIC STRAIN slow loading
T faster loading

STRAIN

This picture is “rate-dependent” due to « > 0 and D > 0. For very slow loading,
a damage combined with (nearly) perfect plasticity can thus be modelled.
Plasticity and damage: PART IlI
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The dependence of a on m may lead to a scenario first plasticizing and then
damaging under loading (like in Part |, but) even without any hardening.

STRESS G o_= Gmt(']t)
_______ faster loading
— = = = - slow loading
plasticity
2 threshold for
B a3
g a0 damage may decay
%@ g wih plasticization
@ s
STRAIN
PLASTIC STRAIN slow loading
T faster loading

STRAIN

If (even small) kinematic hardening H > 0 is considered, then a “microscopical’
interpretation of a = a(7) = 3(H 1x) depending on hardening.
Plasticity and damage: PART IlI
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The governing equation/inclusions

Plain damage-visco-plastic model
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

The dependence of a on m may lead to a scenario first plasticizing and then
damaging under loading (like in Part |, but) even without any hardening.

STRESS G o_= Gmt(']t)
_______ faster loading
— = = = - slow loading
plasticity
2 threshold for
B a3
g a0 damage may decay
%@ g wih plasticization
@ s
STRAIN
PLASTIC STRAIN slow loading
T faster loading
STRAIN

Similarly if (even small) isotropic hardening b > 0 is considered (see Part I), then
again a “microscopical” interpretation of a = a(n) depending on hardening.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

A substitution of u+up;, instead of u.

The state space:

{(u,7,Q) e H{( R x HH(QRIZ ) x W (Q); ulr,, =0 on ;. }.

dev
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

A substitution of u+up;, instead of u.

The state space:

{(u,7,Q) e H{( R x HH(QRIZ ) x W (Q); ulr,, =0 on ;. }.

dev

The governing functionals:

[ 560 s ea - g(0)u

E(tu,m, () = +%\Vﬂ'\2 + %|VC|'dx —/ f(t)-udS if(>0a.e. on Q,
I—Ncu
00 otherwise,
o 8%‘2 . on
5| 3r +65(0(7)
du dr d¢ /92 ot ot
R T, C; T 120 a2 ) & 8C 1 aeel aeel a 8C
5 - : — < .e.
( at’ dt dt) +a(7r)‘6t +5DOSE Shdx i o2 <0ae on Q,
o) otherwise.

where now e, = (e(u+up;.(t))—m.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

A weak formulation: main features:
1) the plastic part (u, 7): conventional weak formulation, but
V% is not well controlled
= by-part integration in time needed
2) the damage part: semistability + energy equality (theory of RIS used),
% controlled only as a measure (though a() € C(Q))
= by-part integration in time desired.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

A weak formulation: main features:

1) the plastic part (u, 7): conventional weak formulation, but
V% is not well controlled
= by-part integration in time needed

2) the damage part: semistability + energy equality (theory of RIS used),
% controlled only as a measure (though a() € C(Q))
= by-part integration in time desired.

More specifically, we use:

1 1
/vmva—” dxdt:/f|V7r(T)|2dx—/7|V7T(0)\2dx i
AT 02 0

% =[a(r X — 0/7781 xdt — [ a(r X
Lo ) = [ alr(T)T) dx — [ /() Fc xde — [ a(r(0)¢(0) dx.

Q Q
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

A weak formulation: main features:

1) the plastic part (u, 7): conventional weak formulation, but
V% is not well controlled
= by-part integration in time needed

2) the damage part: semistability + energy equality (theory of RIS used),
% controlled only as a measure (though a() € C(Q))
= by-part integration in time desired.

More specifically, we use:

o e [L 24, [1 2
/va.v upmr —/92|V7T(T)| e /92|v7r(0)\ &5 o
/Q a(w)%(dxdt) - /Q a(r(T))¢(T)dx /Q 0/(77)%( Shilo— /Q a(r(0))¢(0) dx.
The triple (u, 7, ¢) with |, ¢ HY([o, T]; H*(Q; RY)),
7 € N0, T; 2 RE) N 120, T; AR RE)),
¢ € B([0, Tl; Wh"(Q)) n BV ([0, T]; LY(%2))
such that also Aw € L2(Q;IRdXd) will be called a weak_solution if:

dev
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Plain damage-visco-plastic model The governing equation/inclusions

The weak formulation
Analysis: time discretisation, a-priori estimates, convergence

Momentum equation: Vv:
/ (C(g)eel+m>(g)8661) e(v)—g- vdxdt:/ fvdSdt.
Q at MNeu

Plastic flow rule: Vv valued in IRg:vd.

/Qz|"2 +0500)(v) - (C(C)eel +D(g)aeel> : (V_%)
v (VV_V%) e = /Q 2 %‘ +05(0) ((?)ﬂ) dxdt

Semi-stability: V,.a.t€[0, T] V0 < ¢ < ¢(t) with eq(t) = e(u(t)+ups(t))—7(t):
[ 56©ea0): eale) + 2o} dx
/ 2CQeale): ea(t) + VT + aln(t))(C - ¢(1) dx

Energy equality:

el + o () +mio 2 Gt asace [ ]l

+5(T7U( 7),m(T),¢(T)) = &(0, UO;WOa<0)+g(t u(t), n(t), ((t)) dt.
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Plain damage-visco-plastic model The governing equation/inclusions

The weak formulation
Analysis: time discretisation, a-priori estimates, convergence

Momentum equation: Vv:
/ (C(g)eel+m>(g)8661) e(v)—g- vdxdt:/ fvdSdt.
Q at MNeu

Plastic flow rule: Vv valued in IRg:vd.

/Qz|"2 +0500)(v) - (C(C)eel +D(g)aeel> : (V_%)
v (VV_V%) e = /Q 2 %‘ +05(0) ((?)ﬂ) dxdt

Semi-stability: V,.a.t€[0, T] V0 < ¢ < ¢(t) with eq(t) = e(u(t)+ups(t))—7(t):
[ 56©ea0): eale) + 2o} dx
/ 2CQeale): ea(t) + VT + aln(t))(C - ¢(1) dx

Energy equality:

el + o () +mio 2 Gt aster [l

+5(T7U( 7),m(T),¢(T)) = &(0, UO;WOa<0)+g(t u(t), n(t), ((t)) dt.
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Plain damage-visco-plastic model The governing equation/inclusions

The weak formulation
Analysis: time discretisation, a-priori estimates, convergence

Momentum equation: Vv:

/ (C(C)ee1+]]])(<)aeel) 5e(V)*g~vdxdt:/ £ vdSdt.
¢ at rNeu
Plastic flow rule: Vv valued in I[{g:vd_ by-part integration to be done
& aeel o
/Q2|V2 —1—55(0( v) — ((C(C)eel +D(¢) ) : (V_a)

+I€1V7TE(VV—V%) dxdtZ/Q2 %‘ I (Zﬂ)dxdt

Semi-stability: V,.a.t€[0, T] V0 < ¢ < ¢(t) with eq(t) = e(u(t)+ups(t))—7(t):
[ 56@eatt): ea(®) + 21ve(e) ax
/ 2CQeale): ea(t) + VT + aln(t))(C - ¢(1) dx
Energy equality: by-part integration to be done
/ ] + S(C)(gﬁ) +D(g)3;f : a;;_jl drdt - /Q a(r) % (dxdt)
+5(T7U( 7),m(T),¢(T)) = &(0, uOﬂTo,Co)+5(t u(t), m(t), ((t)) dt.
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Plain damage-visco-plastic model The governing equation/inclusions

The weak formulation
Analysis: time discretisation, a-priori estimates, convergence

Momentum equation: Vv:
/ (C(g)eel+m>(g)8661) e(v)—g- vdxdt:/ fvdSdt.
Q at MNeu

Plastic flow rule: Vv valued in IRg:vd.

/Q SIVI2 485 (v) = ((C(C)eel + D(g)aeel) : (v_gl) + /Y Vv dxdt

K om |2 on 5
—&-/921|V7To|2dx2/o2 E‘ + 62 0(6 )dxdt +/ "\ (T)Rdx
Semi-stability: V.ot €[0, T] V0 < ¢ < ¢(t) with eq(t) = e(u(t)+ups(t))—7(t):
[ 50©eae): eale) + 2o} ax
/ 2CQeale): ea(t) + VT + aln(t))(C - ¢(1) dx

Energy equality:
al 2 * 8£ 8eel ) aeel / al /
/Qa 5el 050 (57) RO G+l (m)C G dxde + [ a(x(TC(T)

T

+E(T, u(T),(T),¢(T))=£(0, UO77T07<0)+5;(t’ U(t)ﬂf(t%C(t))dt+/ﬂa(7ro)éodx.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

Time discretisation by fractional-step strategy:

K k—1
. . _ —1, Cel,r — Gl
divok +gf =0 with 0% = C(CF)eli - + D(¢k 1)%7
k-1 k_ k-1

k_ _
a& + 00%, ks (w) 5 dev ok + k1 Ark
T S T T T

" GGty 1
86[73(775,),00)( P ) + EC/(C‘ilf)eekl,T : eé(l,r
+ N k : kir—2 . k k k .k
[0»1](<‘r) S K2 le(|VCT| VC) with eel,T - e(uT+UDir,‘r) ™

T

with the boundary conditions:

u:=0 on rDir7

k
=
k
pe

-

ﬁ:

Q

onrNeua
V¢ki=0 and Vrki=0 on T

to be solved first for (uX, %) and then for (¥ recursively for k =1,..., T /7.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

Given (mk=1, ¢k 1):

A minimization problem to obtain (uX, 7k):

Minimize  (u,m) — E(kT,u,m, (1) + R(0,(fH m—mf~1,0)
subject to  we HY(Q;RY), me HY(Q;IRY*), u=0on Ip,

dev

and second minimization problem to obtain ¢:

k k—1 (¢t
Minimize ¢ — E(kT, UT,WT,C)+TR(7T ,0;0, )
T
subject to ¢ € WLr(Q), 0<¢ < ¢kt onQ,

Solutions exist by coercivity, convexity, and lower semicontinuity arguments.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

Given (mk=1, ¢k 1):

A minimization problem to obtain (uX, 7k):

Minimize  (u,m) — E(kT,u,m, (1) + R(0,(fH m—mf~1,0)
subject to  we HY(Q;RY), me HY(Q;IRY*), u=0on Ip,

dev

and second minimization problem to obtain ¢:

k k—1 (¢t
Minimize ¢ — E(kT, UT,WT,C)+TR(7T ,0;0, )
T
subject to ¢ € WLr(Q), 0<¢ < ¢kt onQ,

Solutions exist by coercivity, convexity, and lower semicontinuity arguments.

If C’ is nondecreasing (again with respect to the Léwner’s ordering),
these problems are convex.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

We test the discrete inclusions respectively by uf—uk=1, 7hk—7k=1 and ¢k—¢k-1.

Relying on the convexity of £(kT, -, -, ¢k~ 1) and of E(kT, uk, 7k ), we
obtain the estimates

E(kt uk, wk Ck_l)—i—r o + 5% (Fi !
y U1y Yoy ST o S(Ci—l)

T
k k—1 k k 1

el _—e
k—1y el, i 1, 1 k=1 k=1 r~k—
+D(C7— )eTTeT eTTerX<g(k7_u , T ,CT 1)’

ek, ., mb,C5)+ [ alnk)(Chmh ) e < Elkr,uf, wk, GE7T).
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

We test the discrete inclusions respectively by uf—uk=1, 7hk—7k=1 and ¢k—¢k-1.

Relying on the convexity of £(kT,-,-,¢k71) and of E(kT, uk, 7k, ), we
obtain the estimates

k_
E(kr, ui,ﬂi,(f_l)—i-r/ Ir
Q T

k k—1 k k—1

=12 . Ta—Tx~
‘ ”5(45*1)( - )
_ e‘el,‘rie 1,7 €
+D(G )

a ‘

—e
el, 7 “el,T k—1 _k—1 rk—1
- dx < E(kr,u =" w75, 70),

£(kr, uk, ¥, ¢) + / a(r)(CE k1) dx < E(kr, ub, ok, CEY),
Q

By summing these estimates, we can again enjoy the cancellation of the terms
+E(kT, uk, 7k ¢5=1), and thus obtain

1 k k—1 k
—mk1 ¢k
b

~ _ k _ k—
E ke, w8, G+ 7R (k, ¢ty e 2

—¢k1t k—1__k—1 ~k—1
T .fT )SE(kTaUT 77(-7' 7<‘r )

kT

o0&
:5((’<—1)7an‘1,#¢‘1,<$‘1)+/ St Ul (Y ae
with the dissipation rate R defined as (k=1)r

R(m, ¢ i,7,{) = /Qag(o (7) + a(m)|¢] + D(C)éer:éer dx  with & = e(ir)—.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

By the discrete Gronwall inequality, we obtain boundedness of
= = F T mr d¢r
Supte[O,T] gT(t7 uT77TT)<T) and fo WT}C ddt ) dct )dt

From the coercivity of £ and R, we thus obtain the a-priori estimates:
<, <,
<C, < C,

||@e1,7||L(x, 0, T;L2(RIXD)) ||ee1,7||H1 0, T;L2(RIXD))

1771 oo 0,71 e )y < I7ellin o, rz@mgzey <

16180, 77w (@))nBV (0, T2 @)= (@) < €

so that, by Korn's inequality, using e(u.) = e~ + 7, also

||u‘f'||[_oo 0,T;H (IRY)) = < C ||UT||H1(0,T;H1(Q;]R")) = C’
and by comparison also

or -

AR,
7| -

1 om, _
LQ(Q;]RdXd)): 7H 5't +a(55 C )( )—deVO'T

dev

R(QRIS))
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

By the discrete Gronwall inequality, we obtain boundedness of
= = F T mr d¢r
Supte[O,T] gT(t7 uT77TT)<T) and fo WT}C ddt ) dct )dt

From the coercivity of £ and R, we thus obtain the a-priori estimates:
<, <,
<C, < C,

||eel THLOO 0,T;L2(Q; IRZyX,f,' ||eel,7'||H1 0, T'LZ(Q']ngX,g))

||7T"'||L°° 0, T;HY(QRYXY)) = ”ﬂ—"'”Hl 0, T;2(QRIXY)) =
1S, 180, 71:wr (@) BV (0, TEL @)L (@) < €

so that, by Korn's inequality, using e(u,) = ee - + 7, also

||UT||L°° o T (@RY) = HUT”Hl(O,T;Hl(Q;]Rd)) <G
and by comparison also

o,

+855C )( o

1 H Oy )—dev &,

ot

||A7_TT||L2( d><d))

dev

<
QR

The same estimate as for ¢, also holds for € -
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

Convergence:

1) Banach selection principle:

ur —u weakly in H(0, T; HY(Q; RY)),
Tr — T weakly in HY(0, T; L(Q; R$XY)),
G—¢ ¢ ¢ weakly* in L>°(Q),

2) the limit passage in the discrete momentum equilibrium

. - aecl.'r -
dlv<(c(§.,.)eel,‘r +D 8t’ ) + & = 0

by weak continuity (+ compactness in ()
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of &, in L2([0, T] x Q;IngXH‘j)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢ )&, . + D%ecm-) +2 =0

the discrete plastic flow-rule a&; — dev, = k1 A%, with
o, =C(C, )2y, + ]D)%ee“ and &, € 96%(Z ;) and

&, = e(t;—Upir,r) — T with B.C. considered in the weak sense and
tested respectively by @, (t)—u(t) and 7,(t)—m(t) and integrated over [0, T].
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of &, in L2([0, T] x Q;IngXH‘j)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢ )&, . + D%ecm-) +g =0
the discrete plastic flow-rule aé, —deva, = k1 AT, with
5, =C(¢ )8, , +DEe, . and & € 065(&m.) and
By = e(uT lpir.r) — 7, with B.C. considered in the weak sense and
tested respectively by @, (t)—u(t) and 7, (t)—n(t) and integrated over [0, T].

/ (§ )( €el, 7 — el) : (éel,f_eel) + %|VﬁT_V7T|2dth

< / ~C(¢,Jea : (Bar—en) + & ¢ (Fr=m) + 'LV (7, —)
Q

8 el, T — 8 T — =z -
— % 0 (eel,Tfeel) —« 87Tt c (waw) — fr-(0r—u) dxdt

—/ g-(r—u)dSdt — 0.
X

Neu
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of &, in L2([0, T] x Q;]ngxr;‘l)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢_ )&, , +Dre, ,) +& =0
the discrete plastic flow-rule aé. —dev o, = k1 AT, with
5r = C(¢ )&, , + Die, , and & € 065(Lm,) and
&1, = e(uT quT) 7+ with B.C. considered in the weak sense and
tested respectively by i, (t)—u(t) and 7, (t)—(t) and integrated over [0, T].

/C g el T el) . (éel,f_eel) T %|V7_T-r_v7l'|2dth

< [ —C(C )ewr : (Barr—ea) + & 1 (Fr—m) + %wfv(ﬁﬁw)

Q
8661,7 — 871—7- — 2 =
—D Tk (eel’T—eel) —ag (71'7-—71') — fr-(Ur—u) dxdt
— / & (O-—u)dSdt — 0.
ZNeu
= B, (t) > e(t) & A (t) > w(t) strongly in - HY(Q; IREY)

= e(Tr(t)) = e(upir,r(t))+7-(t)+&, . (t) = e(u(t)) strongly in L2(; ]Rfyxn‘lj)
= 0.(t) = u(t) strongly in H'(Q;IRY).
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of &, in L2([0, T] x ; IngXIf)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢ )&, . + ]D)%eel’r) +g- =0
the discrete plastic flow-rule af_T —deva, = k1 AT, with
07 = C(¢, )ea,- +D2e ., and & € 06%(Zm;) and
CRES e(uT UDH,T) 7 with B.C. considered in the weak sense and
tested respectively by @i (t)—u(t) and 7, (t)—m(t) and integrated over [0, T].

/(C(QT)(éel,T—eel)  (Berr—ea) + %|V7‘r77V7r|2dxdt
Q

< A_C(QT)eel : (éel,‘r_ 61) + ET d (771'7-—71') u %Vﬂ- V(ﬁ—‘r_ﬂ-)
_D% NBup=aa) = Sy (7r—7) = fr(Gr—u) dxdt

ot
—/ B ([T A5 — G,
X

Neu

Important note: S € RGX? bounded = (£,),-o C L®(Q;R9X“) bounded

dev dev

= relatively compact in L2(0, T; HY(Q; IR§X“)*) (here V7 needed!)
= [o& () : (7-(t)—7(t)) dxdt — 0
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of &, in L2([0, T] x Q;ngxn‘j)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢_ )&, , +Dre, ,) +& =0
the discrete plastic flow-rule a{i —dev o, = k1 AT, with
» =C(¢ )8, +Die, , and & € 90%(Zm-) and
&1, = e(uT uDlr,T) 7. with B.C. considered in the weak sense and
tested respectively by @, (t)—u(t) and 7,(t)—m(t) and integrated over [0, T].

/(C @ @) 2 (@ ) § %|V7?T—V7r{2dxdt

_(C(£ )eel (eel,‘r_eel) + '5_7' : (7_1'7——71') + %VTF V(ﬁ'-,——ﬂ')

Q
aeel T — 8777- — 2 /o
—-D——= ETk (eel,Tfeel) —a (7r777r) — fr-(Ur—u) dxdt
— / &g (O-—u)dSdt — 0.
Neu
Another note: limsup,_, [ —]Daeg% - (B ,—eq) dxdt < [, 3De, (0) : €, . (0) dx

—limsup, o [ %DeelyT(T):eeLT(T) dx +lim; o [, D 3517; e, dxdt =0
(here we needed D constant)
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of & in L2([0, T] x Q;IngXn‘j)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢ )&, . + ]D)%eELT) +g =0
the discrete plastic flow-rule af; — deva, = k1 AT, with
5y = C(¢ )&y, + Die, , and & € 065(Lm) and
R e(uT UDU,T) 7. with B.C. considered in the weak sense and
tested respectively by @, (t)—u(t) and 7,(t)—m(t) and integrated over [0, T].

/C cl T cl) : (écl,f_ecl) + %|V7_TT_V7T|2dth

< /—C(QT)eel (B, —eat) + & : (Fr—7) + = Vﬂ‘ VY (Fr—)
Q
a el, T = 8 T — _
*D% : (Eotr—€al) — @ 67Tt : (mfﬂ) — f (0 —u) dxdt

— / &g (O-—u)dSdt — 0.
bx

Neu

Similarly also limsup,_, fQ ozagtf : (Fr—m) dxdt < 0.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

3) strong convergence of & in L2([0, T] x Q;IngXn‘j)) (like in Part I):
...it needs D not depending on (, however!
the discrete momentum equilibrium div(C(¢ )&, . + D%eel,r) +g =0
the discrete plastic flow-rule af; — deva, = k1 AT, with
5y = C(¢ )&y, + Dire, , and & € 065(Lmr) and
R e(uT UDU,T) 7. with B.C. considered in the weak sense and
tested respectively by @, (t)—u(t) and 7,(t)—m(t) and integrated over [0, T].

/C cl T cl) : (écl,f_ecl) + %|V7_TT_V7T|2dth

< /—C(QT)eel (B, —eat) + & : (Fr—7) + = Vﬂ‘ VY (Fr—)
Q
a el, T - 6 T - _
*D% D (Br—ea) — gt : (mfﬂ) — fr- (O —u) dxdt

— / &g (O-—u)dSdt — 0.
bx

Neu

Note also the differences from a similar estimate in Part |
(with now H = 0 here).
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

4) limit passage in the discrete plastic flow rule (after by-part summation):

de P .
a o B €. [, Omr _
S IVE+ 85 () (C(g ) ehﬂm x )(v at)+n1V7rT.Vvdxdt

Q
o |, o
+/Q—|wo\ dx>/ . a”t ) (P )dxdt+/ B (T dx

is simply by weak (lower semi-)continuity.
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Plain damage-visco-plastic model

The governing equation/inclusions

The weak formulation
Analysis: time discretisation, a-priori estimates, convergence

4) limit passage in the discrete plastic flow rule (after by-part summation):

« * e el, 7 87('7—
sz|2+55(CT)(V)— ((C(g )eu, +D 81 ) (v B )+I€1V7T7- Vv dxdt

K1 5 a|0mr 2 ., on,
- > - -
—i—/Q > |Vo|“dx _/ ’ 55(£T)( 9 )dxdt—|—/Q > |V (T)[2dx

is simply by weak (lower semi-)continuity. The only difficult term is

Oe, on
l C el T dxdt
'Tj?,p/< (€ )e, + ot ) 5t

= lim sup (C(QT)éel,r + DaeEl’T):(e(ai) — 86‘51’.,.) dxdt

T—0 ot ot ot
aee T Oe el, 7 0 T 0 T
:Iimsup/ _p—chr. ebT dxdt + lim (/f U7 dxdt + Z- - idet)
r—0 JQ ot ot FNeu 0
de, O
gnmsup/ —p 2. %l gy dt 4 lim (/ f-@dxdur g-@det)
r—0 Jo ot ot =0\ Jo Ot TNeu ot
on (because we already passed to
= /Q< (C)e ot > 87d xdt the limit in the momentum equation)
T.Roubitek

(Aug.31,2016, HUB, CENTRAL)
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

4) limit passage in the discrete plastic flow rule (after by-part summation):

Oe 9 :
g 2 * o elT X . Tr =y
5 [v] +55(< y(v) (C(g )éa,r +D i )(v e ) + k1 V7, Vv dxdt

Q
87'['7— * aﬂ-'r 2
+/Q—|wo\ dx>/ = +55<£>(a )dxdt+/ S|V (T)P dx

is simply by weak (lower semi-)continuity. Therefore, in the limit we
obtain

Q - e, on
/Q2V|2+55(g)(V)— ( (C)ea +D ot 1) : ( 5t )+51V7T Vv dxdt

1 2qx > f@ * 87 /7
+/Q > |V o] dX/QQ at‘ +5S(C)(8t)dth + A 2|V7T(T)| dx

which is the weak formulation of the plastic flow rule we saw above.
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

5) limit passage in the discrete semi-stability (integrated over [0, T]):
V0 < ¢ < ¢ on Q with &, = e(l,+Upir,r ) —7-:

1. i,
/ EC(CT)EGI,T DBy + %|VCT|’dxdt
Q
1 .~ Kp -~ ~
s / 5C(O)er ¢ Elr + 72|v<|f + a(7:)(¢ = ;) dxdt
Q

is simple since we have already proved the strong convergence of &g .
In the limit, after desintegration, we obtain for a.a. t € [0, TJ:

/ 2C(¢)ealt) : ea(t) + f|v<< )" dx
/ 2CQ)ea(?) - ealt) + 2V + aln())(C ~ C(B) dx,

which is the semi-stability we saw above (but here only for a.a. t).
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

6) limit passage in the energy equality:

o |2 " 61 Oeel ) Oecl / al
/oa ot +55(<)<8t>+D ot = ot +a(7rr)<5t dth+/ ()T dx

Qa

+E(T, u(T),n(T),¢(T))=£(0, U077T07C0)+/051{(t7 u(t), m(t),¢(t))dt +/Qa(7fo)CodX‘
relies on
1) the identity

Om 1 5 5
/QAw.atdxdt—z/QWm) V(T

which exploits here the regularity Ame L2(Q;IR3X?) and can be proved either

by a mollification in time by a time-difference technique (G. GRUN, 1995)
or in space (as used already in Part Il but for ¢ instead of 7).
2) the Riemann-sum argument
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Plain damage-visco-plastic model The governing equation/inclusions
The weak formulation

Analysis: time discretisation, a-priori estimates, convergence

Remark: D = 0 possible

(C. HEINEMANN, C. KrAUS, WIAS Preprint 2012)
(E.BoNETTI, C.HEINEMANN, C.KRAUS, A.SEGATTI, WIAS Preprint 2013)
then we would loose e.g. the estimate
[€e1,r — €017 [l 12(Qmoxay < T”%ECLTHL?(Q;]Rd“) -0
but we did not need it anyhow
(as if we were consider e.g. S = 5(¢, €)
and used a semi-implicit discretisation)
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Some modifications and expansions Phenomena like creep or fatique

One simplification: plasticity — creep (Maxwell rheology) < S(¢) = {0}
in combination with the Kelvin-Voigt rheology = Jeffreys' rheology
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Some modifications and expansions Phenomena like creep or fatique

One simplification: plasticity — creep (Maxwell rheology) < S(¢) = {0}
in combination with the Kelvin-Voigt rheology = Jeffreys' rheology
One modification: strain controlled viscosity and plasticity

(instead of stress controlled)

Instead of the former governing equation/inclusions:

Je,
dive +g=0 with o = C(¢)ee) + D(()?d, (momentum equilibrium)
13} 13}
&67‘: aF 35;(0 (677:) S devo + kAT (plastic flow rule)

- a¢ 1
66[73(70‘90)(5) + EC/(C)eel : ol

+ Mo 1)(€) 3 k2 div(|VC|"T2VC)  with e = e(u)—m (damage flow rule)

The modified governing equation/inclusions read as:

div <C(<)(E(U)fﬂ') + D(C)e(%)) +g=0, (momentum equilibrium)

0 0
aa—i + 005(¢ (%) > dev(C(¢)(e(u)—)) + k1 Am  (plastic flow rule)
0
067 simyo0 (o) + 5C(C)(e) ) : (e() )
+ N[o,l](C) > ko div(|V¢|"2V() (damage flow rule)
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Some modifications and expansions Phenomena like creep or fatique

on . (O
du dr d¢ / 8t’ +55(4)(81”)
R( )G de’ dt’ E) = ‘ ‘—&- De (@):e(@)dx if%<0 a.e.on Q
080 ot ot othaetrv;se 7
or
om |2 om
/a* +3s0\ 57
R( e du drw dC) — Q 5”-" ) 8(6315.)8%1(1 ’ a<<0 o
de’ de’ dt W)‘a —&-5 5 ar X |tha—t_- a.e. on Q,
00 otherwise.

Kelvin-Voigt rheology
in combination with the Maxwell rheology = Jeffreys' rheology
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Some modifications and expansions Phenomena like creep or fatique

Under cyclical loading, the damage threshold (and possibly also the yield
stress) is to depend not on 7 but rather on the number of cycles — the
total dissipated energy at a current spot. This models the phenomenon
of a fatique:

t om
= a(d ith  d(t,x)= [ 6ol ==(t dt'.
a=ald) with ()= [ S (F7(E)

An example of a rate-independent relation 94 = g(c)(%) which is not
in the Biot-equation form.
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Some modifications and expansions Phenomena like creep or fatique

Under cyclical loading, the damage threshold (and possibly also the yield
stress) is to depend not on 7 but rather on the number of cycles — the
total dissipated energy at a current spot. This models the phenomenon
of a fatique:

t om
= a(d ith  d(t,x)= | 6&ev —(t',x)) dt’.
a=a(d) with d(tx) = [ de ()

An example of a rate-independent relation 9¢ = 550 (2%) which is not
in the Biot-equation form.

If gradient viscosity of the type oV 4~ qr is considered, then compactness in
d by the Aubin-Lions theorem: if S(¢) = {o; |o| <o, (¢)}.

f 2 ‘. 9 o, _ 8
va= [ V(e (Ol5¢]) ae = [ AQVEITE| + o (ODin(GE) VG e
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Some modifications and expansions Phenomena like creep or fatique

Under cyclical loading, the damage threshold (and possibly also the yield
stress) is to depend not on 7 but rather on the number of cycles — the
total dissipated energy at a current spot. This models the phenomenon
of a fatique:

t om
= a(d ith  d(t,x)= | 6&ev —(t',x)) dt’.
a=a(d) with d(tx) = [ de ()

An example of a rate-independent relation ;9t = 0%

50) (—”) which is not
in the Biot-equation form.

If gradient viscosity of the type oV 4~ qr is considered, then compactness in
d by the Aubin-Lions theorem: if S(¢) = {o; |o| <o, (¢)}.

t B t ) Bh. B
va= [ V(e (Ol5¢]) ae = [ AQVEITE| + o (ODin(GE) VG e

Then V(€ L>(L?) and 2% € [%(L®) and V2T € [?(L?) implies Vd € L>(L3).
Thus strong convergence of approximate d’s in L(L!) follows.
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A general thermodynamics

Example: plasticity with hardening and thermal expnasion

A general thermodynamics and examples

A general thermodynamics:
¥ = (u, z,0) a specific free energy
s = —¢p(u, z,0) a specific enthalpy
w(u,0,s) :=1(u,0) + bs a specific internal energy (GIBBS' relation)
The entropy equation reads as
heat flux

e
0% +divj=r with j = —K(u, z,0)V0 <+ FOURIER's law

where K = K(u,z,0) is a heat-transfer coefficient (matrix),
and r the dissipation (i.e. heat production) rate.

Differentiating s := —¢j(u, z,0) in time =
Js Ou 0z 00
ar _wgu(uvzve) 3t 02( z 0)3 1/9/9([172?9)&'
the specific heat capacity ¢, = ¢,(u, z,60) == —0sy(u, z,0) = —0v¢y,(u, z, 0).
The heat-transfer equation
00 ) " 0z
cv(u,z,ﬁ)& — div(K(u,z,0)V0) = r + 0y, (u, z 9) —|— 0y, (u, )8t'
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A general thermodynamics

Example: plasticity with hardening and thermal expnasion

A general thermodynamics and examples

An enthalpy-like transformation (assuming, for simplicity, ¢, = ¢,(u, 6) only):

1
Co(u,0) = /t9cv(u7 t0) dt.
Jo

We use the calculus:

aat [Cv(w0)] = /0 e f9) +9[CV]9(u t6)t +9[cv] (u, tQ)% dt
= %(/c\,(u, t0) + [cv]j (v, t9)t0dt> L (/G[CV] (u, t@)dt) gltl
- /E(Cv(” t0)e) de + [C.1(u,0) 5 = %cv(u )+ Gl (u,0) o0
with [C]( = [ Olcv],(u, t0) dt.
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A general thermodynamics

. Example: plasticity with hardening and thermal expnasion
A general thermodynamics and examples ple: p y g P

An enthalpy-like transformation (assuming, for simplicity, ¢, = ¢,(u, 6) only):

1
Co(u,0) = /t9cv(u7 t0) dt.
Jo

We use the calculus:

aat [Cv(w0)] = /0 e f9) +9[CV]9(u t6)t +9[cv] (u, tQ)% dt
= %(/c\,(u, t0) + [cv]j (v, t9)t0dt> L (/G[CV] (u, t@)dt) gltl
= / (cv(u, t0)t) dt + [Co ], (u, G)gu = %cv(u 0) + [Ce],(u, )gu
with [C]( = [ Olcv],(u, t0) dt.
The heat-transfer equation:
O div(K(s,2,0)V0) = r + (B (u O)+CLLL( 9))@
ar VAL =r oulll, vu(u,0)) 5

together with ¢ = C,(u, 0).
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A general thermodynamics

. Example: plasticity with hardening and thermal expnasion
A general thermodynamics and examples ple: p y g P

An enthalpy-like transformation (assuming, for simplicity, ¢, = ¢,(u, 6) only):

1
Co(u,0) = /t9cv(u7 t0) dt.
Jo

We use the calculus:

aat [Cv(w0)] = /0 e f9) +9[CV]9(u t6)t +9[cv] (u, tQ)% dt
= %(/c\,(u, t0) + [cv]j (v, t9)t0dt> L (/G[CV] (u, t@)dt) gltl
= / (ev(u, t)t) dt + [Co]l(u, G)gu = %cv(u 0) + [Ce],(u, )gu
with [C]( = [ Olcv],(u, t0) dt.

The heat-transfer equation:

S — div(K(s,2,0)90) = r + (004, (s, 0)+G.1,(0,6))

u needs to be controlled

at
together with ¢ = C,(u, 0).
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A general thermodynamics

Example: plasticity with hardening and thermal expnasion

A general thermodynamics and examples

An enthalpy-like transformation (assuming, for simplicity, ¢, = ¢,(u, 6) only):

1
Co(u, ) ::/Hcv(u, t0) dt.
0

We use the calculus:

aat [Cv(w0)] = /0 e f9) +9[CV]9(u t6)t +9[cv] (u, tQ)% dt
_ g</cv(u, t6) + [eely(u, t6)t0.dt) + (/9[cv] (u, ) ) Z‘t’
/ (ev(u, t0)t) dt + [Co],(u, o)gu _ %cv(u 0) + [Ce],(u, )Zu
with [C]( = [ Olcv],(u, t0) dt.
The heat-transfer equation:
o i (K(u,2,0)V0) = +(9%/J" (u,0)+[C.],( 9))@
8t 1v u,z, =r u u, b u, 8t

together with ¢ = G, (u, 0).

A more general situation ¢, = ¢,(u, z, 0):

% —div(K(u,z,0)V0) = f+(91/)/9/u(u z,0)+[CoLu(u, ))

du

ot 1
—|—(91//9'z(u,2,9)—&—[C‘,]z(u7 279))% together with ¥ = C,(u, z,0) == [ fcv(u, z, t0)dt.

T.Roubitek (Aug.31, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



A general thermodynamics

A general thermodynamics and examples Example: plasticity with hardening and thermal expnasion

Stored energy used in Part | (here for simplicity without isotropic hardening):

E(t,u,m, )= %C(e(u)fw ):(e(u)—m )+ %H’/TZ’]T — g(t)-u.

An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.
Thermodynamics of the plasticity with hardening:

u =displacement,
z = (m,n) =the plastic deformation and the hardening parameter,

—div(C(e(u)— =

GR(gf,)Jr ((C?T;;?Hﬂ') 5 ((Ceo(u )7

T.Roubitek
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T.Roubitek

A general thermodynamics and examples

A general thermodynamics
Example: plasticity with hardening and thermal expnasion

Stored energy used in Part | (here for simplicity without isotropic hardening):

E(t,u,m,0)= %C(e(u)fwf]EG):(e(u)fwaG) + %H’/TZ’]T — g(t)-u.

An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.

Thermodynamics of the plasticity with hardening:
u =displacement,

z = (m,n) =the plastic deformation and the hardening parameter,

viscosity
Oe(u)

- div(]D) o ) — div(C(e(u)—n ) =T,
o

aR(gT;) i ((C?T—FHﬂ') 5 ((Ce(u))7

o bn 0

where D = viscosity-coefficient matrix,
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A general thermodynamics

Example: plasticity with hardening and thermal expnasion

A general thermodynamics and examples
Stored energy used in Part | (here for simplicity without isotropic hardening):
1 1
E(t,u,m,0)= E(C(e(u)fwf]EG):(e(u)fwaG) + EH’/TZ’JT — g(t)-u.

An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.
Thermodynamics of the plasticity with hardening:

u =displacement,

z = (m,n) =the plastic deformation and the hardening parameter,

viscosity, inertia

2

ggt‘z’a div (Daea(t“)) — div(C(e(u)—m ) =",
oR(B)+ (T )2 (57,

It Ui

where DD = viscosity-coefficient matrix, © = mass density,
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A general thermodynamics

A general thermodynamics and examples Example: plasticity with hardening and thermal expnasion

Stored energy used in Part | (here for simplicity without isotropic hardening):
1 1
E(t,u,m,0)= E(C(e(u)fwf]EG):(e(u)fwaG) + EH’/TZ’JT — g(t)-u.

An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.
Thermodynamics of the plasticity with hardening:

u =displacement,

z = (m,n) =the plastic deformation and the hardening parameter,

viscosity, inertia, thermal expansion

2
Qgtga div (Dag(t“)) — div(C(e(u)—m—E0)) = f,
on Cm + Hn Ce(u)
ot
or(g)+(Tey )2 (79")
t
where DD = viscosity-coefficient matrix, © = mass density,

E =thermal-expansion matrix,
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Stored energy used in Part | (here for simplicity without isotropic hardening):

E(t,u,m,0)= %C(e(u)fwf]EG):(e(u)fwaG) + %H’/TZ’]T — g(t)-u.

An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.
Thermodynamics of the plasticity with hardening:

u =displacement,

z = (m,n) =the plastic deformation and the hardening parameter,

viscosity, inertia, thermal expansion, 6 temperature , heat equation
R (Dae(“)) — div(C(e(u)—m—E0)) = f
aﬂaﬂ ot -

aR(at ) i ((CT;;?Hﬂ') 5 ((Ceo(u))7

ot
00 or On de(u) 86( ) de(u)
v(0)=— —d 0)Vo) =R D——= OE:
a/(0) 5 — v (KOV0) = R(Ge. 33) + D5, T
where DD = viscosity-coefficient matrix, © = mass density,
E = thermal-expansion matrix, ¢y = ¢y(0) =the heat capacity,

K = K(0) =the thermal conductivity matrix.
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Stored energy used in Part | (here for simplicity without isotropic hardening):

E(t,u,m,0)= %C(e(u)fwf]EG):(e(u)fwaG) + %H’/TZ’]T — g(t)-u.
An important feature in isotropic (e.g. polycrystalic) materials: devE = 0.
Thermodynamics of the plasticity with hardening:
u =displacement,
z = (m,n) =the plastic deformation and the hardening parameter,
viscosity, inertia, thermal expansion, 6 temperature , heat equation

2 e(u
87 — div (]]])a ( )) —div(C(e(u)—7—E9)) = f,

6t28 ot

T Cr + Hnr Ce(u)

t
or(g)+ (T )2 (T0")

06 or On Oe(u) 86( ) Oe(u)
v(0)=— —d 0)Vo R D——-= OE:
a/(0) 5 — v (KOVO) = R(Gt. 53) + D5, T
where DD = viscosity-coefficient matrix, © = mass density,

E = thermal-expansion matrix, ¢y = ¢y(0) =the heat capacity,

K = K(0) =the thermal conductivity matrix. )
Important: isotropic material: no adiabatic term like G]E:(C% because
C,-jk/ = )\6ij5kl aF u(é,-kéj, = 6i/6jk); E,-j = 04(5,'] = . CmE =0.
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Analysis bears several peculiarities:

@ Fully implicit time discretization does not yield an incremental
problem with a variational structure (existence by Schauder fixed
point only, calculation by Newton iterative method converged)

@ energetic-solution concept important
(weak convergence of the dissipative heat source)

@ fine a-priori estimates: test the force equilibrium by %,

9m  9n
test the flow rule o' Bt
test the heat equation by 1
@ positivity of temperature,
@ test the heat equation by 1 — 1/(1+6)¢, € > 0,

L-theory for heat equation (Boccardo, Galouét, et al.) and
interpolation of the adiabatic-heat term (Gagliardo,Nirenberg): VA< [%/4~¢

@ numerics: FEM discretization, regularization, subsequent convergence
(positivity of temperature likely difficult even on accute meshes).

T.R. (in SIAM J.Math.Anal. 2010), numerics S.BARTELS+T.R. (in M2AN 2011)
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Some left aspects:

anisothermal models with diffusion or
dynamical models —elastic waves
(some are T.R. & G.TOMASSETTI, arXiv no.1412.4949)
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Some open problems:

Again complete damage does not seem to be investigated with
visco-plasticity.

convergence if damageable viscosity, i.e. D = D(()
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More on: www.karlin.mff.cuni.cz/ “roubicek/trpublic.htm
or: https://www.researchgate.net/profile/Tomas_Roubicek2

Thanks a lot for your attention.
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A general thermodynamics and examples

More on: www.karlin.mff.cuni.cz/ roubicek/trpublic.htm
or: https://www.researchgate.net/profile/Tomas_Roubicek2

Vielen Dank fur lhre Aufmerksamkeit.
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