Übungsaufgaben 6

Differenzierbare Funktionen

Aufgabe 1. Seien $a \ge b > 0$ und $\delta = \sqrt{a^2 - b^2} \ge 0$ gegeben sowie die *Ellipse* mit den Brennpunkten $z_+ = (\delta, 0) \in \mathbb{C}$ und $z_- = (-\delta, 0) \in \mathbb{C}$ sowie den Halbachsen a und b durch die Funktion $f: [0, 2\pi] \to \mathbb{C}$ beschrieben, welche durch

$$f(t) = (a\cos t, b\sin t)$$
 für $t \in [0, 2\pi]$

definiert wird. Sei ferner $\tau \in [0, 2\pi]$ ein beliebig fixierter Punkt.

1. Man weise nach, daß $|f(\tau) - z_+| + |f(\tau) - z_-| = 2a$ gilt, somit die Kreislinien

$$\{x \in \mathbb{C} \mid |x - z_-| = 2a\}$$
 und $\{x \in \mathbb{C} \mid |x - f(\tau)| = |z_+ - f(\tau)|\}$

genau einen Punkt $x_+ \in \mathbb{C}$ und die Kreislinien

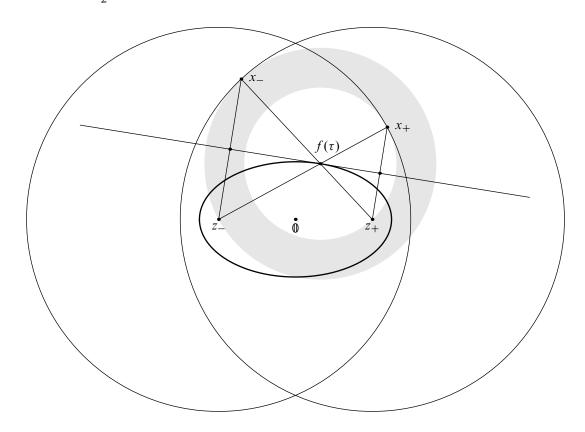
$$\{x \in \mathbb{C} \mid |x - z_+| = 2a\}$$
 und $\{x \in \mathbb{C} \mid |x - f(\tau)| = |z_- - f(\tau)|\}$

genau einen Punkt $x_{-} \in \mathbb{C}$ gemeinsam haben!

2. Wird die Linearisierung $g: \mathbb{R} \to \mathbb{C}$, welche f in τ tangential berührt, durch

$$g(t) = f(\tau) + Df(\tau)(t - \tau)$$
 für $t \in \mathbb{R}$

gegeben, so zeige man, daß es Punkte $t_+ \in \mathbb{R}$ und $t_- \in \mathbb{R}$ mit $g(t_+) = \frac{1}{2}(x_+ + z_+)$ und $g(t_-) = \frac{1}{2}(x_- + z_-)$ gibt und außerdem $|g(t_+)| = |g(t_-)| = a$ gilt!



Aufgabe 2. Seien die Intervalle $X_1 =]-\infty, -1[, X_2 =]-1, 1[$ und $X_3 =]1, \infty[$ und die Funktionen $f : \mathbb{R} \to \mathbb{R}$ sowie $g : X_1 \cup X_2 \cup X_3 \to \mathbb{R}$ wie folgt definiert:

$$f(x) = \arctan x$$
 für $x \in \mathbb{R}$, $g(x) = \frac{1}{2}\arctan \frac{2x}{1-x^2}$ für $x \in X_1 \cup X_2 \cup X_3$.

- 1. Man weise nach, daß Df(x) = Dg(x) für alle $x \in X_1 \cup X_2 \cup X_3$ gilt!
- 2. Man zeige, daß es Konstanten $a_1, a_2, a_3 \in \mathbb{R}$ gibt, so daß für jedes $\ell \in \{1, 2, 3\}$

$$f(x) - g(x) = a_{\ell}$$
 für alle $x \in X_{\ell}$

(6)

gilt und berechne diese Konstanten $a_1, a_2, a_3 \in \mathbb{R}!$

Aufgabe 3. Man zeige durch vollständige Induktion über $\ell \in \mathbb{N} \cup \{0\}$ und Differentiation, daß die Reihe $\left(\sum_{k=0}^{n} \binom{\ell+k}{\ell} x^{k}\right)$ für jedes $x \in \mathbb{K}$, |x| < 1 gegen die Summe

$$\sum_{k=0}^{\infty} {\ell + k \choose \ell} x^k = \frac{1}{(1-x)^{\ell+1}}$$

konvergiert!