Übungsaufgaben 2

Komplexe Zahlen

Aufgabe 1. Man bestimme alle diejenigen komplexen Zahlen $u \in \mathbb{C}$, welche die Gleichung $u^2 - (6, 4) \cdot u = (-5, -14)$ lösen!

Lösung. 1. Durch quadratische Ergänzung auf der linken Seite der Gleichung ergibt sich für die neue Unbekannte $z = u - (3, 2) \in \mathbb{C}$ die Gleichung

$$z^2 = (u - (3,2))^2 = (-5, -14) + (3,2)^2 = (-5, -14) + (5,12) = (0, -2).$$

2. Stellt man die rechte Seite $w=(r\cos\alpha,r\sin\alpha)=(0,-2)$ in Polarkoordinaten r=|w|=2 und $\alpha\in[\pi,2\pi]$ dar, dann sind

$$z_0 = \sqrt{r} \left(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2} \right) \in \mathbb{C}$$
 und $z_1 = \sqrt{r} \left(\cos \left(\pi + \frac{\alpha}{2} \right), \sin \left(\pi + \frac{\alpha}{2} \right) \right) = -z_0 \in \mathbb{C}$

die beiden Lösungen der Gleichung $z^2=w$. Der Punkt $\left(\cos\frac{\alpha}{2},\sin\frac{\alpha}{2}\right)$ kann wegen der Lage des Winkels $\frac{\alpha}{2}\in\left[\frac{\pi}{2},\pi\right]$ eindeutig aus $(\cos\alpha,\sin\alpha)=(0,-1)$ mit Hilfe der Beziehungen $1+\cos\alpha=2\cos^2\frac{\alpha}{2}$ und $\sin\alpha=2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ bestimmt werden:

Aus $2\cos^2\frac{\alpha}{2} = 1 + \cos\alpha = 1$ folgt $\cos^2\frac{\alpha}{2} = \frac{1}{2}$ und damit $\cos\frac{\alpha}{2} = -\frac{1}{2}\sqrt{2}$ wegen $\frac{\alpha}{2} \in \left[\frac{\pi}{2}, \pi\right]$. Aus $2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = \sin\alpha = -1$ ergibt sich demnach $\sin\frac{\alpha}{2} = \frac{1}{2}\sqrt{2}$, das heißt, die Gleichung $z^2 = w$ hat die beiden Lösungen

$$z_0 = \sqrt{2} \left(-\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2} \right) = (-1, 1) \in \mathbb{C} \quad \text{und} \quad z_1 = -z_0 = (1, -1) \in \mathbb{C}.$$

3. Somit sind

$$u_0 = (3,2) + z_0 = (3,2) + (-1,1) = (2,3) \in \mathbb{C},$$

$$u_1 = (3,2) + z_1 = (3,2) + (1,-1) = (4,1) \in \mathbb{C}$$

die beiden Lösungen der Gleichung $u^2 - (6, 4) \cdot u = (-5, -14)$.

Aufgabe 2. Man zeige mit Hilfe der Additionstheoreme, daß die beiden Beziehungen

$$\sum_{\ell=0}^{n} \cos 2\ell x \sin x = \sin(n+1)x \cos nx,$$

$$\sum_{\ell=0}^{n} \sin 2\ell x \sin x = \sin(n+1)x \sin nx$$

8

für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ gelten!

Lösung. Sei $n \in \mathbb{N}$ beliebig vorgegeben.

1. Da sich aus den beiden Additionstheoremen

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta,$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

für alle α , $\beta \in \mathbb{R}$ durch Subtraktion die Additionstheoreme

(C)
$$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta),$$

(S)
$$2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

ergeben, erhält man für $\alpha = 2\ell x, \ell \in \{0, ..., n\}$ und $\beta = x$ durch Indexverschiebung

$$\sum_{\ell=0}^{n} 2\cos 2\ell x \sin x = \sum_{\ell=0}^{n} (\sin(2\ell+1)x - \sin(2\ell-1)x)$$
$$= \sum_{\ell=1}^{n+1} \sin(2\ell-1)x - \sum_{\ell=0}^{n} \sin(2\ell-1)x = \sin(2n+1)x + \sin x$$

sowie

$$\sum_{\ell=0}^{n} 2\sin 2\ell x \sin x = \sum_{\ell=0}^{n} (\cos(2\ell-1)x - \cos(2\ell+1)x)$$
$$= \sum_{\ell=0}^{n} \cos(2\ell-1)x - \sum_{\ell=1}^{n+1} \cos(2\ell-1)x = \cos x - \cos(2n+1)x$$

für jedes $x \in \mathbb{R}$. Wendet man das Additionstheorem (C) für $\alpha = nx$ und $\beta = (n+1)x$ bzw. (S) für $\alpha = (n+1)x$ und $\beta = nx$ an, dann folgen daraus die beiden Beziehungen

$$\sum_{\ell=0}^{n} \cos 2\ell x \sin x = \sin(n+1)x \cos nx,$$
$$\sum_{\ell=0}^{n} \sin 2\ell x \sin x = \sin(n+1)x \sin nx$$

für jedes $x \in \mathbb{R}$.

Alternative Lösung. Sei $n \in \mathbb{N}$ beliebig vorgegeben.

- 1. Im Falle $x = k\pi$, $k \in \mathbb{Z}$ gilt stets $\sin x = 0$ und $\sin(n+1)x = 0$, woraus sich sofort die beiden gewünschten Beziehungen ergeben.
- 2. Sei also fortan $x \in \mathbb{R}$ derart vorgegeben, daß $x \neq k\pi$ für jedes $k \in \mathbb{Z}$ gilt. Aufgrund der Moivre-Formel und der Formel für die geometrische Summe folgt daraus für die komplexe Zahl $v = (\cos x, \sin x) \in \mathbb{C}$ wegen $v^2 \neq 1$ die Beziehung

$$\sum_{\ell=0}^{n} (\cos 2\ell x, \sin 2\ell x) = \sum_{\ell=0}^{n} v^{2\ell} = \frac{1 - v^{2(n+1)}}{1 - v^2}$$
$$= \frac{(1 - \cos 2(n+1)x, -\sin 2(n+1)x)}{(1 - \cos 2x, -\sin 2x)}.$$

Da $1 - \cos 2y = 2\sin^2 y$ und $\sin 2y = 2\sin y \cos y$ für jedes $y \in \mathbb{R}$ gilt, ergibt sich

$$\sum_{\ell=0}^{n} (\cos 2\ell x, \sin 2\ell x) = \frac{(2\sin^2(n+1)x, -2\sin(n+1)x\cos(n+1)x)}{(2\sin^2 x, -2\sin x\cos x)}$$
$$= \frac{\sin(n+1)x}{\sin x} \cdot \frac{(\sin(n+1)x, -\cos(n+1)x)}{(\sin x, -\cos x)} \cdot \frac{(\sin x, \cos x)}{(\sin x, \cos x)}$$

durch Erweiterung von Zähler und Nenner mit $v = (\sin x, \cos x) \neq 0$. Aufgrund der Beziehung $\cos^2 x + \sin^2 x = 1$ und der Additionstheoreme

$$\cos nx = \cos(n+1)x\cos x + \sin(n+1)x\sin x$$

$$\sin nx = \sin(n+1)x\cos x - \cos(n+1)x\sin x$$

folgt daraus

$$\sum_{\ell=0}^{n} (\cos 2\ell x, \sin 2\ell x) = \frac{\sin(n+1)x}{\sin x} \cdot (\sin(n+1)x, -\cos(n+1)x) \cdot (\sin x, \cos x)$$
$$= \frac{\sin(n+1)x}{\sin x} \cdot (\cos nx, \sin nx),$$

woraus sich die gesuchten Beziehungen durch Vergleich von Real- und Imaginärteil auf beiden Seiten der Gleichung ergeben.

Aufgabe 3. Sei die gebrochene rationale Abbildung $g: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ durch

$$g(v) = \frac{1}{v}$$
 für $v \in \mathbb{C} \setminus \{0\}$

definiert und eine Kreislinie $S = \{v \in \mathbb{C} \mid |v-v_0|^2 = r^2\}$ mit dem Mittelpunkt $v_0 \in \mathbb{C} \setminus \{\emptyset\}$ und dem Radius $r \in]0, |v_0|[$ vorgegeben. Man weise nach, daß das Bild $g[S] = \{g(v) \in \mathbb{C} \mid v \in S\}$ von S eine Kreislinie $K = \{w \in \mathbb{C} \mid |w-w_0|^2 = \rho^2\}$ mit dem Mittelpunkt $w_0 \in \mathbb{C} \setminus \{\emptyset\}$ und dem Radius $\rho \in]0, |w_0|[$ ist, welche durch

$$w_0 = \frac{\overline{v_0}}{|v_0|^2 - r^2}$$
 und $\rho = \frac{r}{|v_0|^2 - r^2}$

6)

gegeben sind!

Lösung. 1. Zuerst soll gezeigt werden, daß das Bild g[S] der Kreislinie S in der Kreislinie K enthalten ist: Für alle $v \in \mathbb{C} \setminus \{0\}$ gilt wegen $v\overline{v} = (|v|^2, 0)$ zunächst

$$(g(v) - w_0) \cdot \overline{(g(v) - w_0)} = \left(\frac{\overline{v}}{|v|^2} - \frac{\overline{v}_0}{|v_0|^2 - r^2}\right) \cdot \left(\frac{v}{|v|^2} - \frac{v_0}{|v_0|^2 - r^2}\right)$$

$$= \frac{v\overline{v}}{|v|^4} - \frac{v\overline{v}_0 + \overline{v}v_0}{|v|^2(|v_0|^2 - r^2)} + \frac{v_0\overline{v}_0}{(|v_0|^2 - r^2)^2}$$

$$= \frac{(v - v_0) \cdot \overline{(v - v_0)}}{|v|^2(|v_0|^2 - r^2)} + \left(\frac{v\overline{v}}{|v|^4} - \frac{v\overline{v}}{|v|^2(|v_0|^2 - r^2)}\right)$$

$$+ \left(\frac{v_0\overline{v}_0}{(|v_0|^2 - r^2)^2} - \frac{v_0\overline{v}_0}{|v|^2(|v_0|^2 - r^2)}\right).$$

Da die linke Seite sowie die Zähler der Brüche auf der rechten Seite jeweils die Form $w\overline{w}=(|w|^2,0)$ für ein $w\in\mathbb{C}$ besitzen, erhält man für $v\in\mathbb{C}$ mit $|v-v_0|^2=r^2$

$$|g(v) - w_0|^2 = \frac{|v - v_0|^2}{|v|^2 (|v_0|^2 - r^2)} + \left(\frac{|v_0|^2}{|v_0|^2 - r^2} - 1\right) \left(\frac{1}{|v_0|^2 - r^2} - \frac{1}{|v|^2}\right)$$

$$= \frac{|v - v_0|^2 - r^2}{|v|^2 (|v_0|^2 - r^2)} + \frac{r^2}{(|v_0|^2 - r^2)^2} = \frac{r^2}{(|v_0|^2 - r^2)^2} = \rho^2$$

und somit $g(v) \in K$ für jedes $v \in S$.

2. Da sich umgekehrt aus

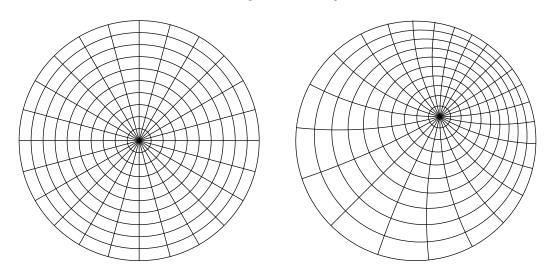
$$|w_0|^2 - \rho^2 = \frac{1}{|v_0|^2 - r^2}$$
 sowohl $\frac{\overline{w}_0}{|w_0|^2 - \rho^2} = v_0$ als auch $\frac{\rho}{|w_0|^2 - \rho^2} = r$

ergibt, folgt aus Schritt 1, daß das Bild g[K] der Kreislinie K in der Kreislinie S enthalten ist. Da die Abbildung $g: \mathbb{C} \setminus \{\emptyset\} \to \mathbb{C} \setminus \{\emptyset\}$ mit ihrer Inversen g^{-1} übereinstimmt, erhält man schließlich $K = (g \circ g)[K] \subset g[S] \subset K$ und damit g[S] = K. \square

Aufgabe 4. Sei $\mathbb{E} = \{ w \in \mathbb{C} \mid |w| < 1 \}$ der offene Einheitskreis, ferner ein Punkt $z \in \mathbb{E}$ beliebig vorgegeben und die gebrochene rationale Abbildung $g : \mathbb{E} \to \mathbb{C}$ durch

$$g(x) = \frac{x-z}{\overline{z}x-1}$$
 für $x \in \mathbb{E}$ definiert.

- 1. Man zeige zuerst, daß die Bildmenge $g[\mathbb{E}] = \{g(x) \in \mathbb{C} \mid x \in \mathbb{E}\}$ in \mathbb{E} liegt!
- 2. Man beweise anschließend, daß g(g(x)) = x für alle $x \in \mathbb{E}$ gilt!
- 3. Man weise schließlich nach, daß $g : \mathbb{E} \to \mathbb{E}$ bijektiv ist!



Lösung. 1. Die Abbildung $g: \mathbb{E} \to \mathbb{C}$ ist korrekt definiert, da $|\overline{z}x| = |z||x| < 1$ für alle $z, x \in \mathbb{E}$ gilt. Um zu zeigen, daß $g[\mathbb{E}]$ in \mathbb{E} enthalten ist, betrachtet man

$$g(x) \cdot \overline{g(x)} = \frac{x - z}{\overline{z}x - 1} \cdot \frac{\overline{x} - \overline{z}}{z\overline{x} - 1} = \frac{x\overline{x} - z\overline{x} - \overline{z}x + z\overline{z}}{\overline{z}z\overline{x}x - \overline{z}x - z\overline{x} + 1} = 1 - \frac{(1 - x\overline{x})(1 - z\overline{z})}{(\overline{z}x - 1)(x\overline{z} - 1)}$$

für jedes $x \in \mathbb{E}$. Da die linke Seite sowie Zähler und Nenner des Bruchs auf der rechten Seite jeweils die Form $w\overline{w} = (|w|^2, 0)$ für ein $w \in \mathbb{C}$ besitzen, folgt daraus

$$|g(x)|^2 = 1 - \frac{(1 - |x|^2)(1 - |z|^2)}{|\overline{z}x - 1|^2} < 1$$
 und damit $g(x) \in \mathbb{E}$ für alle $x \in \mathbb{E}$.

2. Desweiteren gilt die Beziehung

$$g(g(x)) = \frac{g(x) - z}{\overline{z}g(x) - 1} = \frac{(x - z) - z(\overline{z}x - 1)}{\overline{z}(x - z) - (\overline{z}x - 1)} = \frac{x(1 - z\overline{z})}{1 - z\overline{z}} = x \quad \text{für alle } x \in \mathbb{E}.$$

3.1. Wird $x \in \mathbb{E}$ beliebig vorgegeben, dann gilt für $w = g(x) \in \mathbb{E}$ stets

$$g(w) = g(g(x)) = x$$

das heißt, $g: \mathbb{E} \to \mathbb{E}$ ist surjektiv.

3.2. Sind $x, y \in \mathbb{E}$ Punkte mit g(x) = g(y), dann ergibt sich aus

$$x = g(g(x)) = g(g(y)) = y,$$

daß $g : \mathbb{E} \to \mathbb{E}$ auch injektiv ist.

Aufgabe 5. Man zeige (mit Hilfe der binomischen und der Moivre-Formel), daß

(1)
$$(\cos 2\alpha, \sin 2\alpha) = (2\cos^2\alpha - 1, 2\sin\alpha\cos\alpha) = (1 - 2\sin^2\alpha, 2\sin\alpha\cos\alpha)$$

(2)
$$(\cos 3\alpha, \sin 3\alpha) = (4\cos^3\alpha - 3\cos\alpha, 3\sin\alpha - 4\sin^3\alpha)$$

für alle $\alpha \in \mathbb{R}$ gilt!

Lösung. 1. Im Falle n=2 liefert die Moivre-Formel für alle $\alpha\in\mathbb{R}$ tatsächlich

$$(\cos 2\alpha, \sin 2\alpha) = (\cos \alpha, \sin \alpha)^2 = (\cos^2 \alpha - \sin^2 \alpha, 2\sin \alpha \cos \alpha)$$
$$= (2\cos^2 \alpha - 1, 2\sin \alpha \cos \alpha) = (1 - 2\sin^2 \alpha, 2\sin \alpha \cos \alpha)$$

unter Benutzung von $\sin^2 \alpha + \cos^2 \alpha = 1$.

2. Für n = 3 ergibt sich mit Hilfe der Moivre-Formel und der binomischen Formel

$$(\cos 3\alpha, \sin 3\alpha) = (\cos \alpha, \sin \alpha)^3 = ((\cos \alpha, 0) + (0, \sin \alpha))^3$$
$$= \binom{3}{0} (0, \sin \alpha)^3 + \binom{3}{1} (\cos \alpha, 0) \cdot (0, \sin \alpha)^2$$
$$+ \binom{3}{2} (\cos \alpha, 0)^2 \cdot (0, \sin \alpha) + \binom{3}{3} (\cos \alpha, 0)^3$$

für alle $\alpha \in \mathbb{R}$. Wegen $(\cos \alpha, 0)^2 = (\cos^2 \alpha, 0)$ und $(\cos \alpha, 0)^3 = (\cos^3 \alpha, 0)$ sowie $(0, \sin \alpha)^2 = (-\sin^2 \alpha, 0)$ und $(0, \sin \alpha)^3 = (0, -\sin^3 \alpha)$ folgt daraus

$$(\cos 3\alpha, \sin 3\alpha) = -(0, \sin^3 \alpha) - 3(\cos \alpha, 0) \cdot (\sin^2 \alpha, 0)$$

$$+ 3(\cos^2 \alpha, 0) \cdot (0, \sin \alpha) + (\cos^3 \alpha, 0)$$

$$= -(0, \sin^3 \alpha) - 3(\cos \alpha \sin^2 \alpha, 0) + 3(0, \cos^2 \alpha \sin \alpha) + (\cos^3 \alpha, 0)$$

$$= ((\cos^2 \alpha - 3\sin^2 \alpha)\cos \alpha, (3\cos^2 \alpha - \sin^2 \alpha)\sin \alpha)$$

$$= (4\cos^3 \alpha - 3\cos \alpha, 3\sin \alpha - 4\sin^3 \alpha)$$

unter Benutzung von $\sin^2 \alpha + \cos^2 \alpha = 1$.

Aufgabe 6. Man berechne jeweils alle Lösungen $u \in \mathbb{C}$ der Gleichung

1.
$$u^2 - (1,3) \cdot u = (4,-3),$$

2.
$$(u + (3, 1))^4 = (16, 0)!$$

Lösung. 1.1. Durch quadratische Ergänzung der linken Seite ergibt sich für die neue Unbekannte $z = u - \frac{1}{2}(1,3) \in \mathbb{C}$ die Gleichung

$$z^2 = \left(u - \frac{1}{2}(1,3)\right)^2 = (4,-3) + \frac{1}{4}(1,3)^2 = (4,-3) + \left(-2,\frac{3}{2}\right) = \left(2,-\frac{3}{2}\right).$$

1.2. Stellt man die rechte Seite $w=(r\cos\alpha,r\sin\alpha)=\left(2,-\frac{3}{2}\right)$ in Polarkoordinaten $r=|w|=\frac{5}{2}$ und $\alpha\in[\pi,2\pi]$ dar, dann sind

$$z_0 = \sqrt{r} \left(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2} \right) \in \mathbb{C} \text{ und } z_1 = \sqrt{r} \left(\cos(\pi + \frac{\alpha}{2}), \sin(\pi + \frac{\alpha}{2}) \right) = -z_0 \in \mathbb{C}$$

die beiden Lösungen der Gleichung $z^2=w$. Der Punkt $\left(\cos\frac{\alpha}{2},\sin\frac{\alpha}{2}\right)$ kann wegen der Lage des Winkels $\frac{\alpha}{2}\in\left[\frac{\pi}{2},\pi\right]$ eindeutig aus $\left(\cos\alpha,\sin\alpha\right)=\left(\frac{4}{5},-\frac{3}{5}\right)$ mit Hilfe der beiden Beziehungen $1+\cos\alpha=2\cos^2\frac{\alpha}{2}$ und $\sin\alpha=2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ bestimmt werden:

Aus $2\cos^2\frac{\alpha}{2} = 1 + \cos\alpha = \frac{9}{5}$ folgt sofort $\cos^2\frac{\alpha}{2} = \frac{9}{10}$ und somit $\cos\frac{\alpha}{2} = -\frac{3}{\sqrt{10}}$ wegen $\frac{\alpha}{2} \in \left[\frac{\pi}{2}, \pi\right]$. Somit ergibt sich aus $2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = \sin\alpha = -\frac{3}{5}$ schließlich $\sin\frac{\alpha}{2} = \frac{1}{\sqrt{10}}$, das heißt, die Gleichung $z^2 = w$ hat die beiden Lösungen

$$z_0 = \frac{\sqrt{5}}{\sqrt{2}} \frac{1}{\sqrt{10}} (-3, 1) = \frac{1}{2} (-3, 1) \in \mathbb{C} \text{ und } z_1 = -z_0 = \frac{1}{2} (3, -1) \in \mathbb{C}.$$

1.3. Somit besitzt die Gleichung $u^2 - (1,3) \cdot u = (4,-3)$ die Lösungen

$$u_0 = \frac{1}{2}(1,3) + z_0 = \frac{1}{2}(1,3) + \frac{1}{2}(-3,1) = (-1,2) \in \mathbb{C},$$

 $u_1 = \frac{1}{2}(1,3) + z_1 = \frac{1}{2}(1,3) + \frac{1}{2}(3,-1) = (2,1) \in \mathbb{C}.$

2. Die neue Variable $v=\frac{1}{2}u+\frac{1}{2}(3,1)\in\mathbb{C}$ erfüllt die Gleichung $v^4=\mathbb{1}$, welche die vierten Einheitswurzeln $v_k=\left(\cos\frac{\pi k}{2},\sin\frac{\pi k}{2}\right)\in\mathbb{C}$ für $k\in\{0,1,2,3\}$ als Lösungen besitzt. Wegen

$$v_0 = (1,0), \quad v_1 = (0,1), \quad v_2 = (-1,0), \quad v_3 = (0,-1)$$

ergeben sich daraus die Lösungen

$$u_0 = 2v_0 - (3, 1) = (2, 0) - (3, 1) = (-1, -1) \in \mathbb{C},$$

$$u_1 = 2v_1 - (3, 1) = (0, 2) - (3, 1) = (-3, 1) \in \mathbb{C},$$

$$u_2 = 2v_2 - (3, 1) = (-2, 0) - (3, 1) = (-5, -1) \in \mathbb{C},$$

$$u_3 = 2v_3 - (3, 1) = (0, -2) - (3, 1) = (-3, -3) \in \mathbb{C},$$

der Gleichung $(u + (3, 1))^4 = (16, 0)$.

Aufgabe 7. Man bestimme jeweils alle Lösungen $u \in \mathbb{C}$ der Gleichung

1.
$$u^2 - (2,3) \cdot u = (0,-6),$$

2.
$$(u - (1, 1))^3 = (0, 27)!$$

Lösung. 1.1. Durch quadratische Ergänzung der linken Seite ergibt sich für die neue Unbekannte $z = u - \frac{1}{2}(2,3) \in \mathbb{C}$ die Gleichung

$$z^2 = \left(u - \frac{1}{2}(2,3)\right)^2 = (0,-6) + \frac{1}{4}(2,3)^2 = (0,-6) + \left(-\frac{5}{4},3\right) = \left(-\frac{5}{4},-3\right).$$

1.2. Stellt man die rechte Seite $w=(r\cos\alpha,r\sin\alpha)=\left(-\frac{5}{4},-3\right)$ in Polarkoordinaten $r=|w|=\frac{13}{4}$ und $\alpha\in[\pi,2\pi]$ dar, dann sind

$$z_0 = \sqrt{r} \left(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2} \right) \in \mathbb{C} \text{ und } z_1 = \sqrt{r} \left(\cos(\pi + \frac{\alpha}{2}), \sin(\pi + \frac{\alpha}{2}) \right) = -z_0 \in \mathbb{C}$$

die beiden Lösungen der Gleichung $z^2=w$. Der Punkt $\left(\cos\frac{\alpha}{2},\sin\frac{\alpha}{2}\right)$ kann wegen der Lage des Winkels $\frac{\alpha}{2}\in\left[\frac{\pi}{2},\pi\right]$ eindeutig aus $\left(\cos\alpha,\sin\alpha\right)=\left(-\frac{5}{13},-\frac{12}{13}\right)$ mit Hilfe der Beziehungen $\cos\alpha=2\cos^2\frac{\alpha}{2}-1$ und $\sin\alpha=2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ bestimmt werden:

Aus $2\cos^2\frac{\alpha}{2} = 1 + \cos\alpha = \frac{8}{13}$ folgt sofort $\cos^2\frac{\alpha}{2} = \frac{4}{13}$ und somit $\cos\frac{\alpha}{2} = -\frac{2}{\sqrt{13}}$ wegen $\frac{\alpha}{2} \in \left[\frac{\pi}{2}, \pi\right]$. Somit ergibt sich aus $2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = \sin\alpha = -\frac{12}{13}$ schließlich auch noch $\sin\frac{\alpha}{2} = \frac{3}{\sqrt{13}}$, das heißt, die Gleichung $z^2 = w$ hat die beiden Lösungen

$$z_0 = \frac{\sqrt{13}}{2} \frac{1}{\sqrt{13}} (-2,3) = \frac{1}{2} (-2,3) \in \mathbb{C} \text{ und } z_1 = -z_0 = \frac{1}{2} (2,-3) \in \mathbb{C}.$$

1.3. Somit besitzt die Gleichung $u^2 - (2,3) \cdot u = (0,-6)$ die Lösungen

$$u_0 = \frac{1}{2}(2,3) + z_0 = \frac{1}{2}(2,3) + \frac{1}{2}(-2,3) = (0,3) \in \mathbb{C},$$

 $u_1 = \frac{1}{2}(2,3) + z_1 = \frac{1}{2}(2,3) + \frac{1}{2}(2,-3) = (2,0) \in \mathbb{C}.$

2. Für die neue Variable $z = \frac{1}{3}u - \frac{1}{3}(1,1) \in \mathbb{C}$ ergibt sich offensichtlich die Gleichung $z^3 = (0,1) = (\cos \frac{\pi}{2}, \sin \frac{\pi}{2})$, die die Lösungen

$$z_k = \left(\cos\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right), \sin\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right)\right) \in \mathbb{C}$$
 für $k \in \{0, 1, 2\}$

besitzt. Wegen $z_0 = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right) = \left(\frac{1}{2}\sqrt{3}, \frac{1}{2}\right), z_1 = \left(\cos\frac{5\pi}{6}, \sin\frac{5\pi}{6}\right) = \left(-\frac{1}{2}\sqrt{3}, \frac{1}{2}\right)$ und $z_2 = \left(\cos\frac{3\pi}{2}, \sin\frac{3\pi}{2}\right) = (0, -1)$ ergeben sich daraus die Lösungen

$$u_0 = 3z_0 + (1,1) = \left(\frac{3}{2}\sqrt{3}, \frac{3}{2}\right) + (1,1) = \left(1 + \frac{3}{2}\sqrt{3}, \frac{5}{2}\right) \in \mathbb{C},$$

$$u_1 = 3z_1 + (1,1) = \left(-\frac{3}{2}\sqrt{3}, \frac{3}{2}\right) + (1,1) = \left(1 - \frac{3}{2}\sqrt{3}, \frac{5}{2}\right) \in \mathbb{C},$$

$$u_2 = 3z_2 + (1,1) = (0,-3) + (1,1) = (1,-2) \in \mathbb{C}$$

der Gleichung $(u - (1, 1))^3 = (0, 27)$.

Aufgabe 8. Sei $\mathbb{K}_5 = \{v_0, v_1, v_2, v_3, v_4\}$ die Menge der fünften Einheitswurzeln

$$v_k = \left(\cos\frac{2\pi k}{5}, \sin\frac{2\pi k}{5}\right) \in \mathbb{C}$$
 für $k \in \{0, 1, 2, 3, 4\}.$

Werden *Addition* und *Multiplikation* dadurch eingeführt, indem man für alle $k, \ell \in \{0, 1, 2, 3, 4\}$ jeweils *Summe* $v_k \oplus v_\ell = v_1^{k+\ell} \in \mathbb{C}$ und *Produkt* $v_k \odot v_\ell = v_1^{k\ell} \in \mathbb{C}$ definiert, so zeige man, daß \mathbb{K}_5 mit diesen Abbildungen einen Körper bildet!

Lösung. Aufgrund der Tatsache, daß die beiden Winkelfunktionen die Periode 2π haben, gilt $\left(\cos\frac{2\pi n}{5},\sin\frac{2\pi n}{5}\right) \in \mathbb{K}_5$ für alle ganzen Zahlen $n \in \mathbb{Z}$. Somit führt die angegebene Addition bzw. Multiplikation nicht aus der Menge \mathbb{K}_5 heraus, denn für alle Indizes $k, \ell \in \{0, 1, 2, 3, 4\}$ gilt wegen der Moivre-Formel

$$v_k \oplus v_\ell = v_1^{k+\ell} = \left(\cos\frac{2\pi(k+\ell)}{5}, \sin\frac{2\pi(k+\ell)}{5}\right) \in \mathbb{K}_5,$$

$$v_k \odot v_\ell = v_1^{k\ell} = \left(\cos\frac{2\pi k\ell}{5}, \sin\frac{2\pi k\ell}{5}\right) \in \mathbb{K}_5.$$

Mit Hilfe dieser Darstellung kann man leicht alle Summen und Produkte von Elementen aus \mathbb{K}_5 berechnen und jeweils in den Tafeln

\oplus	v_0	v_1	v_2	v_3	v_4	\odot	v_{0}	v_1	v_2	v_3	v_4
				v_3				v_{0}			
				v_4			l	v_1			
	l			v_{0}				v_2			
	ı			v_1			l	v_3			
v_4	v_4	v_{0}	v_1	v_2	v_3	v_4	v_{0}	v_4	v_3	v_2	v_1

zusammenfassen sowie die Gültigkeit der Körperaxiome überprüfen:

- 1. Es gilt $v_k \oplus (v_\ell \oplus v_m) = v_1^{k+(\ell+m)} = v_1^{(k+\ell)+m} = (v_k \oplus v_\ell) \oplus v_m$ für alle Elemente $v_k, v_\ell, v_m \in \mathbb{K}_5$.
 - 2. Für alle $v_k, v_\ell \in \mathbb{K}_5$ gilt $v_k \oplus v_\ell = v_1^{k+\ell} = v_1^{\ell+k} = v_\ell \oplus v_k$.
 - 3. Für $v_0 \in \mathbb{K}_5$ gilt $v_0 \oplus v_k = v_1^{0+k} = v_1^k = v_k$ für jedes $v_k \in \mathbb{K}_5$.
- 4. Aus der Tafel für die Addition entnimmt man zeilenweise, daß zu jedem $v_k \in \mathbb{K}_5$ ein $v_\ell \in \mathbb{K}_5$ existiert, so daß $v_k \oplus v_\ell = v_0$ gilt.
 - 5. Für alle $v_k, v_\ell, v_m \in \mathbb{K}_5$ gilt $v_k \odot (v_\ell \odot v_m) = v_1^{k(\ell m)} = v_1^{(k\ell)m} = (v_k \odot v_\ell) \odot v_m$.
 - 6. Für alle v_k , $v_\ell \in \mathbb{K}_5$ gilt $v_k \odot v_\ell = v_1^{k\ell} = v_1^{\ell k} = v_\ell \odot v_k$.
 - 7. Für $v_1 \neq v_0$ gilt $v_1 \odot v_k = v_1^{1 \cdot k} = v_1^k = v_k$ für jedes $v_k \in \mathbb{K}_5$.
- 8. Aus der Tafel für die Multiplikation entnimmt man zeilenweise, daß es für jedes $v_k \in \mathbb{K}_5$ mit $k \neq 0$ ein $v_\ell \in \mathbb{K}_5$ gibt, so daß $v_k \odot v_\ell = v_1$ gilt.
- 9. Es gilt $v_k \odot (v_\ell \oplus v_m) = v_1^{k(\ell+m)} = v_1^{k\ell+km} = (v_k \odot v_\ell) \oplus (v_k \odot v_m)$ für alle Elemente $v_k, v_\ell, v_m \in \mathbb{K}_5$.

Aufgabe 9. Man zeige, daß sich jeder rationale Punkt $v=(x,y)\in\mathbb{Q}\times\mathbb{Q}$ der Einheitskreislinie $\{v\in\mathbb{C}\mid |v|^2=1\}$ in der Form

$$v = \left(\frac{a^2 - b^2}{a^2 + b^2}, \frac{2ab}{a^2 + b^2}\right)$$
 oder $v = \left(\frac{2ab}{a^2 + b^2}, \frac{a^2 - b^2}{a^2 + b^2}\right)$

darstellen läßt, wobei $a, b \in \mathbb{Z}$ ganze Zahlen mit $(a, b) \neq \emptyset$ sind!

Lösung. 1. Sei $v=(x,y)\in\mathbb{Q}\times\mathbb{Q}$ mit $|v|^2=x^2+y^2=1$ vorgegeben. Im Falle v=-1 liefern a=0 und b=1 die gewünschte Darstellung. Anderenfalls gilt stets $v+1\neq 0$ und somit auch $\overline{v}+1\neq 0$. Aufgrund der Beziehung $v\overline{v}=(|v|^2,0)=1$ ergibt sich $v+1=v+v\overline{v}=v(\overline{v}+1)$ und somit $v=(v+1)(\overline{v}+1)^{-1}$.

Wegen $v + 1 = (x + 1, y) \in \mathbb{Q} \times \mathbb{Q}$ und $v + 1 \neq 0$ kann man ganze Zahlen $a, b \in \mathbb{Z}$ und $d \in \mathbb{N}$ mit $(a, b) \neq 0$ derart finden, daß sich die Brüche $x + 1 = \frac{a}{d} \in \mathbb{Q}$ und $y = \frac{b}{d} \in \mathbb{Q}$ auf denselben Nenner bringen lassen. Daraus ergibt sich $v + 1 = \left(\frac{a}{d}, \frac{b}{d}\right)$, also auch $\overline{v} + 1 = \left(\frac{a}{d}, -\frac{b}{d}\right)$ und somit

$$v = \frac{v+1}{\overline{v}+1} = \frac{(a,b)}{(a,-b)} = (a,b) \cdot \left(\frac{a}{a^2+b^2}, \frac{b}{a^2+b^2}\right) = \left(\frac{a^2-b^2}{a^2+b^2}, \frac{2ab}{a^2+b^2}\right).$$

Sind also $x, y \in \mathbb{Q}$ rationale Zahlen mit $x^2 + y^2 = 1$, dann gibt es zwei ganze Zahlen $a, b \in \mathbb{Z}$ mit $(a, b) \neq \emptyset$ und der Darstellung

$$(x,y) = \left(\frac{a^2 - b^2}{a^2 + b^2}, \frac{2ab}{a^2 + b^2}\right)$$
 oder auch $(x,y) = \left(\frac{2ab}{a^2 + b^2}, \frac{a^2 - b^2}{a^2 + b^2}\right)$.

2. Umgekehrt gilt für alle $a, b \in \mathbb{Z}$ mit $(a, b) \neq \emptyset$ stets

$$\left(\frac{a^2 - b^2}{a^2 + b^2}\right)^2 + \left(\frac{2ab}{a^2 + b^2}\right)^2 = \frac{a^4 - 2a^2b^2 + b^4 + 4a^2b^2}{(a^2 + b^2)^2} = \frac{(a^2 + b^2)^2}{(a^2 + b^2)^2} = 1,$$

das heißt, die komplexen Zahlen

$$v = \left(\frac{a^2 - b^2}{a^2 + b^2}, \frac{2ab}{a^2 + b^2}\right) \in \mathbb{Q} \times \mathbb{Q} \quad \text{oder} \quad v = \left(\frac{2ab}{a^2 + b^2}, \frac{a^2 - b^2}{a^2 + b^2}\right) \in \mathbb{Q} \times \mathbb{Q}$$

erfüllen stets die Bedingung $|v|^2 = 1$.

Aufgabe 10. Man untersuche, ob es eine Kreislinie $\{v \in \mathbb{C} \mid |v-v_0|^2 = r^2\}$ um einen Mittelpunkt $v_0 \in \mathbb{C}$ mit einem Radius r > 0 oder eine Gerade $\{w_0 + \lambda w \in \mathbb{C} \mid \lambda \in \mathbb{R}\}$ durch einen Aufpunkt $w_0 \in \mathbb{C}$ mit einer Richtung $w \in \mathbb{C}$ gibt, welche jeweils durch die drei verschiedenen Punkte

1.
$$v_1 = (3, -3) \in \mathbb{C}$$
, $v_2 = (10, 4) \in \mathbb{C}$ sowie $v_3 = (6, 6) \in \mathbb{C}$ bzw.

2.
$$v_1 = (1, -1) \in \mathbb{C}, v_2 = (5, 7) \in \mathbb{C}$$
 sowie $v_3 = (2, 1) \in \mathbb{C}$

hindurchgeht und bestimme gegebenfalls $v_0 \in \mathbb{C}$ und r > 0 bzw. $w_0 \in \mathbb{C}$ und $w \in \mathbb{C}$!

Lösung. 1. Man versucht zunächst, die kartesischen Koordinaten $a_0, b_0 \in \mathbb{R}$ eines Mittelpunktes $v_0 = (a_0, b_0) \in \mathbb{C}$ und einen Radius r > 0 aus den drei Gleichungen

$$(a_1 - a_0)^2 + (b_1 - b_0)^2 = r^2$$
$$(a_2 - a_0)^2 + (b_2 - b_0)^2 = r^2$$
$$(a_3 - a_0)^2 + (b_3 - b_0)^2 = r^2$$

zu bestimmen, die aus der Kreisgleichung $|v-v_0|^2=r^2$ durch Einsetzen der Koordinaten $a_k,\,b_k\in\mathbb{R}$ der vorgegebenen Punkte $v_k=(a_k,b_k)\in\mathbb{C}$ für $k\in\{1,2,3\}$ entstehen:

1.1. Für die Punkte $(a_1, b_1) = (3, -3)$, $(a_2, b_2) = (10, 4)$ und $(a_3, b_3) = (6, 6)$ ergibt sich nach Ausmultiplikation und Zusammenfassung das Gleichungssystem

$$-6a_0 + 6b_0 = r^2 - a_0^2 - b_0^2 - 18$$
$$-20a_0 - 8b_0 = r^2 - a_0^2 - b_0^2 - 116$$
$$-12a_0 - 12b_0 = r^2 - a_0^2 - b_0^2 - 72.$$

Man subtrahiert die erste Zeile von der zweiten und der dritten Zeile und erhält

$$-6a_0 + 6b_0 = r^2 - a_0^2 - b_0^2 - 18$$
$$-14a_0 - 14b_0 = -98$$
$$-6a_0 - 18b_0 = -54.$$

Das Teilsystem aus zweiter und dritter Gleichung hat $v_0 = (a_0, b_0) = (6, 1)$ als Lösung, welche somit den Mittelpunkt des gesuchten Kreises darstellt. Sein Radius r = 5 ergibt sich aus der Kreisgleichung $|v_3 - v_0|^2 = r^2$, wenn man den Punkt $v_3 = (a_3, b_3) = (6, 6)$ einsetzt.

1.2. Sei $\{v_3 + \lambda(v_2 - v_3) \in \mathbb{C} \mid \lambda \in \mathbb{R}\}$ die Gerade, welche durch die Punkte $v_3 = (6, 6)$ und $v_2 = (10, 4)$ läuft. Da es *kein* $\lambda \in \mathbb{R}$ mit

$$v_1 = (3, -3) = (6, 6) + \lambda(4, -2) = v_3 + \lambda(v_2 - v_3)$$

gibt, liegt der Punkt v_1 nicht auf dieser Geraden.

2.1. Für die Punkte $(a_1, b_1) = (1, -1), (a_2, b_2) = (5, 7)$ und $(a_3, b_3) = (2, 1)$ erhält man nach Ausmultiplikation und Zusammenfassung das Gleichungssystem

$$-2a_0 + 2b_0 = r^2 - a_0^2 - b_0^2 - 2$$

$$-10a_0 - 14b_0 = r^2 - a_0^2 - b_0^2 - 74$$

$$-4a_0 - 2b_0 = r^2 - a_0^2 - b_0^2 - 5.$$

Man subtrahiert die erste Zeile von der zweiten und der dritten Zeile und erhält

$$-2a_0 + 2b_0 = r^2 - a_0^2 - b_0^2 - 2$$
$$-8a_0 - 16b_0 = -72$$
$$-2a_0 - 4b_0 = -3.$$

Das Teilsystem aus der zweiten und dritten Gleichung hat keine Lösung $(a_0, b_0) \in \mathbb{C}$. Es gibt somit keine Kreislinie, die durch die drei Punkte v_1, v_2 und v_3 hindurchgeht.

2.2. Sei $\{v_3 + \lambda(v_2 - v_3) \in \mathbb{C} \mid \lambda \in \mathbb{R}\}$ die Gerade, welche durch die Punkte $v_3 = (2, 1)$ und $v_2 = (5, 7)$ verläuft. Da für $\lambda = -\frac{1}{3}$ die Beziehung

$$v_1 = (1, -1) = (2, 1) + \lambda(3, 6) = v_3 + \lambda(v_2 - v_3)$$

gilt, liegt auch der Punkt $v_1 = (1, -1)$ auf dieser Geraden.