Épijournal de Géométrie Algébrique epiga.episciences.org Volume 1 (2017), Article Nr. 7

Syzygies of Prym and paracanonical curves of genus 8

Elisabetta Colombo, Gavril Farkas, Alessandro Verra, and Claire Voisin

Abstract. By analogy with Green's Conjecture on syzygies of canonical curves, the Prym-Green conjecture predicts that the resolution of a general level p paracanonical curve of genus g is natural. The Prym-Green Conjecture is known to hold in odd genus for almost all levels. Probabilistic arguments strongly suggested that the conjecture might fail for level 2 and genus 8 or 16. In this paper, we present three geometric proofs of the surprising failure of the Prym-Green Conjecture in genus 8, hoping that the methods introduced here will shed light on all the exceptions to the Prym-Green Conjecture for genera with high divisibility by 2.

Keywords. Paracanonical curve; syzygy; genus 8; moduli of Prym varieties

2010 Mathematics Subject Classification. 13D02; 14H10

[Français]

Titre. Syzygies de Prym et courbes paracanoniques de genre 8

Résumé. Par analogie avec la conjecture de Green sur les syzygies des courbes canoniques, la conjecture de Prym-Green prédit que la résolution d'une courbe générale, paracanonique, de genre g et de niveau p est naturelle. Cette conjecture est connue en genre impair pour presque tout niveau. Des arguments probabilistes ont fortement suggéré qu'elle pourrait s'avérer fausse pour le niveau 2 en genre 8 et 16. Dans cet article, nous présentons trois démonstrations géométriques de la surprenante non-validité de la conjecture de Prym-Green en genre 8, en espérant que les méthodes introduites apporteront un éclairage nouveau sur toutes les exceptions à la conjecture de Prym-Green pour des genres divisibles par une grande puissance de 2.

Elisabetta Colombo

Università di Milano, Dipartimento di Matematica, Via Cesare Saldini 50, 20133 Milano, Italy *e-mail*: elisabetta.colombo@unimi.it

Gavril Farkas

Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, German
ye-mail:farkas@math.hu-berlin.de

Alessandro Verra Università Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo, 1-00146 Roma, Italy *e-mail*: verra@mat.uniroma3.it

Claire Voisin Collége de France 3, Rue d'Ulm, 75005 Paris, France *e-mail*: claire.voisin@imj-prg.fr

(C) by the author(s)

Received by the Editors on December 15, 2016, and in final form on June 23, 2017. Accepted on June 27, 2017.

Contents

1.	Introduction	2
2.	Syzygies of paracanonical curves of genus 8	4
3.	First proof: reducible spin curves	10
4.	Second proof: Divisor class calculations on $\overline{\mathcal{R}}_g$	12
5.	Rank 2 vector bundles and singular quartics	16
6.	Miscellany	19

1. Introduction

By analogy with Green's Conjecture on the syzygies of a general canonical curve [18], [19], the Prym-Green Conjecture, formulated in [10] and [3], predicts that the resolution of a *paracanonical* curve

 $\phi_{K_C \otimes n} : C \hookrightarrow \mathbf{P}^{g-2},$

where C is a general curve of genus g and $\eta \in \text{Pic}^{0}(C)[\ell]$ is an ℓ -torsion point is natural. For even genus g = 2i + 6, the Prym-Green Conjecture amounts to the vanishing statement

$$K_{i,2}(C, K_C \otimes \eta) = K_{i+1,1}(C, K_C \otimes \eta) = 0,$$
(1.1)

in terms of Koszul cohomology groups. Equivalently, the genus g paracanonical level ℓ curve $C \subseteq \mathbf{P}^{g-2}$ satisfies the Green-Lazarsfeld property (N_i) . The Prym-Green Conjecture has been proved for all *odd* genera g when $\ell = 2$, see [8], or $\ell \geq \sqrt{\frac{g+2}{2}}$, see [9]. For even genus, the Prym-Green Conjecture has been established by degeneration and using computer algebra tools in [3] and [4], for all $\ell \leq 5$ and $g \leq 18$, with two possible mysterious exceptions in level 2 and genus g = 8, 16 respectively. The last section of [3] provides various pieces of evidence, including a probabilistic argument, strongly suggesting that for g = 8, one has dim $K_{1,2}(C, K_C \otimes \eta) = 1$, and thus the vanishing (1.1) fails in this case. It is tempting to believe that the exceptions g = 8, 16 can be extrapolated to higher genus, and that for genera g with high divisibility by 2, there are genuinely novel ways of constructing syzygies of Prym-canonical curves waiting to be discovered. It would be very interesting to test experimentally the next relevant case g = 24. Unfortunately, due to memory and running time constraints, this is currently completely out of reach, see [3] and [7].

The aim of this paper is to confirm the expectation formulated in [3] and offer several geometric explanations for the surprising failure of the Prym-Green Conjecture in genus 8, hoping that the geometric methods described here for constructing syzygies of Prym-canonical curves will eventually shed light on all the exceptions to the Prym-Green Conjecture. We choose a general Prym-canonical curve of genus 8

$$\phi_{K_C \otimes \eta} : C \hookrightarrow \mathbf{P}^6$$

with $\eta^{\otimes 2} = \mathcal{O}_C$. Set $L := K_C \otimes \eta$ and denote $I_{C,L}(k) := \operatorname{Ker} \{ \operatorname{Sym}^k H^0(C, L) \to H^0(C, L^{\otimes k}) \}$ for all $k \geq 2$. Observe that dim $I_{C,L}(2) = \dim K_{1,1}(C, L) = 7$ and dim $I_{C,L}(3) = 49$, therefore as $[C, \eta]$ varies in moduli, the multiplication map

$$\mu_{C,L}: I_{C,L}(2) \otimes H^0(C,L) \to I_{C,L}(3)$$

globalizes to a morphism of vector bundles of the same rank over the stack \mathcal{R}_8 classifying pairs $[C, \eta]$, where C is a smooth curve of genus 8 and $\eta \in \operatorname{Pic}^0[2] \setminus \{\mathcal{O}_C\}$.

Theorem 1. For a general Prym curve $[C, \eta] \in \mathcal{R}_8$, one has $K_{1,2}(C, L) \neq 0$. Equivalently the multiplication map $\mu_{C,L} : I_{C,L}(2) \otimes H^0(C, L) \to I_{C,L}(3)$ is not an isomorphism.

We present three different proofs of Theorem 1. The first proof, presented in Section 3 uses the structure theorem already pointed out in [3] for degenerate syzygies of paracanonical curves in \mathbf{P}^6 . Precisely, if a paracanonical genus 8 curve $\phi_{K_C \otimes \eta} : C \hookrightarrow \mathbf{P}^6$, where $\eta \neq \mathcal{O}_C$, has a syzygy $0 \neq \gamma \in K_{1,2}(C, K_C \otimes \eta)$ of sub-maximal rank (see Section 2 for a precise definition), then the syzygy scheme of γ consists of an isolated point $p \in \mathbf{P}^6 \setminus C$ and a residual septic elliptic curve $E \subseteq \mathbf{P}^6$ meeting C transversally along a divisor e of degree 14, such that if e is viewed as a divisor on C and E respectively, then

$$e_C \in |K_C \otimes \eta^{\otimes 2}|$$
 and $e_E \in |\mathcal{O}_E(2)|.$ (1.2)

The union $D := C \cup E \hookrightarrow \mathbf{P}^6$, endowed with the line bundle $\mathcal{O}_D(1)$ is a degenerate spin curve of genus 22 in the sense of [5]. The locus of stable spin structures with at least 7 sections defines a subvariety of codimension $21 = \binom{7}{2}$ inside the moduli space $\overline{\mathcal{S}}_{22}$ of stable odd spin curves of genus 22. By restricting this condition to the locus of spin structures having $D := C \cup_e E$ as underlying curve, it turns out that one has enough parameters to realize this condition for a general $C \subseteq \mathbf{P}^6$ if and only if

$$\dim |K_C \otimes \eta^{\otimes 2}| = 7$$

which happens precisely when $\eta^{\otimes 2} \cong \mathcal{O}_C$. Therefore for each Prym-canonical curve $C \subseteq \mathbf{P}^6$ of genus 8 there exists a corresponding elliptic curve $E \subseteq \mathbf{P}^6$ such that the intersection divisor $E \cdot C$ verifies (1.2), which forces $K_{1,2}(C, K_C \otimes \eta) \neq 0$.

The second and the third proofs involve the reformulation given in Section 2.B (see Proposition 5) of the condition that a paracanonical curve $\phi_L : C \hookrightarrow \mathbf{P}^6$ have a non-trivial syzygy. Precisely, if $\phi_L(C)$ is scheme-theoretically generated by quadrics, then $K_{1,2}(C,L) \neq 0$, if and only if there exists a quartic hypersurface in \mathbf{P}^6 singular along $C \subseteq \mathbf{P}^6$, which is not a quadratic polynomial in quadrics vanishing along C, that is, it does not belong to the image of the multiplication map

$$\operatorname{Sym}^2 I_{C,L}(2) \to I_{C,L}(4).$$

Equivalently, one has $H^1(\mathbf{P}^6, \mathcal{I}^2_{C/\mathbf{P}^6}(4)) \neq 0.$

The second proof presented in Section 4 uses intersection theory on the stack $\overline{\mathcal{R}}_8$. The virtual Koszul divisor of Prym curves $[C, \eta] \in \mathcal{R}_8$ having $K_{1,2}(C, K_C \otimes \eta) \neq 0$, splits into two divisors \mathfrak{D}_1 and \mathfrak{D}_2 respectively, corresponding to the case whether $C \subseteq \mathbf{P}^6$ is not scheme-theoretically cut out by quadrics, or $H^1(\mathbf{P}^6, \mathcal{I}^2_{C/\mathbf{P}^6}(4)) \neq 0$ respectively. We determine the virtual classes of both closures $\overline{\mathfrak{D}}_1$ and $\overline{\mathfrak{D}}_2$. Using an explicit uniruled parametrization of $\overline{\mathcal{R}}_8$ constructed in [11], we conclude that the class $[\overline{\mathfrak{D}}_2] \in CH^1(\overline{\mathcal{R}}_8)$ cannot possibly be effective (see Theorem 20). Therefore, again $K_{2,1}(C, K_C \otimes \eta) \neq 0$, for every Prym curve $[C, \eta] \in \mathcal{R}_8$.

The third proof given in Section 5 even though subject to a plausible, but still unproved transversality assumption, is constructive and potentially the most useful, for we feel it might offer hints to the case g = 16 and further. The idea is to consider rank 2 vector bundles E on C with canonical determinant and $h^0(C, E) = h^0(C, E(\eta)) = 4$. (Note that the condition that η is 2-torsion is equivalent to the fact that $E(\eta)$ also has canonical determinant, which is essential for the existence of such nonsplit vector bundles, cf. [15].) By pulling back to C the determinantal quartic hypersurface consisting of rank 3 tensors in

$$\mathbf{P}\Big(H^0(C,E)^{\vee} \otimes H^0(C,E(\eta))^{\vee}\Big) \cong \mathbf{P}^{15}$$

under the natural map $H^0(C, K_C \otimes \eta)^{\vee} \to H^0(C, E)^{\vee} \otimes H^0(C, E(\eta))^{\vee}$, we obtain explicit quartic hypersurfaces singular along the curve $C \subseteq \mathbf{P}^6$. Our proof that these are not quadratic polynomials

into quadrics vanishing along the curve, that is, they do not lie in the image of $\text{Sym}^2 I_{C,L}(2)$ remains incomplete, but there is a lot of evidence for this.

The methods of Section 5 suggests the following analogy in the next case g = 16. If $[C, \eta] \in \mathcal{R}_{16}$ is a Prym curve of genus 16, there exist vector bundles E on C with det $E \cong K_C$ and satisfying $h^0(C, E) = h^0(C, E(\eta)) = 6$. Potentially they could be used to prove that $K_{5,2}(C, K_C \otimes \eta) \neq 0$ and thus confirm the next exception to the Prym-Green Conjecture.

2. Syzygies of paracanonical curves of genus 8

Let C be a general smooth projective curve of genus 8. For a non-trivial line bundle $\eta \in \text{Pic}^{0}(C)$, we shall study the *paracanonical* line bundle $L := K_C \otimes \eta$. When η is a 2-torsion point, we speak of the *Prym-canonical* line bundle L. For each paracanonical bundle L, we have $h^{0}(C, L) = 7$ and an induced embedding

$$\phi_L : C \hookrightarrow \mathbf{P}^6.$$

The goal is to understand the reasons for the non-vanishing of the Koszul group $K_{1,2}(C,L)$ of a Prym-canonical bundle L, as suggested experimentally by the results of [3], [4].

Let $I_C(2) = I_{C,L}(2) \subseteq H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(2))$, respectively $I_C(3) = I_{C,L}(3) \subseteq H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(3))$ be the ideal of quadrics, respectively cubics, vanishing on $\phi_L(C)$. It is well-known that whenever L is projectively normal, the non-vanishing of the Koszul cohomology group $K_{1,2}(C, L)$ is equivalent to the non-surjectivity of the multiplication map

$$\mu_{C,L}: H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \otimes I_C(2) \to I_C(3).$$
(2.3)

Note that

dim
$$I_C(2) = \binom{8}{2} - 21 = 7$$
, and dim $I_C(3) = \binom{9}{3} - 3 \cdot 14 + 7 = 49$,

respectively, so that the two spaces appearing in the map (2.3) have the same dimension. Denote by P_8^{14} the universal degree 14 Picard variety over \mathcal{M}_8 consisting of pairs [C, L], where $[C] \in \mathcal{M}_8$ and $L \neq K_C$. The jumping locus

$$\mathfrak{Kosz} := \left\{ [C, L] \in P_8^{14} : K_{1,2}(C, L) \neq 0 \right\}$$

is a divisor. It turns out, cf. Theorem 5.3 of [3] and Proposition 8, that \mathfrak{Ross} splits into two components depending on the *rank* of the corresponding non-zero syzygy from $K_{1,2}(C, L)$.

Definition 2. The rank of a non-zero syzygy $\gamma = \sum_{i=0}^{6} \ell_i \otimes q_i \in \text{Ker}(\mu_{C,L})$ is the dimension of the subspace $\langle \ell_0, \ldots, \ell_6 \rangle \subseteq H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1))$. The syzygy scheme $\text{Syz}(\gamma)$ of γ is the largest subscheme $Y \subseteq \mathbf{P}^6$ such that $\gamma \in H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \otimes I_Y(2)$.

It is shown in [3], that \mathfrak{Kosj} splits into divisors \mathfrak{Kosj}_6 and \mathfrak{Kosj}_7 , depending on whether the syzygy $0 \neq \gamma \in \operatorname{Ker}(\mu_{C,L})$ has rank 6 or 7 respectively. By a specialization argument to irreducible nodal curves, it follows from [3] that $\mathcal{R}_8 \not\subseteq \mathfrak{Kosj}_7$. A direct, more transparent proof of this fact will be given in Proposition 13.

2.A. Paracanonical curves of genus 8 with special syzygies and elliptic curves

We summarize a few facts already stated or recalled in Section 5 of [3] concerning rank 6 syzygies of paracanonical curves in \mathbf{P}^6 . Very generally, let

$$\gamma = \sum_{i=1}^{6} \ell_i \otimes q_i \in H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \otimes H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(2))$$

be a rank 6 linear syzygy among quadrics in \mathbf{P}^6 . The linear forms ℓ_1, \ldots, ℓ_6 define a point $p \in \mathbf{P}^6$. Following Lemma 6.3 of [16], there exists a skew-symmetric matrix of linear forms $A := (a_{ij})_{i,j=1,\ldots,6}$, such that

$$q_i = \sum_{j=1}^6 \ell_j a_{ij}.$$

In the space \mathbf{P}^{20} with coordinates ℓ_1, \ldots, ℓ_6 and a_{ij} for $1 \leq i < j \leq 6$, one considers the 15-dimensional variety X_6 defined by the 6 quadratic equations $\sum_{j=1}^6 \ell_j a_{ij} = 0$, where $i = 1, \ldots, 6$ and by the cubic equation Pfaff(A) = 0 in the variables a_{ij} . The original space \mathbf{P}^6 embeds in \mathbf{P}^{20} via evaluation. The syzygy scheme Syz(γ) is the union of the point p and of the intersection D of \mathbf{P}^6 with the variety X_6 . It follows from Theorem 4.4 of [6], that for a general rank 6 syzygy γ as above, $D \subseteq \mathbf{P}^6$ is a smooth curve of genus 22 and degree 21 such that $\mathcal{O}_D(1)$ is a theta characteristic.

In the case at hand, that is, when $[C, L] \in \mathfrak{Ross}_6$, the curve D must be reducible, for it has C as a component. More precisely:

Lemma 3. For a general paracanonical curve $C \subseteq \mathbf{P}^6$ having a rank 6 syzygy, the curve D is nodal and consists of two components $C \cup E$, where $E \subseteq \mathbf{P}^6$ is an elliptic septic curve. Furthermore, $\mathcal{O}_D(2) = \omega_D$. The intersection $e := C \cdot E$, viewed as a divisor on C satisfies $e_C \in |\mathcal{O}_C(2) \otimes K_C^{\vee}|$, and as a divisor on E, satisfies $e_E \in |\mathcal{O}_E(2)|$.

Remark 4. Note that C is Prym-canonical or canonical if and only if $e_C \in |K_C|$.

The construction above is reversible. Firstly, general element $[C, L] \in \mathfrak{Kosj}_6$ can be reconstructed as the residual curve of a reducible spin curve $D \subseteq \mathbf{P}^6$ of genus 22 containing an elliptic curve $E \subseteq \mathbf{P}^6$ with $\deg(E) = 7$ as a component such that the union of D and some point $p \in \mathbf{P}^6 \setminus E$ is the syzygy scheme of a rank 6 linear syzygy among quadrics in \mathbf{P}^6 .

Furthermore, given a reducible spin curve $D = C \cup_e E \subseteq \mathbf{P}^6$ of genus 22 as above, that is, with $\omega_D \cong \mathcal{O}_D(2)$, the genus 8 component C has a nontrivial syzygy of rank 6 involving the quadrics in the 6-dimensional subspace $I_D(2) \subseteq I_C(2)$, see Lemma 29 for a proof of this fact.

2.B. Syzygies and quartics singular along paracanonical curves

We first discuss an alternative characterization of the non-surjectivity of the map $\mu_{C,L}$:

Proposition 5. Assume the paracanonical curve $\phi_L(C)$ is projectively normal and scheme-theoretically cut out by quadrics. Then $K_{1,2}(C,L) \neq 0$ if and only if there exists a degree 4 homogeneous polynomial on \mathbf{P}^6 , which vanishes to order at least 2 along C but does not belong to the image of the multiplication map $\operatorname{Sym}^2 I_{C,L}(2) \to I_{C,L}(4)$.

Proof. We work on the variety $X \xrightarrow{\tau} \mathbf{P}^6$ defined as the blow-up of \mathbf{P}^6 along $\phi_L(C)$. Let E be the exceptional divisor of the blow-up, and consider the line bundle $H := \tau^* \mathcal{O}_{\mathbf{P}^6}(2)(-E)$ on X. Its space of sections identifies to $I_C(2)$, and our assumption that C is scheme-theoretically cut out by quadrics says equivalently that H is a globally generated line bundle on X. The nonvanishing of $K_{1,2}(C,L)$ is equivalent to the non-surjectivity of the multiplication map

$$H^{0}(X,H) \otimes H^{0}(X,\tau^{*}\mathcal{O}(1)) \to H^{0}(X,H \otimes \tau^{*}\mathcal{O}(1)), \qquad (2.4)$$

where we use the identification

$$H^0(X, H \otimes \tau^* \mathcal{O}(1)) = H^0(X, \tau^* \mathcal{O}(3)(-E)) = I_C(3).$$

As H is globally generated by its space $W := I_C(2)$ of global sections, the Koszul complex

$$0 \to \bigwedge^{7} W \otimes \mathcal{O}_X(-7H) \to \dots \to \bigwedge^{2} W \otimes \mathcal{O}_X(-2H) \to W \otimes \mathcal{O}_X(-H) \to \mathcal{O}_X \to 0$$
(2.5)

is exact. We now twist this complex by $\tau^* \mathcal{O}_{\mathbf{P}^6}(1)(H)$ and take global sections. The last map is then the multiplication map (2.4). The successive terms of this twisted complex are

$$\bigwedge^{i} W \otimes \mathcal{O}_X(\tau^*\mathcal{O}(1))((-i+1)H),$$

for $0 \le i \le 7$. The spectral sequence abutting to the hypercohomology of this complex, that is 0, has

$$E_2^{0,0} = \operatorname{coker}\left\{ W \otimes H^0(X, \tau^* \mathcal{O}(1)) \to H^0(X, H \otimes \tau^* \mathcal{O}(1)) \right\}$$
(2.6)

and the terms $E_1^{i,-i-1}$ for i < -1 are equal to $\bigwedge^{-i} W \otimes H^{-i-1}(X, \tau^* \mathcal{O}(1)((i+1)H))$. Similarly, we have

$$E_1^{i,-i} = \bigwedge^{-i} W \otimes H^{-i} \big(X, \tau^* \mathcal{O}(1)((i+1)H) \big).$$

Lemma 6. (i) We have

$$E_1^{i,-i-1} = \bigwedge^{-i} W \otimes H^{-i-1} (X, \tau^* \mathcal{O}(1)((i+1)H)) = 0, \qquad (2.7)$$

for $-i - 1 = 5, \ldots, 1$.

(ii) For -i - 1 = 6, that is, i = -7, we have

$$E_1^{-7,6} = \bigwedge^7 W \otimes H^6(X, \tau^* \mathcal{O}(1)(-6H)) = \bigwedge^7 W \otimes I_C(4)_2^{\vee},$$
(2.8)

where $I_C(4)_2 \subseteq I_C(4)$ is the set of quartic polynomials vanishing at order at least 2 along C, and

$$E_1^{-6,6} = \bigwedge^6 W \otimes H^6(X, \tau^* \mathcal{O}(1)(-5H)) = \bigwedge^6 W \otimes I_C(2)^{\vee}.$$
 (2.9)

(iii) We have $E_1^{i,-i} = 0$, for -6 < i < 0.

Proof of Lemma 6. (i) We want equivalently to show that

$$H^{\ell}(X, \tau^* \mathcal{O}(1)(-\ell H)) = 0, \text{ when } \ell = 5, \dots, 1.$$

Recall that $H = \tau^* \mathcal{O}(2)(-E)$. Furthermore,

$$K_X = \tau^* \mathcal{O}_{\mathbf{P}^6}(-7)(4E). \tag{2.10}$$

So we have to prove that

$$H^{\ell}(X, \tau^* \mathcal{O}(-2\ell+1)(\ell E)) = 0, \text{ for } \ell = 5, \dots, 1.$$
(2.11)

Examining the spectral sequence induced by τ , and using the fact that

$$R^s \tau_*(\mathcal{O}_X(tE)) = 0$$

for $s \neq 0, 4$ and also for $s = 4, t \leq 4$, we see that for $1 \leq \ell \leq 4$,

$$H^{\ell}(X,\tau^*\mathcal{O}(-2\ell+1)(\ell E)) = H^{\ell}(\mathbf{P}^6,\mathcal{O}(-2\ell+1)\otimes R^0\tau_*\mathcal{O}_X(\ell E))$$

For $1 \le \ell \le 4$, the right hand side is zero, because it is equal to $H^{\ell}(\mathbf{P}^6, \mathcal{O}(-2\ell+1))$.

For $\ell = 5$, we have to compute the space $H^5(X, \tau^* \mathcal{O}(-9)(5E))$, which by Serre duality and by (2.10), is dual to the space

$$H^1(X, \tau^*\mathcal{O}(2)(-E)) = H^1(\mathbf{P}^6, \mathcal{O}(2) \otimes \mathcal{I}_C) = 0.$$

(ii) We have to compute the spaces $H^6(X, \tau^*\mathcal{O}(1)(-6H))$ and $H^6(X, \tau^*\mathcal{O}(1)(-5H))$. As $H := \tau^*\mathcal{O}(2)(-E)$, this is rewritten as $H^6(X, \tau^*\mathcal{O}(-11)(6E))$ and $H^6(X, \tau^*\mathcal{O}(-9)(5E))$ respectively. If we dualize using (2.10), we get

$$H^{6}(X, \tau^{*}\mathcal{O}(-11)(6E))^{\vee} = H^{0}(X, \tau^{*}\mathcal{O}(4)(-2E)) = I_{C}(4)_{2},$$
$$H^{6}(X, \tau^{*}\mathcal{O}(-9)(5E))^{\vee} = H^{0}(X, \tau^{*}\mathcal{O}(2)(-E)) = I_{C}(2).$$

(iii) We have

$$E_1^{i,-i} = E_1^{-6,6} = \bigwedge^{-i} W \otimes H^{-i} \big(X, \tau^* \mathcal{O}(1)((i+1)H) \big) = \bigwedge^{-i} W \otimes H^{-i} \big(X, \tau^* \mathcal{O}(2i+3)((-i-1)E) \big).$$

For $1 \leq -i \leq 5$, we have $R^s \tau_* \mathcal{O}_X((-i-1)E) = 0$ unless s = 0. Furthermore, we have

$$R^0\tau_*\mathcal{O}_X\bigl((-i-1)E\bigr)=\mathcal{O}_{\mathbf{P}^6},$$

so that

$$H^{-i}(X,\tau^*\mathcal{O}(2i+3)((-i-1)E)) = H^{-i}(\mathbf{P}^6,\mathcal{O}_{\mathbf{P}^6}(2i+3)) = 0.$$

Corollary 7. Only one $E_2^{p,q}$ -terms of this spectral sequence is possibly nonzero in degree -1, namely

$$E_2^{-7,6} = \operatorname{Ker}\left\{\bigwedge^7 W \otimes I_C(4)_2^{\vee} \to \bigwedge^6 W \otimes I_C(2)^{\vee}\right\}.$$
(2.12)

Furthermore, all the differentials d_r starting from $E_2^{-7,6}$ vanish for $2 \le r < 7$.

Note that the map

$$\bigwedge^7 W \otimes I_C(4)_2^{\vee} \to \bigwedge^6 W \otimes I_C(2)^{\vee}$$

is nothing but the transpose of the multiplication map

$$W \otimes I_C(2) \to I_C(4)_2,$$

up to trivialization of $\bigwedge^7 W$. It follows that

$$(E_2^{-7,6})^{\vee} = \operatorname{Coker} \left\{ W \otimes I_C(2) \to I_C(4)_2 \right\}.$$
 (2.13)

Corollary 7 concludes the proof of the proposition since it implies that we have an isomorphism given by d_7 between (2.12) and (2.6), or a perfect duality between (2.12) and the cokernel (2.13).

Proposition 5 has the following consequence. Recall that P_8^{14} is the moduli space of pairs [C, L], with C being a smooth curve of genus 8 and $L \neq K_C$ a paracanonical line bundle.

Proposition 8. The Koszul divisor \mathfrak{Kosj} of P_8^{14} is the union of two divisors, one of them being the set of pairs [C, L] such that $\phi_L(C)$ is not scheme-theoretically cut out by quadrics, the other being the set of pairs [C, L] such that $H^1(\mathbf{P}^6, \mathcal{I}_C^2(4)) \neq 0$, or equivalently, such that there exists a quartic which is singular along $\phi_L(C)$ but does not lie in $\mathrm{Sym}^2 I_C(2)$.

Proof. We first have to prove that the locus of pairs [C, L] such that $\phi_L(C)$ is not scheme-theoretically cut-out by quadrics is contained in the divisor \mathfrak{Rosj} . This is a consequence of the following lemmas:

Lemma 9. If $L \neq K_C$ is a projectively normal paracanonical line bundle on a curve of genus 8, then $\phi_L(C)$ is scheme-theoretically cut out by cubics.

Proof of Lemma 9. We observe that the twisted ideal sheaf $\mathcal{I}_C(3)$ is regular in Castelnuovo-Mumford sense. Indeed, we have

$$H^{i}(\mathbf{P}^{6}, \mathcal{I}_{C}(3-i)) = H^{i-1}(C, L^{\otimes(3-i)})$$

for $i \ge 2$, and the right hand side is obviously 0 for $i-1 \ge 2$, and also 0 for i-1 = 1 since $H^1(C, L) = 0$ because $L \ne K_C$ and deg L = 2g - 2. For i = 1, we have

$$H^1(\mathbf{P}^6, \mathcal{I}_C(2)) = 0$$

by projective normality. Being regular, the sheaf $\mathcal{I}_C(3)$ is generated by global sections.

Corollary 10. If C, L are as above, and C is not scheme-theoretically cut out by quadrics, then the multiplication map

$$I_C(2) \otimes H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \to I_C(3)$$

is not surjective.

To conclude the proof of the proposition, we just have to show that the sublocus of P_8^{14} where L is not projectively normal is not a divisor, since the statement of the proposition will be then an immediate consequence of Proposition 5. We argue along the lines of [12]. First of all, a line bundle L of degree 14 is not generated by sections if and only if $L = K_C(-x + y)$ for some points $x, y \in C$. This determines a codimension 6 locus of P_8^{14} . Similarly L is not very ample if and only if $L = K_C(-x - y + z + t)$, for some points x, y, z, t of C, which is satisfied in a codimension 4 locus of P_8^{14} . Finally, assume L is very ample but $\phi_L(C)$ is not projectively normal. Equivalently

$$\operatorname{Sym}^2 H^0(C, L) \to H^0(C, L^{\otimes 2})$$

is not surjective, which means that there exists a rank 2 vector bundle F on C which is a nontrivial extension

 $0 \longrightarrow K_C \otimes L^{\vee} \longrightarrow F \longrightarrow L \longrightarrow 0,$

such that $h^0(C, F) = 7$. If $x, y, z \in C$, there exists a nonzero section $\sigma \in H^0(C, F)$ vanishing on x, y and z, and thus F is also an extension

$$0 \longrightarrow D \longrightarrow F \longrightarrow K_C \otimes D^{\vee} \longrightarrow 0, \tag{2.14}$$

where D is a line bundle such that $h^0(C, D(-x-y-z)) \neq 0$, and $h^0(C, L \otimes D^{\vee}) \neq 0$. We thus have $h^0(C, D) + h^0(C, K_C \otimes D^{\vee}) \geq 7$ and $\text{Cliff}(D) \leq 2$. As D is effective of degree at least 3, one has the following possibilities:

a) $h^0(C, K_C \otimes D^{\vee}) = 0$, and then D = L, which contradicts the fact that the extension (2.14) is not split;

b) $h^0(C, K_C \otimes D^{\vee}) = 1$ and $h^0(C, D) \ge 6$, and then D = L(-x) and $h^0(K_C \otimes L^{\vee}(x)) \ne 0$, so $L = K_C(x-y)$, which happens in a locus of codimension at least 6 in P_8^{14} ;

c) D contributes to the Clifford index of C. As the locus of curves $[C] \in \mathcal{M}_8$ with $\text{Cliff}(C) \leq 2$ is of codimension 2 in \mathcal{M}_8 , this situation does not occur in codimension 1.

We shall need later on the following result:

Lemma 11. Let $\phi_L : C \hookrightarrow \mathbf{P}^6$ be a projectively normal paracanonical curve of genus 8. If C is scheme-theoretically cut out by quadrics, the multiplication map

$$\text{Sym}^2 I_{C,L}(2) \to I_{C,L}(4)$$
 (2.15)

is injective.

Proof. As the restriction map $\phi_L^*: H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(2)) \to H^0(C, L^{\otimes 2})$ is surjective, its kernel $I_{C,L}(2)$ is of dimension 7. Let as before $\tau: X \to \mathbf{P}^6$ be the blow-up of \mathbf{P}^6 along $\phi_L(C)$, and let E be its exceptional divisor. We view $I_{C,L}(2)$ as $H^0(X, \tau^*\mathcal{O}(2)(-E))$ and our assumption is that $I_{C,L}(2)$ generates the line bundle $H := \tau^*\mathcal{O}(2)(-E)$ everywhere on X. Thus $I_{C,L}(2)$ provides a morphism

$$\psi: X \to \mathbf{P}(I_{C,L}(2)). \tag{2.16}$$

Now we have deg $c_1(H)^6 \neq 0$ by Sublemma 12 below, and thus the morphism ψ has to be generically finite, hence dominant since both spaces have dimension 6. It is then clear that the pull-back map

$$\psi^*: H^0(\mathbf{P}(I_{C,L}(2)), \mathcal{O}(2)) \to H^0(X, H^{\otimes 2})$$

is injective. On the other hand, this morphism is nothing but the map (2.15).

Sublemma 12. With the same notation as above, we have

$$\deg c_1(H)^6 = 8. (2.17)$$

Proof. We have

$$c_1(H)^6 = \sum_i {\binom{6}{i}} (-2)^i h^i \cdot E^{6-i},$$

 $h^i \cdot E^{6-i} = 0$

where $h := \tau^* c_1(\mathcal{O}_{\mathbf{P}^6}(1))$, and

for
$$i \neq 6, 1, 0$$
. Furthermore

 $h^{6} = 1$, and $h \cdot E^{5} = \deg \phi_{L}(C) = 14$

and $E^6 = c_1(N_C)$. By adjunction formula

$$\deg c_1(N_C) = 7\deg \phi_L(C) + \deg K_C = 8 \cdot 14.$$

It follows that

 $\deg c_1(H)^6 = 64 - 6 \cdot 28 + 8 \cdot 14 = 8,$

which proves (2.17).

Proposition 5 and Lemma 11 describe precisely the splitting of the Koszul divisor \mathfrak{Kosj} into the divisors \mathfrak{Kosj}_6 and \mathfrak{Kosj}_7 corresponding to paracanonical curves $[C, L] \in P_8^{14}$ having a non-zero syzygy $\gamma \in K_{1,2}(C, L)$ of rank 6 or respectively 7. Precisely, \mathfrak{Kosj}_6 is a unirational divisor (cf. [3] Theorem 5.3) consisting of those paracanonical curves $C \subseteq \mathbf{P}^6$ for which $H^1(\mathbf{P}^6, \mathcal{I}_C^2(4)) \neq 0$. The divisor \mathfrak{Kosj}_7 consists of paracanonical curves $C \subseteq \mathbf{P}^6$ which are not scheme-theoretically cut out by quadrics.

3. First proof: reducible spin curves

3.A. The syzygy is degenerate

The first observation is the following result (already observed experimentally in [3]), which turns out to be useful for the description given below of the general paracanonical curve of genus 8 with nontrivial syzygies.

Proposition 13. Let $C \subseteq \mathbf{P}^6$ be a smooth paracanonical curve of genus 8 and degree 14, schemetheoretically generated by quadrics. Then a nontrivial syzygy

$$\gamma \in \operatorname{Ker}\left\{I_C(2) \otimes H^0(\mathcal{O}_{P^6}(1)) \to I_C(3)\right\}$$

must be degenerate, that is of rank at most 6.

Proof. We use the morphism

$$\psi: X \to \mathbf{P}(I_C(2))$$

introduced in (2.16), where $\tau : X \to \mathbf{P}^6$ is the blow-up of C with exceptional divisor E, and $H := \tau^* \mathcal{O}_{\mathbf{P}^6}(-2E)$. This gives us a morphism

$$(\tau,\psi): X \to \mathbf{P}^6 \times \mathbf{P}^6$$

which is of degree 1 on its image, and the syzygy γ induces a hypersurface Y of bidegree (1, 1) in $\mathbf{P}^6 \times \mathbf{P}^6$ containing the 6-dimensional variety $(\tau, \psi)(X)$. Assume to the contrary that γ has maximal rank 7, or equivalently that Y is smooth. Then by the Lefschetz Hyperplane Restriction Theorem, the restriction map $H^{10}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z}) \to H^{10}(Y, \mathbb{Z})$ is surjective, so that $[(\tau, \psi)(X)]_Y \in H^{10}(Y, \mathbb{Z})$ is the restriction of a class $\beta \in H^{10}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$, which implies that

$$[(\tau,\psi)(X)] = \beta \cdot [Y] \text{ in } H^{12}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z}), \tag{3.18}$$

where $[Y] \in H^2(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$ is the class of Y, that is $h_1 + h_2$, with h_i for i = 1, 2 being the pull-backs of the hyperplane classes on each factor. Note that $H^{12}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$ is the set of degree 6 homogeneous polynomials with integral coefficients in h_1 and h_2 . We now have:

Lemma 14. An element $\alpha \in H^{12}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$ is of the form $(h_1 + h_2) \cdot \beta$ if and only if it satisfies the condition

$$\sum_{i=0}^{6} (-1)^{i} h_{1}^{i} \cdot h_{2}^{6-i} \cdot \alpha = 0 \text{ in } H^{24}(\mathbf{P}^{6} \times \mathbf{P}^{6}, \mathbb{Z}) = \mathbb{Z}.$$
(3.19)

Proof of Lemma 14. We have $(h_1+h_2) \cdot \left(\sum_i (-1)^i h_1^i \cdot h_2^{6-i}\right) = 0$ in $H^{14}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$, so one implication is obvious. That the two conditions are equivalent then follows from the fact that both conditions determine a saturated corank 1 sublattice of $H^{12}(\mathbf{P}^6 \times \mathbf{P}^6, \mathbb{Z})$.

To conclude that γ has to be degenerate, in view of Lemma 14, it suffices to prove that the class $[(\tau, \psi)(X)]$ does not satisfy (3.19). Since $(\tau, \psi)^*h_1 = c_1(H)$ and $(\tau, \psi)^*h_2 = 2c_1(H) - E$, it is enough to prove that

$$\sum_{i=0}^{6} (-1)^{i} c_{1}(H)^{i} \cdot (2c_{1}(H) - E)^{6-i} \neq 0,$$

which follows from the computations made in the proof of Sublemma 12.

3.B. Syzygies and spin curves of genus 22 in P^6

Recall that $\overline{\mathcal{S}}_g^-$ denotes the moduli stack of odd stable spin curves of genus g, see [5] for details. We start with a nodal genus 22 spin curve of the form $[D := C \cup E, \vartheta] \in \overline{\mathcal{S}}_{22}^-$, where C is a smooth genus 8 curve, E is a smooth elliptic curve and $e := C \cap E$ consists of 14 distinct points, thus $p_a(D) = 22$. Assume $\vartheta \in \operatorname{Pic}^{21}(D)$ verifies $\vartheta^{\otimes 2} \cong \omega_D$, hence the restricted line bundles ϑ_E and ϑ_C have degrees 7 and 14 respectively. Furthermore, $h^0(E, \vartheta_E) = 7$, whereas $h^0(C, \vartheta_C) = 7$ if and only if $\vartheta_C \ncong K_C$. The intersection divisor e on the two components of D is characterized by

$$e_C \in |\vartheta_C^{\otimes 2} \otimes K_C^{\vee}|$$
 and $e_E \in |\vartheta_E^{\otimes 2}|$

Note in particular that $e_C \in |K_C|$ if and only if $\vartheta_C^{\otimes 2} = K_C^{\otimes 2}$, that is (C, ϑ_C) is canonical or Prym canonical.

The line bundle ϑ on D fits into the Mayer-Vietoris exact sequence:

$$0 \longrightarrow \vartheta \longrightarrow \vartheta_C \oplus \vartheta_E \xrightarrow{r} \mathcal{O}_e(\vartheta) \longrightarrow 0,$$

where r is defined by the isomorphisms on the fibers of ϑ_C and ϑ_E over the points in e. Given $\vartheta_C \in \operatorname{Pic}^{14}(C)$ with $\vartheta_C^{\otimes 2} = K_C(e)$ and $\vartheta_E \in \operatorname{Pic}^7(E)$ with $\vartheta_E^{\otimes 2} = \mathcal{O}_E(e)$, there is a finite number of stable spin curves $[D, \theta] \in \overline{\mathcal{S}}_{22}$ such that the restrictions of ϑ to C and E are isomorphic to ϑ_C and ϑ_E respectively. Passing to global sections in the Mayer-Vietoris sequence, we obtain the exact sequence:

$$0 \longrightarrow H^0(D,\vartheta) \longrightarrow H^0(C,\vartheta_C) \oplus H^0(E,\vartheta_E) \xrightarrow{r} H^0(\mathcal{O}_e(\vartheta)) \longrightarrow \cdots .$$
(3.20)

Note that r is represented by a 14×14 matrix and $h^0(D, \vartheta) = 14 - \text{rk}(r)$. In the case of a reducible spin curve coming from the syzygy of a paracanonical genus 8 curve in $\mathfrak{Ros}_{\mathfrak{f}_6}$, one has $h^0(D, \vartheta) = \text{rk}(r) = 7$.

3.C. Proof of Theorem 1 via reducible spin curves

Theorem 1 states that every Prym canonical curve of genus 8 has a syzygy of rank 6. First we observe the existence of such a curve having the generic behavior described in Lemma 3.

Lemma 15. There exists a curve $[C, \eta] \in \mathcal{R}_8$, whose Prym canonical model is scheme theoretically cut out by quadrics, and $K_{2,1}(C, K_C \otimes \eta)$ is 1-dimensional, generated by a syzygy γ of rank 6. The syzygy scheme of γ is the union of a point p and a nodal curve $D = C \cup E$, such that E is a smooth elliptic curve of degree 7 and $e := C \cdot E \in |K_C|$ consists of 14 mutually distinct points. Moreover, no cubic polynomial on \mathbf{P}^6 vanishes with multiplicity 2 along C.

Proof. Examples of singular Prym canonical curves having all these properties have been produced in [3] Proposition 4.4 or [4]. A generic deformation in $\overline{\mathcal{R}}_8$ of these singular examples will provide the required smooth Prym canonical curve.

(First) proof of Theorem 1. We denote by X the moduli space of elements $[C, \eta, x_1, \ldots, x_{14}]$, where $[C, \eta] \in \mathcal{R}_8$ is a smooth Prym curve of genus 8 and $x_i \in C$ are pairwise distinct points such that $x_1 + \cdots + x_{14} \in |K_C| \cong \mathbf{P}^7$. Since the fibres of the forgetful map $X \to \mathcal{R}_8$ are 7-dimensional, it follows that X is an irreducible variety of dimension 28.

Let T be the locally closed parameter space of odd genus 22 spin curves having the form

$$\Big(\big[D := C \cup_{\{x_1, \dots, x_{14}\}} E, \vartheta \big] : [C] \in \mathcal{M}_8, \ \sum_{i=1}^{14} x_i \in |K_C|, \ [E, x_1, \dots, x_{14}] \in \mathcal{M}_{1, 14}, \ \vartheta^{\otimes 2} = \omega_D \Big).$$

Observe that points in T, apart from the spin structure $[D, \vartheta] \in \overline{\mathcal{S}_{22}}$ also carry an underlying Prym structure $[C, \eta := K_C \otimes \vartheta_C^{\vee}] \in \mathcal{R}_8$, for $\vartheta_C^{\otimes 2} \cong K_C(x_1 + \cdots + x_{14}) \cong K_C^{\otimes 2}$. One has an induced finite morphism $T \to X \times \mathcal{M}_{1,14}$, as well as a map $\mu : T \to \mathcal{R}_8$ forgetting the 14-pointed elliptic curve. It follows that dim $T = \dim X + \dim \mathcal{M}_{1,14} = 42$. The locus

$$T_7 := \left\{ [D, \vartheta] \in T : h^0(D, \vartheta) \ge 7 \right\}$$

has the structure of a skew-symmetric degeneracy locus. Applying [13] Theorem 1.10, each component of T_7 has codimension at most $\binom{7}{2} = 21$ inside T, that is, $\dim(T_7) \ge \dim(\mathcal{R}_8)$.

By passing to a general 8-nodal Prym canonical curve $[C, \eta]$, following [3] Proposition 4.5, as well as Lemma 15, we have that dim $K_{1,2}(C, K_C \otimes \eta) = 1$. In particular, the fibre $\mu^{-1}([C, \eta])$ contains an isolated point, which shows that T_7 is non-empty and has a component which maps dominantly under μ onto \mathcal{R}_8 . Theorem 1 now follows.

Remark 16. The same construction can be carried out at the level of general paracanonical curves $[C, L] \in P_8^{14}$, where $L \in \operatorname{Pic}^{14}(C) \setminus \{K_C\}$. The key difference is that we replace T by a variety T' parametrizing objects

$$\left(\left[D := C \cup_{\{x_1, \dots, x_{14}\}} E, \vartheta, L \right] : \left[C, x_1, \dots, x_{14} \right] \in \mathcal{M}_{14,8}, \ L \in \operatorname{Pic}^{14}(C) \setminus \{K_C\}, \right.$$
$$\sum_{i=1}^{14} x_i \in |L^{\otimes 2} \otimes K_C^{\vee}|, \ \left[E, x_1, \dots, x_{14} \right] \in \mathcal{M}_{1,14}, \vartheta^{\otimes 2} = \omega_D \right).$$

Similarly, we have a morphism $\mu': T' \to P_8^{14}$ retaining the pair [C, L] alone. The main difference compared to the Prym canonical case is that now

$$\dim |L^{\otimes 2} \otimes K_C^{\vee}| = 6,$$

therefore $\dim(T') = \dim(P_8^{14}) + \dim(\mathcal{M}_{1,14}) + 6 = 49$. The degeneracy locus $T'_7 \subseteq T'$ defined by the condition $h^0(D, \vartheta) \geq 7$) has codimension 21 inside T', that is,

$$\dim(T_7') = 28 = \dim(P_8^{14}) - 1.$$

It follows that the image $\mu'(T_7') \subseteq P_8^{14}$ has codimension 1, which is in accordance with \mathfrak{Rosg}_6 being a divisor in P_8^{14} .

4. Second proof: Divisor class calculations on $\overline{\mathcal{R}}_q$

Recall [10] that $\overline{\mathcal{R}}_g$ is the Deligne-Mumford moduli space of Prym curves of genus g, whose geometric points are triples $[X, \eta, \beta]$, where X is a quasi-stable curve of genus $g, \eta \in \operatorname{Pic}(X)$ is a line bundle of total degree 0 such that $\eta_E = \mathcal{O}_E(1)$ for each smooth rational component $E \subseteq X$ with $|E \cap \overline{X} - \overline{E}| = 2$ (such a component is said to be *exceptional*), and $\beta : \eta^{\otimes 2} \to \mathcal{O}_X$ is a sheaf homomorphism whose restriction to any non-exceptional component is an isomorphism. If $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$ is the map dropping the Prym structure, one has the formula

$$\pi^*(\delta_0) = \delta'_0 + \delta''_0 + 2\delta_0^{\operatorname{ram}} \in CH^1(\overline{\mathcal{R}}_g), \tag{4.21}$$

where $\delta'_0 := [\Delta'_0], \, \delta''_0 := [\Delta''_0]$, and $\delta^{\text{ram}}_0 := [\Delta^{\text{ram}}_0]$ are irreducible boundary divisor classes on $\overline{\mathcal{R}}_g$, which we describe by specifying their respective general points.

We choose a general point $[C_{xy}] \in \Delta_0 \subset \overline{\mathcal{M}}_g$ corresponding to a smooth 2-pointed curve (C, x, y)of genus g - 1 and consider the normalization map $\nu : C \to C_{xy}$, where $\nu(x) = \nu(y)$. A general point of Δ'_0 (respectively of Δ''_0) corresponds to a pair $[C_{xy}, \eta]$, where $\eta \in \operatorname{Pic}^0(C_{xy})[2]$ and $\nu^*(\eta) \in \operatorname{Pic}^0(C)$ is non-trivial (respectively, $\nu^*(\eta) = \mathcal{O}_C$). A general point of $\Delta_0^{\operatorname{ram}}$ is a Prym curve of the form (X, η) , where $X := C \cup_{\{x,y\}} \mathbf{P}^1$ is a quasi-stable curve with $p_a(X) = g$ and $\eta \in \operatorname{Pic}^0(X)$ is a line bundle such that $\eta_{\mathbf{P}^1} = \mathcal{O}_{\mathbf{P}^1}(1)$ and $\eta_C^2 = \mathcal{O}_C(-x-y)$. In this case, the choice of the homomorphism β is uniquely determined by X and η . In what follows, we work on the partial compactification $\widetilde{\mathcal{R}}_g \subseteq \overline{\mathcal{R}}_g$ of \mathcal{R}_g obtained by removing the boundary components $\pi^{-1}(\Delta_j)$ for $j = 1, \ldots, \lfloor \frac{g}{2} \rfloor$, as well as Δ''_0 . In particular, $CH^1(\widetilde{\mathcal{R}}_g) = \mathbb{Q}\langle\lambda, \delta'_0, \delta_0^{\operatorname{ram}}\rangle$.

For a stable Prym curve $[X, \eta] \in \widetilde{\mathcal{R}}_g$, set $L := \omega_X \otimes \eta \in \operatorname{Pic}^{2g-2}(X)$ to be the paracanonical bundle. For $i \geq 1$, we introduce the vector bundle \mathcal{N}_k over $\widetilde{\mathcal{R}}_g$, having fibres

$$\mathcal{N}_k[X,\eta] = H^0(X, L^{\otimes k}).$$

The first Chern class of \mathcal{N}_k is computed in [10] Proposition 1.7:

$$c_1(\mathcal{N}_k) = \binom{k}{2} \left(12\lambda - \delta_0' - 2\delta_0^{\mathrm{ram}} \right) + \lambda - \frac{k^2}{4} \delta_0^{\mathrm{ram}}.$$
(4.22)

Then we define the locally free sheaves \mathcal{G}_k on $\widetilde{\mathcal{R}}_g$ via the exact sequences

 $0 \longrightarrow \mathcal{G}_k \longrightarrow \operatorname{Sym}^k \mathcal{N}_1 \longrightarrow \mathcal{N}_k \longrightarrow 0,$

that is, satisfying $\mathcal{G}_k[X,\eta] := I_{X,L}(k) \subseteq \operatorname{Sym}^k H^0(X,L)$. Using (4.22) one computes $c_1(\mathcal{G}_k)$.

We also need the class of the vector bundle \mathcal{G} with fibres

$$\mathcal{G}[X,\eta] = H^0(X, \omega_X^{\otimes 5} \otimes \eta^{\otimes 4}) = H^0(X, \omega_X \otimes L^{\otimes 4}).$$

Lemma 17. One has $c_1(\mathcal{G}) = 121\lambda - 10\delta'_0 - 24\delta^{\mathrm{ram}}_0 \in CH^1(\widetilde{\mathcal{R}}_g).$

Proof. We apply Grothendieck-Riemann-Roch to the universal Prym curve $f : \mathcal{C} \to \widetilde{\mathcal{R}}_g$. Denote by $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ the universal Prym bundle, whose restriction to each Prym curve is the corresponding 2-torsion point, that is, $\mathcal{L}_{|f^{-1}([X,\eta])} = \eta$, for each point $[X,\eta] \in \widetilde{\mathcal{R}}_g$. Since $R^1 f_*(\omega_f^{\otimes 5} \otimes \mathcal{L}^{\otimes 4}) = 0$, we write

$$c_1(\mathcal{G}) = f_* \Big[\Big(1 + 5c_1(\omega_f) + 4c_1(\mathcal{L}) + \frac{(5c_1(\omega_f) + 4c_1(\mathcal{L}))^2}{2} \Big) \cdot \Big(1 - \frac{c_1(\omega_f)}{2} + \frac{c_1^2(\Omega_f^1) + [\operatorname{Sing}(f)]}{12} \Big) \Big]_2.$$

We use then the formulas $f_*(c_1^2(\mathcal{L})) = -\delta_0^{\text{ram}}/2$ and $f_*(c_1(\mathcal{L}) \cdot c_1(\omega_f)) = 0$ (see [10], Proposition 1.6) coupled with Mumford's formula $f_*(c_1^2(\Omega_f^1) + [\operatorname{Sing}(f)]) = 12\lambda$ as well with the identity

$$\kappa_1 := f_*(c_1^2(\omega_f)) = 12\lambda - \delta'_0 - 2\delta_0^{\operatorname{ram}},$$

in order to conclude.

The Koszul locus

$$\mathcal{Z}_8 := \mathfrak{Kosj} \cap \mathcal{R}_8 = \left\{ [C, \eta] \in \mathcal{R}_8 : K_{1,2}(C, K_C \otimes \eta) \neq 0 \right\}$$

is a virtual divisor on \mathcal{R}_8 , that is, the degeneracy locus of a map between vector bundles of the same rank over $\widetilde{\mathcal{R}}_8$. If it is a genuine divisor (which we aim to rule out), the class of its closure in $\widetilde{\mathcal{R}}_8$ is given by [3] Theorem F:

$$[\overline{\mathcal{Z}}_8] = 27\lambda - 4\delta'_0 - 6\delta^{\mathrm{ram}}_0 \in CH^1(\widetilde{\mathcal{R}}_8).$$

Remark 18. Some of the considerations above can be extended to higher order torsion points. We recall that $\mathcal{R}_{g,\ell}$ is the moduli space of pairs $[C,\eta]$, where C is a smooth curve of genus g and $\eta \in \operatorname{Pic}^0(C)$ is a non-trivial ℓ -torsion point. It is then shown in [3] that the locus $\mathcal{Z}_{8,\ell} := \mathfrak{Kosg} \cap \mathcal{R}_{8,\ell} \subseteq P_8^{14}$ is a divisor on $\mathcal{R}_{8,\ell}$ for each other level $\ell \geq 3$. The class of the compactification of $\mathcal{Z}_{8,\ell}$ is given by the following formula, see [3] Theorem F:

$$[\overline{\mathcal{Z}}_{8,\ell}] = 27\lambda - 4\delta_0' - \sum_{a=1}^{\lfloor \frac{\ell}{2} \rfloor} \frac{4(a^2 - a\ell + \ell^2)}{\ell} \delta_0^{(a)} \in CH^1(\widetilde{\mathcal{R}}_{8,\ell}).$$

We refer to [3] Section 1.4, for the definition of the boundary divisor classes $\delta_0^{(a)}$, where $a = 1, \ldots, \lfloor \frac{\ell}{2} \rfloor$. If $\pi : \overline{\mathcal{R}}_{g,\ell} \to \overline{\mathcal{M}}_g$ is the map forgetting the level ℓ structure, then

$$\pi^*(\delta_0) = \delta'_0 + \delta''_0 + \ell \sum_{\ell=1}^{\lfloor \frac{\ell}{2} \rfloor} \delta_0^{(a)}.$$

We fix now a genus 8 Prym-canonically embedded curve $\phi_L : C \hookrightarrow \mathbf{P}^6$. As usual, we denote the kernel bundle by $M_L := \Omega^1_{\mathbf{P}^6|C}(1)$, hence we have the exact sequence

$$0 \longrightarrow N_C^{\vee} \otimes L^{\otimes 4} \longrightarrow M_L \otimes L^{\otimes 3} \longrightarrow K_C \otimes L^{\otimes 4} \longrightarrow 0.$$

$$(4.23)$$

This can be interpreted as an exact sequence of vector bundles over $\widetilde{\mathcal{R}}_8$. Denoting by \mathcal{H} the vector bundle over $\widetilde{\mathcal{R}}_8$ with fibres $H^0(C, N_C^{\vee} \otimes L^{\otimes 4})$, we compute using the previous formulas and the fact that $\operatorname{rk}(\mathcal{N}_1) = h^0(C, L) = 7$ and $\operatorname{rk}(\mathcal{N}_3) = h^0(C, L^{\otimes 3}) = 35$:

$$c_1(\mathcal{H}) = 35c_1(\mathcal{N}_1) + 7c_1(\mathcal{N}_3) - c_1(\mathcal{N}_4) - c_1(\mathcal{G}) = 100\lambda - 5\delta'_0 - \frac{53}{2}\delta^{\text{ram}}_0.$$
 (4.24)

Thus $\mathfrak{D}_1 = \mathfrak{Kosj}_7 \cap \mathcal{R}_8$ and $\mathfrak{D}_2 = \mathfrak{Kosj}_6 \cap \mathcal{R}_8$. We have already seen in Proposition 5 that $K_{1,2}(C,L) \neq 0$ if and only if either $\phi_L(C) \subseteq \mathbf{P}^6$ is not scheme-theoretically cut out by quadrics, or else, $H^1(\mathbf{P}^6, \mathcal{I}^2_C(4)) \neq 0$. We write

$$\mathcal{Z}_8 = \mathfrak{D}_1 + \mathfrak{D}_2$$
, where

 $\mathfrak{D}_1 := \left\{ [C,\eta] \in \mathcal{R}_8 : \phi_L(C) \subseteq \mathbf{P}^6 \text{ is scheme-theoretically not cut out by quadrics} \right\}$

and

$$\mathfrak{D}_2 := \Big\{ [C,\eta] \in \mathcal{R}_8 : H^1(\mathbf{P}^6, \mathcal{I}_C^2(4)) \neq 0 \Big\}.$$

We have already observed that dim $I_{C,L}(2) = 7$ and $\chi(\mathbf{P}^6, \mathcal{I}_C^2(4)) = 28$. If \mathcal{Z}_8 is a divisor, then \mathfrak{D}_2 is a divisor as well and for $[C, \eta] \in \mathcal{R}_8 \setminus \mathfrak{D}_2$, we have that

dim Sym²
$$I_{C,L}(2) = \dim I_{C,L}(4)_2 = 28.$$

Paying some attention to its definition, the divisor \mathfrak{D}_1 can be thought as the degeneracy locus

$$\Big\{ [C,\eta] \in \mathcal{R}_8 : \operatorname{Sym}^2 I_{C,L}(2) \xrightarrow{\neq} I_{C,L}(4)_2 \Big\},\$$

which is an effective divisor on $\widetilde{\mathcal{R}}_8$. We compute the class of this divisor:

Theorem 19. We have the following formulas:

$$[\overline{\mathfrak{D}}_{1}] = 7\lambda - \frac{1}{2}\delta_{0}^{'} - \frac{3}{4}\delta_{0}^{\mathrm{ram}} \in CH^{1}(\widetilde{\mathcal{R}}_{8})$$

and

$$[\overline{\mathfrak{D}}_2] = 20\lambda - \frac{7}{2}\delta'_0 - \frac{21}{4}\delta^{\mathrm{ram}}_0 \in CH^1(\widetilde{\mathcal{R}}_8).$$

Proof. We first globalize over $\widetilde{\mathcal{R}}_8$ the following exact sequence:

$$0 \longrightarrow I_{C,L}(4)_2 \longrightarrow I_{C,L}(4) \longrightarrow H^0(C, N_C^{\vee} \otimes L^{\otimes 4}) \longrightarrow H^1(\mathbf{P}^6, \mathcal{I}_C^2(4)) \longrightarrow 0.$$

Denote by \mathcal{A} the sheaf on $\widetilde{\mathcal{R}}_8$ supported along the divisor \mathfrak{D}_2 , whose fibre over a general point of that divisor is equal to to $H^1(\mathbf{P}^6, \mathcal{I}^2_C(4))$. There is a surjective morphism of sheaves

 $\mathcal{H} \to \mathcal{A}$

and denote by \mathcal{G}'_4 its kernel. Since \mathcal{A} is locally free along \mathfrak{D}_2 and $\widetilde{\mathcal{R}}_8$ is a smooth stack, using the Auslander-Buchsbaum formula we find that \mathcal{G}'_4 is a locally free sheaf of rank equal to $\operatorname{rk}(\mathcal{H}) = \chi(C, N_C^{\vee}(4L)) = 19 \cdot 7$. Precisely, \mathcal{G}'_4 is an elementary transformation of \mathcal{H} along the divisor \mathfrak{D}_2 . Furthermore, $c_1(\mathcal{G}'_4) = c_1(\mathcal{H}) - [\overline{\mathfrak{D}}_2]$.

The morphism $\mathcal{G}_4 \to \mathcal{H}$ globalizing the maps $I_{C,L}(4) \to H^0(C, N_C^{\vee} \otimes L^{\otimes 4})$ factors through the subsheaf \mathcal{G}'_4 and we form the exact sequence:

$$0 \longrightarrow \mathcal{G}_4^2 \longrightarrow \mathcal{G}_4 \longrightarrow \mathcal{G}_4' \longrightarrow 0.$$

The multiplication maps $\text{Sym}^2 I_{C,L}(2) \to I_{C,L}(4)_2$ globalize to a sheaf morphism

$$\nu: \operatorname{Sym}^2(\mathcal{G}_2) \to \mathcal{G}_4^2$$

between locally free sheaves of the same rank 28 over the stack $\widetilde{\mathcal{R}}_8$. The degeneration locus of ν is precisely the divisor $\overline{\mathfrak{D}}_1$. We compute:

$$c_1(\operatorname{Sym}^2(\mathcal{G}_2)) = 8c_1(\mathcal{G}_2) = 8(8c_1(\mathcal{N}_1) - c_1(\mathcal{N}_2)) = -40\lambda + 8(\delta'_0 + \delta_0^{\operatorname{ram}}),$$

and

$$c_1(\mathcal{G}_4^2) = 120c_1(\mathcal{N}_1) - c_1(\mathcal{N}_4) - c_1(\mathcal{H}) + [\overline{\mathfrak{D}}_2] = -53\lambda + 11\delta_0' + \frac{25}{2}\delta_0^{\mathrm{ram}} + [\overline{\mathfrak{D}}_2].$$

We obtain the relation $[\overline{\mathfrak{D}_1}] - [\overline{\mathfrak{D}}_2] = -13\lambda + 3\delta'_0 + \frac{9}{2}\delta_0^{\text{ram}}$. Since at the same time

$$[\overline{\mathfrak{D}}_1] + [\overline{\mathfrak{D}}_2] = [\mathcal{Z}_8] = 27\lambda - 4\delta_0' - 6\delta_0^{\mathrm{ram}},$$

we solve the system and conclude.

We are now in a position to give a second proof of Theorem 1:

Theorem 20. The class $[\overline{\mathfrak{D}}_2]$ cannot be effective. It follows that $\mathcal{Z}_8 = \mathcal{R}_8$ and $K_{1,2}(C, K_C \otimes \eta) \neq 0$, for every Prym curve $[C, \eta] \in \mathcal{R}_8$.

Proof. We use the sweeping curve of the boundary divisor Δ'_0 of $\widetilde{\mathcal{R}}_8$ constructed via Nikulin surfaces in [11] Lemma 3.2: Precisely, through the general point of Δ'_0 there passes a rational curve $\Gamma \subseteq \Delta'_0$, entirely contained in $\widetilde{\mathcal{R}}_8$, having the following numerical characters:

$$\Gamma \cdot \lambda = 8$$
, $\Gamma \cdot \delta_0 = 42$, and $\Gamma \cdot \delta_0^{\operatorname{ram}} = 8$.

We note that $\Gamma \cdot \overline{\mathfrak{D}}_2 < 0$. Writing $\overline{\mathcal{D}}_2 \equiv \alpha \cdot \delta'_0 + E$, where $\alpha \geq 0$ and E is an effective divisor whose support is disjoint from Δ'_0 , we immediately obtain a contradiction.

The divisors \mathfrak{D}_1 and \mathfrak{D}_2 can be defined in an identical manner at the level of each moduli space $\overline{\mathcal{R}}_{8,\ell}$ of twisted level ℓ curves of genus g. As already pointed out, in the case $\ell \geq 3$ it follows from [3] Proposition 4.4 that both \mathfrak{D}_1 and \mathfrak{D}_2 are actual divisors. Repeating the same calculations as for $\ell = 2$, we obtain the following formula on the partial compactification $\widetilde{\mathcal{R}}_{8,\ell}$ of $\mathcal{R}_{8,\ell}$:

$$[\overline{\mathfrak{D}}_2] = 20\lambda - \frac{7}{2}\delta_0' - \sum_{a=1}^{\lfloor\frac{\ell}{2}\rfloor} \frac{1}{2\ell} (7a^2 - 7a\ell + 17\ell^2 - 20\ell)\delta_0^{(a)} \in CH^1(\widetilde{\mathcal{R}}_{8,\ell}).$$
(4.25)

As an application, we mention a different proof of one of the main results from [1]:

Theorem 21. The canonical class of $\overline{\mathcal{R}}_{8,\ell}$ is big for $\ell \geq 3$. It follows that $\overline{\mathcal{R}}_{8,\ell}$ is a variety of general type for $\ell = 3, 4, 6$.

Proof. Using formula (4.25), it is a routine exercise to check that for $\ell \geq 3$ the canonical class computed in [3] Proposition 1.5

$$K_{\widetilde{\mathcal{R}}_{8,\ell}} = 13\lambda - 2\delta'_0 - (\ell+1)\sum_{a=1}^{\lfloor \frac{\ell}{2} \rfloor} \delta_0^{(a)}$$

can be written as a *positive* combination of the big class λ and the effective class $[\overline{\mathfrak{D}}_2]$, hence it is big. Arguing along the lines of [3] Remark 3.5, it is easy to extend this result to the full compactification $\overline{\mathcal{R}}_{8,\ell}$ and deduce that $K_{\overline{\mathcal{R}}_{8,\ell}}$ is big.

To conclude that $\overline{\mathcal{R}}_{8,\ell}$ is of general type, one needs, apart from the bigness of the canonical class $K_{\widetilde{\mathcal{R}}_{8,\ell}}$ of the moduli stack, a result that the singularities of the coarse moduli space $\overline{\mathcal{R}}_{8,\ell}$ impose no adjunction conditions. This is only known for $2 \leq \ell \leq 6, \ell \neq 5$, see [2].

5. Rank 2 vector bundles and singular quartics

Our goal in this section is to propose a construction of syzygies of Prym canonical curves of genus 8. We also sketch the proof of the fact that these syzygies are nontrivial. We fix again a general element $[C, \eta] \in \mathcal{R}_8$ and set $L := K_C \otimes \eta$. According to Proposition 5, in order to prove that $K_{2,1}(C, L) \neq 0$, we have to produce quartic hypersurfaces in \mathbf{P}^6 which vanish at order at least 2 along $\phi_L(C)$, but do not lie in the image of the map $\operatorname{Sym}^2 I_{C,L}(2) \to I_{C,L}(4)$. The goal of this section is to produce such quartics from rank 2 vector bundles on C. The (incomplete) proof that the quartics we construct are not in the image of $\operatorname{Sym}^2 I_{C,L}(2)$ depends on an unproved general position statement (*), but there might be other approaches exploiting the fact that the hypersurfaces in question are determinantal.

The following construction produces quartics vanishing at order 2 along C. Let E be a rank 2 vector bundle on C, with determinant K_C . Assume

$$h^{0}(C, E) = 4, \ h^{0}(C, E(\eta)) = 4.$$
 (5.26)

Setting $V_0 := H^0(C, E)$ and $V_1 := H^0(C, E(\eta))$, we have a natural map

$$V_0 \otimes V_1 \to H^0(C, L),$$

defined using evaluation and the following composite map:

$$H^{0}(E) \otimes H^{0}(E(\eta)) \to H^{0}(E \otimes E(\eta)) \cong H^{0}(\mathcal{E}nd \ E \otimes L) \xrightarrow{\operatorname{Tr}} H^{0}(C,L).$$

$$(5.27)$$

This map gives dually a morphism

$$H^0(C,L)^{\vee} \to V_0^{\vee} \otimes V_1^{\vee},$$

(which will be proved below to be injective for a general choice of E). We consider the quartic hypersurface D_4 on $\mathbf{P}(V_0^{\vee} \otimes V_1^{\vee})$ parametrizing tensors of rank at most 3.

Lemma 22. The restriction $D_{4,E}$ of this quartic to $\mathbf{P}(H^0(C,L)^{\vee}) \subseteq \mathbf{P}(V_0^{\vee} \otimes V_1^{\vee})$ is singular along the curve C.

Proof. The quartic D_4 is singular along the set $T_2 \subseteq \mathbf{P}(V_0^{\vee} \otimes V_1^{\vee})$ of tensors of rank at most 2. The quartic $D_{4,E}$ in $\mathbf{P}(H^0(C,L)^{\vee})$ is thus singular along $T_2 \cap \mathbf{P}(H^0(C,L)^{\vee})$, which obviously contains $C \subseteq \mathbf{P}(H^0(C,L)^{\vee})$, since at a point $p \in C$, the map $V_0 \otimes V_1 \to H^0(C,L)$ composed with the evaluation at p factors through $E_{|p} \otimes E(\eta)_{|p}$.

By Brill-Noether theory, the variety $W_7^1(C)$ of degree 7 pencils on C is 4-dimensional. There should thus exist finitely many elements $D \in W_7^1(C)$ with the property that

$$h^0(C,D) \ge 2, \ h^0(C,D\otimes\eta) \ge 2.$$
 (5.28)

We now have the following lemma:

Lemma 23. Let $[C,\eta] \in \mathcal{R}_8$ be as above and $D \in W_7^1(C)$ satisfying (5.28). Then

(i) $h^0(C, D) = 2$ and $h^0(C, D \otimes \eta) = 2$. The multiplication map

$$\left(H^0(C,D)\otimes H^0(C,K_C\otimes D^{\vee})\right)\oplus \left(H^0(C,D\otimes\eta)\otimes H^0(C,K_C\otimes D^{\vee}\otimes\eta)\right)\to H^0(C,K_C)$$

is surjective (in fact, an isomorphism).

(ii) The multiplication map

$$\left(H^0(C,D)\otimes H^0(C,K_C\otimes D^{\vee}\otimes\eta)\right)\oplus \left(H^0(C,D\otimes\eta)\otimes H^0(C,K_C\otimes D^{\vee})\right)\to H^0(C,K_C(\eta))$$

is surjective.

Proof. This can be proved by a degeneration argument, for example by degenerating C to the union of two curves of genus 4 meeting at one point.

By Brill-Noether theory, the following corollary follows from (i) above:

Corollary 24. For $[C,\eta]$ as above, the set of pencils $D \in W^1_7(C)$ satisfying (5.28) is finite.

Given such a D, we form the rank 2 vector bundle

$$E = D \oplus (K_C \otimes D^{\vee})$$

on C which satisfies the conditions (5.26). The associated quartic is however not interesting for our purpose, due to the following fact:

Lemma 25. The quartic on $P(H^0(C, L)^{\vee})$ associated to the vector bundle $D \oplus (K_C \otimes D^{\vee})$ is the union of the two quadrics Q_0 and Q_1 associated respectively with the multiplication maps

$$H^0(D) \otimes H^0((K_C \otimes D^{\vee})(\eta)) \to H^0(K_C(\eta)) \text{ and } H^0(D(\eta)) \otimes H^0(K_C \otimes D^{\vee}) \to H^0(K_C(\eta)).$$

Both these quadrics contain C.

Proof. Indeed we have in this case

$$V_0 = H^0(C, E) = H^0(C, D) \oplus H^0(C, K_C \otimes D^{\vee}), \text{ respectively}$$
$$V_1 = H^0(C, E(\eta)) = H^0(C, D \otimes \eta) \oplus H^0(C, K_C \otimes D^{\vee} \otimes \eta).$$

Furthermore, it is clear that the map of (5.27) factors through the projection

$$V_0 \otimes V_1 \to \left(H^0(C, D) \otimes H^0(C, K_C \otimes D^{\vee} \otimes \eta) \right) \oplus \left(H^0(C, K_C \otimes D^{\vee}) \otimes H^0(C, D \otimes \eta) \right)$$

and induces on each summand the multiplication map. The quadric Q_0 is by definition associated with the the multiplication map

$$\mu_0: H^0(C, D) \otimes H^0(C, K_C \otimes D^{\vee} \otimes \eta) \to H^0(C, K_C \otimes \eta),$$

and is the set of elements f in $\mathbf{P}(H^0(K_C \otimes \eta))^{\vee}$ such that $\mu_0^*(f)$ is a tensor of rank ≤ 1 . Similarly for Q_1 , with D being replaced with $D(\eta)$. Finally we use the fact that a tensor

$$(\mu_0^* f, \mu_1^* f) \in \left(H^0(C, D) \otimes H^0(C, K_C \otimes D^{\vee} \otimes \eta) \right) \oplus \left(H^0(C, K_C \otimes D^{\vee}) \otimes H^0(C, D \otimes \eta) \right)$$

has rank at most 3 if and only if one of $\mu_0^* f$ and $\mu_1^* f$ has rank at most 1.

We recall from [15] or [14] that the Brill-Noether condition $h^0(C, E) \ge 4$ imposes only $10 = \binom{5}{2}$ equations on the parameter space of rank 2 vector bundles E with determinant K_C . As det $E(\eta) \cong K_C$ as well, we conclude that the equations (5.26) impose only 20 conditions. As the moduli space $\mathcal{SU}_C(2, K_C)$ of semistable rank 2 vector bundles on C having determinant K_C has dimension 3g-3 = 21, in our case we conclude that there is a positive dimensional family of such vector bundles on C satisfying (5.26).

We now sketch the proof of the fact that for C general of genus 8 and $D \in W_7^1(C)$ satisfying (5.28), for a general deformation E of the vector bundle $D \oplus (K_C \otimes D^{\vee})$ satisfying det $E \cong K_C$ and $h^0(C, E) = 4$, the associated quartic $D_{4,E}$ singular along C is not defined by an element of $\text{Sym}^2 I_C(2)$. Combined with Proposition 5, this provides a third approach to Theorem 1. The proof of this fact rests on an unproven general position statement (*), so it is incomplete.

Sketch of proof of the nontriviality of the syzygy. The vector bundle E is generated by sections, as it is a general section-preserving deformation of the vector bundle

$$D \oplus (K_C \otimes D^{\vee})$$

which is generated by global sections, and similarly for $E(\eta)$. Along $C \subseteq \mathbf{P}(H^0(C, L)^{\vee})$, then the rational map

$$\mathbf{P}(H^0(C,L)^{\vee}) \dashrightarrow \mathbf{P}(H^0(E)^{\vee} \otimes H^0(E(\eta))^{\vee})$$

is well-defined and the image of C is contained in the locus $T_{2,E}$ of tensors of rank exactly 2. In fact, the case of $D \oplus (K_C \otimes D^{\vee})$ shows that this map is a morphism for general E (one just needs to know that $H^0(C, K_C \otimes \eta)$ is generated by the two vector spaces $H^0(D) \otimes H^0(K_C \otimes D^{\vee} \otimes \eta)$ and $H^0(D \otimes \eta) \otimes H^0(K_C \otimes D^{\vee})$ respectively, or rather their images under the multiplication map. Note that on $T_{2,E}$, there is a rank 2 vector bundle M which restricts to E on C.

In the case of the split vector bundle $E_{\rm sp} = D \oplus (K_C \otimes D^{\vee})$, Lemma 25 shows that the Zariski closure $\overline{T_{2,E_{\rm sp}}}$ parameterizing tensors of rank ≤ 2 in $\mathbf{P}(H^0(C,L)^{\vee}) \subseteq \mathbf{P}(V_0^{\vee} \otimes V_1^{\vee})$ is equal to the singular locus of $D_{4,E_{\rm sp}}$ and consists of the union of the two planes P_0 , P_1 defined as the singular loci of the quadrics Q_0 , Q_1 respectively, and the intersection $Q_0 \cap Q_1$. The locus $\overline{T_{2,E_{\rm sp}}} \setminus T_{2,E_{\rm sp}}$ is the locus where the tensor has rank 1, and this happens exactly along the two conics $P_0 \cap Q_1$ and $P_1 \cap Q_0$. The curve C is contained in $Q_0 \cap Q_1$ and does not intersect $P_0 \cup P_1$. In particular, the rational map $\phi : \widetilde{\mathbf{P}^6} \dashrightarrow \mathbf{P}^6$ given by the linear system $I_C(2)$ is well defined along $P_0 \cup P_1$. We believe that the following general position statement concerning the two planes P_i is true for general C and D, η as above.

(*) The surfaces $\phi(P_i)$ are projectively normal Veronese surfaces, generating a hyperplane $\langle \phi(P_i) \rangle \subseteq \mathbf{P}^6$. Furthermore, the surface $\phi(P_0) \cup \phi(P_1) \subseteq \mathbf{P}^6$ is contained in a unique quadric in \mathbf{P}^6 , namely the union of the two hyperplanes $\langle \phi(P_0) \rangle$ and $\langle \phi(P_1) \rangle$.

We now prove that, assuming (*), for a general vector bundle E as above, the associated quartic $D_{4,E}$ singular along C is not defined by an element of $\operatorname{Sym}^2 I_C(2)$. As P_0 , P_1 are 2-dimensional reduced components of $\overline{T_{2,E_{\mathrm{sp}}}}$, hence of the right dimension, the theory of determinantal hypersurfaces shows that for general E as above, there is a reduced surface $\Sigma_E \subseteq \overline{T_{2,E}}$ whose specialization when $E = E_{\mathrm{sp}}$ contains $P_0 \cup P_1$. Let $\mathcal{E} \to C \times B$ be a family of vector bundles on C parameterized by a smooth curve B, with general fiber E and special fiber E_{sp} . Denote by \mathcal{E}_b the restriction of \mathcal{E} to $C \times \{b\}$. Property (*) then implies that $\phi(\Sigma_{\mathcal{E}_b})$ for general $b \in B$ is contained in at most one quadric $Q_{\mathcal{E}_b}$ in \mathbf{P}^6 . We argue by contradiction and assume that the quartic D_{4,\mathcal{E}_b} is a pull-back $\phi^{-1}(Q)$ for general b. One thus must have $Q = Q_{\mathcal{E}_b}$. Next, the determinantal quartic D_{4,\mathcal{E}_b} is singular along T_{2,\mathcal{E}_b} , hence along $\Sigma_{\mathcal{E}_b}$. Let $b \mapsto q_{\mathcal{E}_b} \in \operatorname{Sym}^2 I_C(2)$, where $q_{\mathcal{E}_b}$ at b_0 also vanishes along $\Sigma_{\mathcal{E}_{b_0}}$, hence it must be proportional to $\phi^* q_{\mathcal{E}_{b_0}}$. We then conclude that the quadric $Q_{\mathcal{E}_b}$ is in fact constant, and thus must be equal to the quadric $Q_{\mathcal{E}_{\mathrm{sp}}}$. We now reach a contradiction by proving the following lemma.

Lemma 26. If the determinantal quartic D_{4,\mathcal{E}_b} is constant, equal to $D_{sp} = Q_0 \cup Q_1$, then the vector bundle \mathcal{E}_b on C does not deform with $b \in B$.

Proof. Denoting $V_{0,b} := H^0(C, \mathcal{E}_b), V_{1,b} := H^0(C, \mathcal{E}_b(\eta))$, we have the multiplication map

$$V_{0,b} \otimes V_{1,b} \to H^0(C, K_C \otimes \eta)$$

which is surjective for generic b since it is surjective for $\mathcal{E}_0 = D \oplus (K_C \otimes D^{\vee})$ (see Lemma 23). The determinantal quartic D_{4,\mathcal{E}_b} is the vanishing locus of the determinant of the corresponding bundle map

$$\sigma_b: V_{0,b} \otimes \mathcal{O}_{\mathbf{P}(H^0(C,K_C(\eta))^{\vee})} \to V_{1,b}^{\vee} \otimes \mathcal{O}_{\mathbf{P}(H^0(C,K_C(\eta))^{\vee})}(1)$$
(5.29)

on $\mathbf{P}(H^0(C, K_C \otimes \eta)^{\vee})$. We know that $D_{4,\mathcal{E}_b} = Q_0 \cup Q_1$ for any $b \in B$, where the quadrics Q_i are singular (of rank 4), but with singular locus P_i not intersecting $C \subseteq Q_0 \cap Q_1$. The morphism σ_b has rank exactly 1 generically along each Q_i and the kernel of $\sigma_{|D_{4,b}}$ determines a line bundle $\mathcal{K}_{i,b}$ on its smooth locus $Q_i \setminus P_i$. This line bundle is independent of b since $\operatorname{Pi}(Q_i \setminus P_i)$ has no continuous part. The restriction of $\mathcal{K}_{i,b}$ to C is thus constant. Finally, on the smooth part of $(Q_0 \cap Q_1)_{\operatorname{reg}}$, the kernel $\operatorname{Ker}(\sigma)$ contains the two line bundles $\mathcal{K}_{i,b|Q_0\cap Q_1}$. Restricting to $C \subseteq (Q_0 \cap Q_1)_{\operatorname{reg}}$, we conclude that $\operatorname{Ker} \sigma_{b|C}$ contains $\mathcal{K}_{i,0|C}$ for i = 0, 1. For b = 0, one has

$$\operatorname{Ker} \sigma_{0|C} = \mathcal{K}_{0,0|C} \oplus \mathcal{K}_{1,0|C}$$

and this thus remains true for general b. Finally, it follows from the construction and the fact that \mathcal{E}_b is generated by its sections that $\operatorname{Ker} \sigma_{b|C} = \mathcal{E}_b^{\vee}$, which finishes the proof.

6. Miscellany

6.A. Extra remarks on the geometry of paracanonical curves of genus 8 with a nontrivial syzygy

We now comment on an interesting rank 2 vector bundle appearing in our situation. Again, let $\phi_L : C \hookrightarrow \mathbf{P}^6$ be a paracanonical curve of genus 8. We assume L is scheme-theoretically cut out by quadrics. Denoting by N_C the normal bundle of C in the embedding in \mathbf{P}^6 , we consider the natural

map $I_C(2) \otimes \mathcal{O}_C \to N_C^{\vee} \otimes L^{\otimes 2}$ (which is surjective by our assumption) given by differentiation along $\phi_L(C)$, and let F denote its kernel. We thus have the short exact sequence:

$$0 \longrightarrow F \longrightarrow I_C(2) \otimes \mathcal{O}_C \longrightarrow N_C^{\vee} \otimes L^{\otimes 2} \longrightarrow 0.$$
(6.30)

If $K_{1,2}(C,L) \neq 0$, the map $\mu : I_C(2) \otimes H^0(\mathbf{P}^6, \mathcal{O}(1)) \to I_C(3)$ is not surjective, hence not injective. A fortiori, the map

$$\overline{\mu}: I_C(2) \otimes H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \to H^0(C, N_C^{\vee} \otimes L^{\otimes 3})$$

induced by (6.30) is not injective, so that $h^0(C, F(L)) \neq 0$. In fact, the equivalence between the statements $h^0(C, F(L)) \neq 0$ and $K_{1,2}(C, L) \neq 0$ follows from the same argument once we know that there is no cubic polynomial on \mathbf{P}^6 vanishing with multiplicity 2 along C.

We observe now that F is a vector bundle of rank 2 on the curve C, with determinant equal to det $N_C \otimes L^{\otimes (-2)} \cong K_C \otimes L^{\otimes (-3)}$. Hence if F(L) has a nonzero section, assuming this section vanishes nowhere along C, then F(L) is an extension of $K_C \otimes L^{\vee}$ by \mathcal{O}_C . This provides an extension class

$$e \in H^1(C, L \otimes K_C^{\vee}) = H^0(C, K_C^{\otimes 2} \otimes L^{\vee})^{\vee}.$$
(6.31)

Assume now $L \otimes K_C^{\vee} =: \eta$ is a nonzero 2-torsion element of $\operatorname{Pic}^0(C)$. Then

$$e \in H^0(C,L)^{\vee}.$$

On the other hand, according to Theorem 20, there exists a nontrivial syzygy

$$\gamma = \sum_{i=1}^{6} \ell_i \otimes q_i \in K_{1,2}(C,L) = \operatorname{Ker} \left\{ H^0(\mathbf{P}^6, \mathcal{O}_{\mathbf{P}^6}(1)) \otimes I_C(2) \to I_C(3) \right\},$$

which is degenerate by Proposition 13. As we saw already, it has in fact rank 6 for generic $[C, \eta]$, hence determines a nonzero element

$$f \in H^{0}(\mathbf{P}^{6}, \mathcal{O}_{\mathbf{P}^{6}}(1))^{\vee} = H^{0}(C, L)^{\vee} = H^{1}(C, K_{C} \otimes L^{\vee}) = H^{1}(C, L \otimes K_{C}^{\vee}),$$
(6.32)

which is well-defined up to a coefficient.

Proposition 27. The two elements e and f are proportional.

Proof. Equivalently, we show that the kernels of the two linear forms $e, f \in H^0(C, L)^{\vee}$ are equal. Viewing γ as an element of Hom $(I_C(2)^{\vee}, H^0(C, L))$, we have $\text{Ker}(f) = \text{Im}(\gamma)$. On the other hand, the kernel of e identifies with

$$\operatorname{Im}\left\{j: H^0(C, F \otimes L^{\otimes 3} \otimes K_C^{\vee}) \to H^0(C, L)\right\},\$$

where the map j is obtained by twisting the exact sequence $0 \to \mathcal{O}_C \to F(L) \to K_C \otimes L^{\vee} \to 0$ by K_C . We have $F \otimes L^{\otimes 3} \otimes K_C^{\vee} \cong F^{\vee}$ since det $F \cong K_C \otimes L^{\otimes (-3)}$, hence there is a natural morphism

$$i^*: I_C(2)^{\vee} \otimes \mathcal{O}_C \to F^{\vee} \cong F(L^{\otimes 3} \otimes K_C^{\vee})$$

dual to the inclusion $F \hookrightarrow I_C(2) \otimes \mathcal{O}_C$ of (6.30). The proposition follows from the following claim: **Claim.** The morphism $\alpha : I_C(2)^{\vee} \to H^0(C, L)$ is equal to $j \circ i^*$.

Forgetting about the last identification $F^{\vee} \cong F \otimes L^{\otimes 3} \otimes K_C^{\vee}$, the claim amounts to the following general fact: For an evaluation exact sequence on a variety X

$$0 \longrightarrow G \longrightarrow W \otimes \mathcal{O}_X \longrightarrow M \longrightarrow 0$$

and for a section $s \in H^0(X, G(L)) = H^0(X, \mathcal{H}om(G^{\vee}, L))$ giving an element

$$s' \in \operatorname{Ker}\left\{W \otimes H^0(X, L) \to H^0(X, M \otimes L)\right\} \subseteq \operatorname{Hom}\left(W^{\vee}, H^0(X, L)\right),$$

the induced map $s: H^0(X, G^{\vee}) \to H^0(X, L)$ composed with the map $W^{\vee} \to H^0(X, G^{\vee})$ equals the map $s': W^{\vee} \to H^0(X, L)$.

6.B. Further properties

Using the exact sequence (6.30) in the general case of a genus 8 paracanonical curve $[C, L] \in P_8^{14}$, we obtain:

Lemma 28. A section $s \in H^0(C, F(L)) \subseteq I_{C,L}(2) \otimes H^0(C, L) = \operatorname{Hom}(I_{C,L}(2)^{\vee}, H^0(C, L))$ of rank 6, determines an element $e \in |2L - K_C|$.

Proof. The multiplication by $s \in H^0(F(L)) \subseteq I_{C,L}(2) \otimes H^0(C,L) = H^0(I_{C,L}(2)^{\vee} \otimes L)$ determines the natural maps $F^{\vee} \to L$ and $g_s : I_C(2)^{\vee} \otimes \mathcal{O}_C \to L$ sitting in the following diagram:

where $I_C(2)^{\vee} \otimes \mathcal{O}_C \to F^{\vee}$ is the dual of the natural inclusion of (6.30). Passing to global sections we get the inclusion $H^0(\mathcal{K}er(g_s)) = \operatorname{Ker}\{I_{C,L}(2)^{\vee} \to H^0(C,L)\} \to H^0(2L - K_C)$, which by hypothesis in 1-dimensional hence it defines an element $e \in |2L - K_C|$.

Via the exact sequence (6.30) we can also show directly the following result that has been used in Section 3:

Lemma 29. If there is a spin curve $D = C \cup E \hookrightarrow \mathbf{P}^6$ of genus 22 and degree 21 containing the genus 8 paracanonical curve [C, L] as in Lemma 3, then $H^0C, (F(L)) \neq 0$. If there is no cubic polynomial on \mathbf{P}^6 vanishing with multiplicity 2 along C, then $K_{1,2}(C, L) \neq 0$.

Proof. Let $e = C \cap E$ and recall $c_1(F) = -3L + K_C$ and $\mathcal{O}_C(e) = 2L - K_C$. Note that $I_D(2) \subseteq I_C(2)$ is 6-dimensional. Tensor then the first vertical exact sequence of the following diagram by L and pass to global sections.

6.C. Nontrivial syzygies of paracanonical curves via vector bundles

We return to the proof of Theorem 20 given in Section 5. Consider now a general paracanonical curve $[C, K_C \otimes \eta] \in P_8^{14}$. For a rank 2 vector bundle on C of degree 14, with noncanonical determinant, the equation $h^0(C, E) \ge 4$ imposes 16 conditions. Similarly, if $\epsilon \in \text{Pic}^0(C)$, the equation $h^0(C, E \otimes \epsilon) \ge 4$ imposes 16 conditions on the parameter space of E. Given C, there are 29 = 4g - 3 parameters for E, and 8 = g parameters for ϵ . It follows that we have at least a 5-dimensional family of pairs (E, ϵ) , such that

$$h^{0}(C, E) \ge 4$$
 and $h^{0}(C, E \otimes \epsilon) \ge 4.$ (6.33)

Furthermore, the construction of Section 5 (together with Proposition 5) shows that for a general triple (C, E, ϵ) as above, one has $K_{2,1}(C, L) \neq 0$, where $L := \det E \otimes \epsilon$. Assuming the map $(E, \epsilon) \mapsto L$

is generically finite on its image, we constructed in this way a five dimensional family of paracanonical line bundles $L \in \operatorname{Pic}^{14}(C)$ with a nontrivial syzygy: $K_{1,2}(C,L) \neq 0$. This family has the following property:

Lemma 30. If $L = \det E \otimes \epsilon$, where E satisfies (6.33), the line bundle $K_C^{\otimes 2} \otimes L^{\vee}$ satisfies the same property. The family above, which has dimension at least five, is thus invariant under the involution $L \mapsto K_C^{\otimes 2} \otimes L^{\vee}$ on P_8^{14} , whose fixed locus is the Prym moduli space \mathcal{R}_8 .

Proof. This follows from Serre duality, replacing E with $E^{\vee} \otimes K_C$ and $E \otimes \epsilon$ by $E^{\vee} \otimes \epsilon^{\vee} \otimes K_C$ plus the fact that det $(E^{\vee} \otimes K_C) \otimes \epsilon^{\vee} \cong K_C^{\otimes 2} \otimes \det E^{\vee} \otimes \epsilon^{\vee}$.

One can ask in general the following question:

Question 31. Is the divisor \mathfrak{Ross} on P_8^{14} invariant under the involution $L \mapsto K_C^{\otimes 2} \otimes L^{\vee}$?

References

- [1] G. Bruns, Twists of Mukai bundles and the geometry of the level 3 modular variety over $\overline{\mathcal{M}}_8$, Trans. Amer. Math. Soc, to appear. arXiv:1606.07038
- [2] A. Chiodo and G. Farkas, Singularities of the moduli space of level curves, J. Eur. Math. Soc. 19 (2017), no. 3, 603–658. MR-3612865
- [3] A. Chiodo, D. Eisenbud, G. Farkas and F.-O Schreyer, Syzygies of torsion bundles and the geometry of the level ℓ modular variety over M_g, Invent. Math. **194** (2013), no. 1, 73–118. MR-3103256
- [4] E. Colombo and P. Frediani, On the Koszul cohomology of canonical and Prym-canonical binary curves, Bull. Lond. Math. Soc. 45 (2013), no. 5, 1031–1040. MR-3104994
- [5] M. Cornalba, Moduli of curves and theta-characteristics. In: Lectures on Riemann surfaces (Trieste, 1987), pp. 560–589, World Sci. Publ., Teaneck, NJ, 1989. MR-1082361
- [6] D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer, The Clifford dimension of a projective curve, Compositio Math. 72(1989), no. 2, 173–204. MR-1030141
- B. Eröcal, O. Motsak, F.-O. Schreyer and A. Steenpass, *Refined algorithms to compute syzygies*, J. Symbolic Comput. **74** (2016), 308–327. MR-3424044
- [8] G. Farkas and M. Kemeny, The Generic Green-Lazarsfeld secant conjecture, Invent. Math. 203 (2016), no. 1, 265–301. MR-3437872
- G. Farkas and M. Kemeny, The Prym-Green Conjecture for torsion bundles of high order, Duke Math. J. 166 (2017), no. 6, 1103–1124. MR-3635900
- [10] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010), no. 3, 755–795. MR-2639318
- [11] G. Farkas and A. Verra, Prym varieties and moduli of polarized Nikulin surfaces, Adv. Math. 290 (2016), 314–328. MR-3451926
- [12] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73–90. MR-0813583

- [13] J. Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611–638. MR-0654853
- [14] S. Mukai, Vector bundles and Brill-Noether theory. In: Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), pp. 145–158, Math. Sci. Res. Inst. Publ., 28, Cambridge Univ. Press, Cambridge, 1995. MR-1397062
- [15] D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192. MR-0292836
- [16] F.-O. Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83–123. MR-1129577
- [17] C. Voisin, Sur l'application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Math. 168 (1992), no. 3–4, 249–272. MR-1161267
- [18] C. Voisin, Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc. 4 (2002), no. 4, 363–404. MR-1941089
- [19] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), no. 5, 1163–1190. MR-2157134