Übungsaufgaben 3

Zahlenfolgen und Zahlenreihen

Aufgabe 1. Man zeige, daß die Reihe $\left(\sum_{k=1}^n \prod_{\ell=0}^m \frac{1}{k+\ell}\right)$ reeller Zahlen für beliebig vorgegebenes $m \in \mathbb{N}$ im Grenzprozeß $n \to \infty$ gegen die Summe $\frac{1}{m \cdot m!}$ konvergiert! ©

Lösung. 1. Sei $m \in \mathbb{N}$ beliebig vorgegeben. Quotienten- bzw. Wurzelkriterium versagen bei der Entscheidung, ob die Reihe konvergiert oder nicht. Jedoch ist die direkte Berechnung der Teilsummen durch vorhergehende Zerlegung der Summanden in Teilbrüche möglich: Für jedes $k \in \mathbb{N}$ gilt zunächst

$$\prod_{\ell=0}^{m} \frac{1}{k+\ell} = \frac{k+m}{m} \prod_{\ell=0}^{m} \frac{1}{k+\ell} - \frac{k}{m} \prod_{\ell=0}^{m} \frac{1}{k+\ell} = \frac{1}{m} \prod_{\ell=0}^{m-1} \frac{1}{k+\ell} - \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{k+\ell}.$$

Eine Indexverschiebung im ersten Produkt auf der rechten Seite liefert somit

$$\prod_{\ell=0}^{m} \frac{1}{k+\ell} = \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{k+\ell-1} - \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{k+\ell} \quad \text{für jedes } k \in \mathbb{N}.$$

2. Daraus folgt für jedes $n \in \mathbb{N}$ durch Summation über $k \in \{1, ..., n\}$ und Indexverschiebung in der ersten Summe auf der rechten Seite

$$\sum_{k=1}^{n} \prod_{\ell=0}^{m} \frac{1}{k+\ell} = \frac{1}{m} \sum_{k=1}^{n} \prod_{\ell=1}^{m} \frac{1}{k-1+\ell} - \frac{1}{m} \sum_{k=1}^{n} \prod_{\ell=1}^{m} \frac{1}{k+\ell}$$

$$= \frac{1}{m} \sum_{k=0}^{n-1} \prod_{\ell=1}^{m} \frac{1}{k+\ell} - \frac{1}{m} \sum_{k=1}^{n} \prod_{\ell=1}^{m} \frac{1}{k+\ell} = \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{\ell} - \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{n+\ell}.$$

Wegen der Grenzwertbeziehung

$$0 \le \lim_{n \to \infty} \frac{1}{m} \prod_{\ell=1}^{m} \frac{1}{n+\ell} \le \lim_{n \to \infty} \frac{1}{m(n+1)^m} = 0$$

ergibt sich demzufolge die Konvergenz der Reihe $\left(\sum_{k=1}^n\prod_{\ell=0}^m\frac{1}{k+\ell}\right)$ gegen die Summe

$$\sum_{k=1}^{\infty} \prod_{\ell=0}^{m} \frac{1}{k+\ell} = \frac{1}{m \cdot m!}$$

für jedes festgehaltene $m \in \mathbb{N}$.

Aufgabe 2. Man weise nach, daß die Reihe $\left(\sum_{k=0}^{n} a_k x^{2k}\right)$ bzw. $\left(\sum_{k=0}^{n} b_k x^{2k+1}\right)$ mit den durch $a_k = \frac{(-1)^k}{(2k)!}$ bzw. $b_k = \frac{(-1)^k}{(2k+1)!}$ für $k \in \mathbb{N} \cup \{0\}$ definierten Koeffizienten für jedes $x \in \mathbb{K}$ jeweils absolut gegen eine endliche Summe

(1)
$$c(x) = \sum_{k=0}^{\infty} a_k x^{2k} \in \mathbb{K} \quad \text{bzw.} \quad s(x) = \sum_{k=0}^{\infty} b_k x^{2k+1} \in \mathbb{K}$$

konvergiert und schließe durch Multiplikation solcher Reihen darauf, daß die durch diese Grenzwerte definierten Funktionen $c, s : \mathbb{K} \to \mathbb{K}$ den Additionstheoremen

$$c(x + y) = c(x)c(y) - s(x)s(y)$$
 sowie $s(x + y) = s(x)c(y) + c(x)s(y)$

8

für alle $x, y \in \mathbb{K}$ genügen!

Lösung. 1. Die Reihe $\left(\sum_{k=0}^{n} a_k x^{2k}\right)$ bzw. $\left(\sum_{k=0}^{n} b_k x^{2k+1}\right)$ konvergiert aufgrund des Quotientenkriteriums für jedes $x \in \mathbb{K}$ absolut, denn es gilt

$$\lim_{k \to \infty} \frac{(2k)! |x|^{2k+2}}{(2k+2)! |x|^{2k}} = \lim_{k \to \infty} \frac{|x|^2}{(2k+1)(2k+2)} = 0 < 1$$

bzw.

$$\lim_{k \to \infty} \frac{(2k+1)! |x|^{2k+3}}{(2k+3)! |x|^{2k+1}} = \lim_{k \to \infty} \frac{|x|^2}{(2k+2)(2k+3)} = 0 < 1.$$

2. Die Reihe $\left(\sum_{k=0}^{n} \sum_{m=0}^{k} a_m x^{2m} a_{k-m} y^{2(k-m)}\right)$ der Cauchy-Produkte konvergiert wegen Schritt 1 für alle $x, y \in \mathbb{K}$ absolut gegen das Produkt

$$c(x)c(y) = \sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^m}{(2m)!} x^{2m} \frac{(-1)^{k-m}}{(2k-2m)!} y^{2k-2m}$$
$$= 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} \sum_{m=0}^{k} \binom{2k}{2m} x^{2m} y^{2k-2m}$$

der durch (1) definierten Summen.

3. Die Reihe $\left(\sum_{k=0}^n \sum_{m=0}^k b_m x^{2m+1} b_{k-m} y^{2(k-m)+1}\right)$ der Cauchy-Produkte konvergiert wegen Schritt 1 für alle $x, y \in \mathbb{K}$ absolut gegen das Produkt

$$s(x)s(y) = \sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^m}{(2m+1)!} x^{2m+1} \frac{(-1)^{k-m}}{(2k-2m+1)!} y^{2k-2m+1}$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+2)!} \sum_{m=0}^{k} \binom{2k+2}{2m+1} x^{2m+1} y^{2k+2-(2m+1)}$$
$$= -\sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} \sum_{m=0}^{k-1} \binom{2k}{2m+1} x^{2m+1} y^{2k-(2m+1)}$$

der durch (1) definierten Summen, wobei der Index k verschoben wurde.

4. Aus Schritt 2 und 3 folgt durch Subtraktion

$$c(x)c(y) - s(x)s(y) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} \sum_{\ell=0}^{2k} {2k \choose \ell} x^{\ell} y^{2k-\ell}$$
$$= 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} (x+y)^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (x+y)^{2k} = c(x+y)$$

aufgrund der binomischen Formel.

5. Die Reihe $\left(\sum_{k=0}^{n}\sum_{m=0}^{k}b_{m}x^{2m+1}a_{k-m}y^{2(k-m)}\right)$ der Cauchy-Produkte konvergiert wegen Schritt 1 für alle $x, y \in \mathbb{K}$ absolut gegen das Produkt

$$s(x)c(y) = \sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^m}{(2m+1)!} x^{2m+1} \frac{(-1)^{k-m}}{(2k-2m)!} y^{2k-2m}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \sum_{m=0}^{k} \binom{2k+1}{2m+1} x^{2m+1} y^{2k+1-(2m+1)}$$

der durch (1) definierten Summen.

6. Die Reihe $\left(\sum_{k=0}^n \sum_{m=0}^k a_m x^{2m} b_{k-m} y^{2(k-m)+1}\right)$ der Cauchy-Produkte konvergiert wegen Schritt 1 für alle $x, y \in \mathbb{K}$ absolut gegen das Produkt

$$c(x)s(y) = \sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^m}{(2m)!} x^{2m} \frac{(-1)^{k-m}}{(2k-2m+1)!} y^{2k-2m+1}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \sum_{m=0}^{k} \binom{2k+1}{2m} x^{2m} y^{2k+1-2m}$$

der durch (1) definierten Summen.

7. Aus Schritt 5 und 6 erhält man durch Addition

$$s(x)c(y) + c(x)s(y) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \sum_{\ell=0}^{2k+1} {2k+1 \choose \ell} x^{\ell} y^{2k+1-\ell}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (x+y)^{2k+1} = s(x+y)$$

mit Hilfe der binomischen Formel.

Aufgabe 3. Seien reelle Zahlen $a_1, b_1 \in \mathbb{R}$ mit $0 < a_1 \le b_1$ beliebig vorgegeben und die beiden Folgen (a_n) und (b_n) reeller Zahlen durch

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
 sowie $b_{n+1} = \frac{a_n + b_n}{2}$ für $n \in \mathbb{N}$ definiert.

1. Man weise nach, daß die beiden Relationen

$$0 < a_n \le a_{n+1} \le b_{n+1} \le b_n$$
 und $a_n b_n = a_1 b_1$ für alle $n \in \mathbb{N}$ gelten!

2. Man schließe daraus, daß die beiden Folgen (a_n) und (b_n) jeweils gegen denselben Grenzwert $\sqrt{a_1b_1}$ konvergieren!

Lösung. 1.1. Die beiden Relationen $0 < a_n \le b_n$ und $a_n b_n = a_1 b_1$ sollen induktiv über $n \in \mathbb{N}$ bewiesen werden:

Induktionsanfang: Im Falle n = 1 gilt $0 < a_n \le b_n$ und $a_n b_n = a_1 b_1$.

Induktionsschritt: Unter der Annahme, daß $0 < a_n \le b_n$ sowie $a_n b_n = a_1 b_1$ für ein $n \in \mathbb{N}$ gelten, sollen die Relationen $0 < a_{n+1} \le b_{n+1}$ und $a_{n+1} b_{n+1} = a_1 b_1$ hergeleitet werden: Wegen der Relation

$$(a_n + b_n)^2 = a_n^2 + 2a_nb_n + b_n^2 = (a_n - b_n)^2 + 4a_nb_n \ge 4a_nb_n$$

und der Induktionsvoraussetzung $0 < a_n \le b_n$ erhält man somit

$$0 < a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \le \frac{a_n + b_n}{2} = b_{n+1}.$$

Die Induktionsvoraussetzung $a_n b_n = a_1 b_1$ liefert außerdem

$$a_{n+1}b_{n+1} = \frac{2a_nb_n}{a_n + b_n} \cdot \frac{a_n + b_n}{2} = a_nb_n = a_1b_1,$$

womit beide Induktionsbehauptungen bewiesen sind.

1.2. Aus $0 < a_n \le b_n$ folgen für jedes $n \in \mathbb{N}$ die Beziehungen

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \ge \frac{2a_n b_n}{b_n + b_n} = a_n$$
 und $b_{n+1} = \frac{a_n + b_n}{2} \le \frac{b_n + b_n}{2} = b_n$.

2.1. Die Ergebnisse aus Schritt 1 zeigen, daß die Folge (a_n) monoton wächst und nach oben durch $b_1 > 0$ beschränkt ist und die Folge (b_n) monoton fällt und nach unten durch $a_1 > 0$ beschränkt ist. Damit konvergiert einerseits die Folge (a_n) gegen einen Grenzwert $a \in \mathbb{R}$ mit $a_1 \le a \le b_1$ und andererseits die Folge (b_n) gegen einen Grenzwert $b \in \mathbb{R}$ mit $a_1 \le b \le b_1$. Durch den Grenzprozeß $n \to \infty$ in

$$b_{n+1} = \frac{a_n + b_n}{2}$$
 ergibt sich $b = \frac{a+b}{2}$ und demzufolge $a = b$.

2.2. Der Grenzprozeß $n \to \infty$ liefert $ab = \lim_{n \to \infty} a_n b_n = a_1 b_1$ und somit wegen a = b > 0 schließlich $a = b = \sqrt{a_1 b_1}$ als Grenzwert beider Folgen (a_n) und (b_n) . \square

Aufgabe 4. Man weise nach, daß die Reihe $\left(\sum_{k=0}^{n} \frac{1}{(3k+1)(3k+4)}\right)$ reeller Zahlen konvergiert und berechne ihre Summe!

Lösung. Sowohl Quotienten- als auch Wurzelkriterium versagen bei der Entscheidung, ob die Reihe konvergiert oder nicht. Jedoch ist die direkte Berechnung der Teilsummen durch vorhergehende Zerlegung der Summanden in Teilbrüche erfolgreich: Im Teilbruchansatz

$$\frac{1}{(3k+1)(3k+4)} = \frac{a}{3k+1} + \frac{b}{3k+4} \quad \text{für } k \in \mathbb{N} \cup \{0\}$$

sollen die unbekannten Koeffizienten $a \in \mathbb{R}$ und $b \in \mathbb{R}$ bestimmt werden: Es gilt dann (3k+4)a+(3k+1)b=1 für alle $k \in \mathbb{N} \cup \{0\}$, woraus sich durch Koeffizientenvergleich vor den Termen gleicher Ordnung in k sofort a+b=0 sowie 4a+b=1 ergibt. Daraus folgt $a=\frac{1}{3}$ und $b=-\frac{1}{3}$. Mit Hilfe einer Indexverschiebung folgt

$$\sum_{k=0}^{n} \frac{1}{(3k+1)(3k+4)} = \frac{1}{3} \sum_{k=0}^{n} \frac{1}{3k+1} - \frac{1}{3} \sum_{k=0}^{n} \frac{1}{3k+4}$$
$$= \frac{1}{3} \sum_{k=0}^{n} \frac{1}{3k+1} - \frac{1}{3} \sum_{k=1}^{n+1} \frac{1}{3k+1} = \frac{1}{3} - \frac{1}{3(3n+4)}$$

für alle $n \in \mathbb{N}$. Wegen $\lim_{n \to \infty} \frac{1}{3(3n+4)} = 0$ konvergiert die Reihe $\left(\sum_{k=0}^{n} \frac{1}{(3k+1)(3k+4)}\right)$ gegen die Summe $\sum_{k=0}^{\infty} \frac{1}{(3k+1)(3k+4)} = \frac{1}{3}$.

Aufgabe 5. Man zeige, daß die durch

$$a_{\ell} = \left(1 + \frac{1}{\ell}\right)^{\ell}$$
 bzw. $b_{\ell} = \sum_{m=0}^{\ell} \frac{1}{m!}$ für $\ell \in \mathbb{N}$

definierten Folgen (a_{ℓ}) und (b_{ℓ}) reeller Zahlen konvergieren und den gleichen Grenzwert besitzen!

Lösung. 1. Da für $\ell \in \mathbb{N}$ stets $1 - \frac{1}{\ell^2} \ge 0$ gilt, liefert die Bernoulli-Ungleichung

$$\left(1+\frac{1}{\ell}\right)^{\ell}\left(1-\frac{1}{\ell}\right)^{\ell} = \left(1-\frac{1}{\ell^2}\right)^{\ell} \ge 1-\frac{1}{\ell} \quad \text{und} \quad a_{\ell} = \left(1+\frac{1}{\ell}\right)^{\ell} \ge \left(1-\frac{1}{\ell}\right)^{1-\ell}.$$

Daraus folgt das monotone Wachstum der Folge (a_{ℓ}) vermöge

$$a_{\ell} \ge \left(1 - \frac{1}{\ell}\right)^{1 - \ell} = \left(\frac{\ell}{\ell - 1}\right)^{\ell - 1} = \left(1 + \frac{1}{\ell - 1}\right)^{\ell - 1} = a_{\ell - 1} \quad \text{für alle } \ell \in \mathbb{N}, \, \ell \ge 2.$$

Da für alle $\ell \in \mathbb{N}$ offenbar auch $b_{\ell+1} = \sum_{m=0}^{\ell+1} \frac{1}{m!} = b_{\ell} + \frac{1}{(\ell+1)!} \ge b_{\ell}$ gilt, ist auch die Folge (b_{ℓ}) monoton wachsend.

2. Für alle $\ell \in \mathbb{N}$ folgt aufgrund der binomischen Formel

$$a_{\ell} = \left(1 + \frac{1}{\ell}\right)^{\ell} = \sum_{m=0}^{\ell} {\ell \choose m} \frac{1}{\ell^m} = 1 + \sum_{m=1}^{\ell} \frac{1}{\ell^m} \prod_{k=1}^{m} \frac{\ell - k + 1}{k}$$

$$= 1 + \sum_{m=1}^{\ell} \frac{1}{m!} \prod_{k=1}^{m} \frac{\ell - k + 1}{\ell} = 1 + \sum_{m=1}^{\ell} \frac{1}{m!} \prod_{k=1}^{m} \left(1 - \frac{k - 1}{\ell}\right) \le \sum_{m=0}^{\ell} \frac{1}{m!} = b_{\ell}.$$

3. Daraus ergibt sich wegen $m! \ge 2^{m-1}$ und der geometrischen Summenformel

$$a_{\ell} \le b_{\ell} = 1 + \sum_{m=1}^{\ell} \frac{1}{m!} \le 1 + \sum_{m=1}^{\ell} \frac{1}{2^{m-1}} = 1 + \sum_{m=0}^{\ell-1} \frac{1}{2^m} = 1 + 2\left(1 - \frac{1}{2^{\ell}}\right) \le 3$$

für alle $\ell \in \mathbb{N}$. Also konvergieren die monoton wachsenden und beschränkten Folgen (a_{ℓ}) und (b_{ℓ}) jeweils gegen einen Grenzwert $a \in \mathbb{R}$ bzw. $b \in \mathbb{R}$ mit $a \le b \le 3$.

4. Aus der Rechnung von Schritt 2 ist ersichtlich, daß

$$1 + \sum_{m=1}^{n} \frac{1}{m!} \prod_{k=1}^{m} \left(1 - \frac{k-1}{\ell} \right) \le 1 + \sum_{m=1}^{\ell} \frac{1}{m!} \prod_{k=1}^{m} \left(1 - \frac{k-1}{\ell} \right) = a_{\ell}$$

für alle $n, \ell \in \mathbb{N}$ mit $n \leq \ell$ gilt. Hält man $n \in \mathbb{N}$ fest, dann folgt daraus wegen

$$\lim_{\ell \to \infty} \left(1 + \sum_{m=1}^{n} \frac{1}{m!} \prod_{k=1}^{m} \left(1 - \frac{k-1}{\ell} \right) \right) = 1 + \sum_{m=1}^{n} \frac{1}{m!} = b_n$$

und $\lim_{\ell\to\infty} a_\ell = a$ im Grenzprozeß $\ell\to\infty$ die Relation $b_n\le a$ für jedes $n\in\mathbb{N}$. Somit liefert Schritt 3 schließlich $b=\lim_{n\to\infty} b_n\le a\le b$, also a=b. Dieser Grenzwert wird als *Euler-Zahl* $e\in\mathbb{R}$ bezeichnet.

Aufgabe 6. Sei $a_1 \in \mathbb{R}$ mit $a_1 \ge 0$ vorgeben und eine Folge (a_k) reeller Zahlen durch $a_{k+1} = \sqrt{a_k + 2}$ für $k \in \mathbb{N}$ definiert. Man zeige, daß die Folge (a_k) monoton, beschränkt und damit konvergent ist und berechne ihren Grenzwert!

Lösung. 1. Man zeigt induktiv, daß $a_k \ge 0$ für jedes $k \in \mathbb{N}$ gilt, denn nach Voraussetzung gilt $a_1 \ge 0$. Gilt $a_k \ge 0$ für ein $k \in \mathbb{N}$, dann folgt daraus $a_{k+1} = \sqrt{a_k + 2} \ge 0$.

2. Außerdem ergibt sich aus der Definition $a_{k+1} = \sqrt{a_k + 2}$ die Beziehung

$$(a_{k+1}-2)(a_{k+1}+2) = a_{k+1}^2 - 4 = (a_k+2) - 4 = a_k - 2$$
 für alle $k \in \mathbb{N}$,

was zu einer Unterscheidung der beiden Fälle $a_1 \ge 2$ und $0 \le a_1 \le 2$ Anlaß gibt:

- 2.1. Im Falle $a_1 \ge 2$ folgt aus der induktiven Annahme, daß $a_k 2 \ge 0$ für ein $k \in \mathbb{N}$ gilt, wegen Schritt 1 und 2 stets $a_{k+1} 2 = \frac{a_k 2}{a_{k+1} + 2} \ge 0$, das heißt, es gilt im Falle $a_1 \ge 2$ auch $a_k \ge 2$ für jedes $k \in \mathbb{N}$. Daraus folgt $a_{k+1} 2 = \frac{a_k 2}{a_{k+1} + 2} \le a_k 2$, also $a_{k+1} \le a_k$ für jedes $k \in \mathbb{N}$.
- 2.2. Im Falle $0 \le a_1 \le 2$ folgt aus der induktiven Annahme, daß $a_k 2 \le 0$ für ein $k \in \mathbb{N}$ gilt, wegen Schritt 1 und 2 stets $a_{k+1} 2 = \frac{a_k 2}{a_{k+1} + 2} \le 0$, also im Falle $0 \le a_1 \le 2$ auch $0 \le a_k \le 2$ für jedes $k \in \mathbb{N}$. Daraus folgt $a_{k+1} 2 = \frac{a_k 2}{a_{k+1} + 2} \ge a_k 2$ und somit $a_{k+1} \ge a_k$ für alle $k \in \mathbb{N}$.
- 3. Somit ist gezeigt, daß (a_k) in jedem Falle eine monotone, beschränkte und somit konvergente Folge reeller Zahlen ist. Ist $a=\lim_{k\to\infty}a_k\geq 0$ ihr Grenzwert, dann liefert der Grenzprozeß $k\to\infty$ in $a_{k+1}^2=a_k+2$ die Beziehung $a^2=a+2$, das heißt, (a+1)(a-2)=0, woraus wegen $a\geq 0$ schließlich a=2 folgt.

Aufgabe 7. Man zeige, daß die Identität

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \quad \text{für jedes } n \in \mathbb{N} \text{ gilt,}$$

schließe daraus auf die Konvergenz der Reihe $\left(\sum_{k=1}^n \frac{k}{2^k}\right)$ und berechne ihre Summe!

Lösung. 1. Zunächst soll durch vollständige Induktion über $n \in \mathbb{N}$ gezeigt werden, daß die Identität $\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ gilt:

Induktionsanfang: Für n = 1 gilt in der Tat $\sum_{k=1}^{1} \frac{k}{2^k} = \frac{1}{2} = 2 - \frac{3}{2}$.

Induktionsschritt: Unter der Annahme der Induktionsvoraussetzung, daß die Identität für ein $n \in \mathbb{N}$ gilt, soll deren Gültigkeit für n + 1 gezeigt werden: Es gilt

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{n} \frac{k}{2^k} + \frac{n+1}{2^{n+1}} = 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}} = 2 - \frac{n+3}{2^{n+1}},$$

womit der Induktionsbeweis erbracht ist.

2. Da die Folge $\left(\frac{2^n}{n^\ell}\right)$ für jedes $\ell \in \mathbb{Z}$ bestimmt divergent ist und $\lim_{n\to\infty}\frac{2^n}{n^\ell}=\infty$ gilt, folgt daraus $\lim_{n\to\infty}\frac{n^\ell}{2^n}=0$ für alle $\ell \in \mathbb{Z}$ und somit die Konvergenz der Reihe $\left(\sum_{k=1}^n\frac{k}{2^k}\right)$ gegen die Summe $\sum_{k=1}^\infty\frac{k}{2^k}=\lim_{n\to\infty}\left(2-\frac{n+2}{2^n}\right)=2$.

Aufgabe 8. 1. Man weise die Identität

$$\sum_{k=1}^{n} k x^{k-1} = \frac{\mathbb{1} - (n+1)x^n + nx^{n+1}}{(\mathbb{1} - x)^2} \quad \text{für jedes } x \in \mathbb{K}, x \neq 1 \text{ und } n \in \mathbb{N} \text{ nach!}$$

- 2.1. Man zeige, daß die Reihe $\left(\sum_{k=1}^n kx^{k-1}\right)$ für alle $x\in\mathbb{K}$ mit |x|>1 divergiert!
- 2.2. Man beweise, daß die Reihe $\left(\sum_{k=1}^{n} k x^{k-1}\right)$ für jedes $x \in \mathbb{K}$ mit |x| < 1 konvergiert und berechne ihre Summe!

Lösung. 1. Sei $x \in \mathbb{K}$ beliebig gegeben und $n \in \mathbb{N}$. Dann erhält man durch Indexverschiebungen in der ersten und dritten Summe auf der rechten Seite der Identität

$$(1-x)^{2} \cdot \sum_{k=1}^{n} kx^{k-1} = \sum_{k=1}^{n} kx^{k-1} - \sum_{k=1}^{n} 2kx^{k} + \sum_{k=1}^{n} kx^{k+1}$$

$$= \sum_{k=0}^{n-1} (k+1)x^{k} - \sum_{k=1}^{n} 2kx^{k} + \sum_{k=2}^{n+1} (k-1)x^{k}$$

$$= \sum_{k=1}^{n} ((k+1) - 2k + (k-1))x^{k} + 1 - (n+1)x^{n} + nx^{n+1}$$

und somit

$$(\mathbb{1} - x)^2 \cdot \sum_{k=1}^{n} k x^{k-1} = \mathbb{1} - (n+1)x^n + nx^{n+1}.$$

Da im Falle $x \neq 1$ stets $(1-x)^2 \neq 0$ gilt, folgt daraus durch Multiplikation mit $(1-x)^{-2} \in \mathbb{K}$ die Identität

$$\sum_{k=1}^{n} k x^{k-1} = \frac{\mathbb{1} - (n+1)x^n + nx^{n+1}}{(\mathbb{1} - x)^2} \quad \text{für alle } n \in \mathbb{N}.$$

2.1. Im Falle |x| > 1 gilt $\lim_{n \to \infty} |x|^n = \infty$ und $\lim_{n \to \infty} |n(x - 1) - 1| = \infty$, also $\lim_{n \to \infty} |nx^{n+1} - (n+1)x^n| = \lim_{n \to \infty} |x|^n |n(x-1) - 1| = \infty$,

und demnach $\lim_{n\to\infty} \left| \sum_{k=1}^n k x^{k-1} \right| = \infty$ aufgrund von Schritt 1, woraus die Divergenz der Reihe $\left(\sum_{k=1}^n k x^{k-1} \right)$ folgt.

2.2. Im Falle 0 < |x| < 1 gilt $\frac{1}{|x|} > 1$ und somit

$$\lim_{n \to \infty} \frac{1}{|x|^n} = \infty \quad \text{sowie} \quad \lim_{n \to \infty} \frac{1}{n|x|^n} = \infty \quad \text{und damit auch} \quad \lim_{n \to \infty} \frac{1}{n|x|^{n+1}} = \infty,$$

woraus sich $\lim_{n\to\infty} |x|^n = \lim_{n\to\infty} n|x|^n = \lim_{n\to\infty} n|x|^{n+1} = 0$ ergibt, was auch im Falle x=0 stimmt. Daraus folgt mit Schritt 1, daß die Reihe $(\sum_{k=1}^n kx^{k-1})$ gegen

$$\sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2}$$

konvergiert.

Alternative Lösung. 2. Für jedes $x \in \mathbb{K}$, $x \neq \emptyset$ konvergiert der absolute Betrag aufeinanderfolgender Summanden der Reihe $(\sum_{k=1}^{n} kx^{k-1})$ gegen den Grenzwert

$$\lim_{k \to \infty} \frac{(k+1)|x|^k}{k|x|^{k-1}} = \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)|x| = |x|.$$

- 2.1. Im Falle $x \in \mathbb{K}$, |x| > 1 folgt daraus die Divergenz der Reihe $(\sum_{k=1}^{n} k x^{k-1})$ mit Hilfe des Quotientenkriteriums.
- 2.2. Im Falle $x \in \mathbb{K}$, |x| < 1 erhält man daraus aufgrund des Quotientenkriteriums die Konvergenz der Reihe $(\sum_{k=1}^{n} k x^{k-1})$. Da die geometrische Reihe $(\sum_{k=0}^{n} x^k)$ für |x| < 1 absolut gegen die Summe

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

konvergiert, muß die Reihe $\left(\sum_{k=0}^n \sum_{m=0}^k x^m x^{k-m}\right)$ der Cauchy-Produkte absolut gegen das Produkt

$$\sum_{k=1}^{\infty} k x^{k-1} = \sum_{k=0}^{\infty} (k+1) x^k = \sum_{k=0}^{\infty} \sum_{m=0}^{k} x^m x^{k-m} = \sum_{m=0}^{\infty} x^m \cdot \sum_{k=0}^{\infty} x^k = \frac{\mathbb{1}}{(\mathbb{1} - x)^2}$$

der geometrischen Summen konvergieren.

Aufgabe 9. Man zeige, daß die Reihe $\left(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}\right)$ reeller Zahlen konvergiert und berechne ihre Summe!

Lösung. Eine direkte Berechnung der Teilsummen durch vorhergehende Zerlegung der Summanden in Teilbrüche beginnt mit dem Teilbruchansatz

$$\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2} \quad \text{für } k \in \mathbb{N},$$

wobei die unbekannten Koeffizienten $a, b, c \in \mathbb{R}$ bestimmt werden: Daraus folgt für alle $k \in \mathbb{N}$ die Beziehung (k+1)(k+2)a + k(k+2)b + k(k+1)c = 1, also

$$(k^2 + 3k + 2)a + (k^2 + 2k)b + (k^2 + k)c = 1,$$

woraus sich durch Koeffizientenvergleich vor den Termen gleicher Ordnung in k sofort 2a=1, 3a+2b+c=0 sowie a+b+c=0 ergibt. Wegen $a=\frac{1}{2}$ folgt daraus $2b+c=-\frac{3}{2}$ sowie $b+c=-\frac{1}{2}$ und somit b=-1 sowie $c=\frac{1}{2}$. Indexverschiebungen in der ersten und dritten Summe auf der rechten Seite liefern für jedes $n\in\mathbb{N}$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{n} \frac{1}{2k} - \sum_{k=1}^{n} \frac{1}{k+1} + \sum_{k=1}^{n} \frac{1}{2(k+2)}$$

$$= \sum_{k=0}^{n-1} \frac{1}{2(k+1)} - \sum_{k=1}^{n} \frac{1}{k+1} + \sum_{k=2}^{n+1} \frac{1}{2(k+1)}$$

$$= \frac{1}{2} - \frac{1}{2(n+1)} - \sum_{k=1}^{n} \left(\frac{1}{2} - 1 + \frac{1}{2}\right) \frac{1}{k+1} + \frac{1}{2(n+2)} - \frac{1}{4}$$

$$= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}.$$

Die Reihe $\left(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}\right)$ konvergiert somit gegen $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)} = \frac{1}{4}$.

Alternative Lösung. Für jedes $k \in \mathbb{N}$ betrachtet man die alternative Zerlegung

$$\frac{1}{k(k+1)(k+2)} = \frac{(k+2)-k}{2k(k+1)(k+2)} = \frac{1}{2k(k+1)} - \frac{1}{2(k+1)(k+2)}.$$

Eine Indexverschiebung in der ersten Summe auf der rechten Seite liefert

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{n} \frac{1}{2k(k+1)} - \sum_{k=1}^{n} \frac{1}{2(k+1)(k+2)}$$
$$= \sum_{k=0}^{n-1} \frac{1}{2(k+1)(k+2)} - \sum_{k=1}^{n} \frac{1}{2(k+1)(k+2)}$$
$$= \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$

für jedes $n \in \mathbb{N}$. Demzufolge konvergiert die Reihe $\left(\sum_{k=1}^n \frac{1}{k(k+1)(k+2)}\right)$ gegen die Summe $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)} = \frac{1}{4}$.

Aufgabe 10. Sei eine Folge (d_k) rationaler Zahlen durch

$$d_1 = 2$$
, $d_{k+1} = \frac{d_k}{2} + \frac{1}{d_k}$ für jedes $k \in \mathbb{N}$ definiert.

- 1. Man zeige, daß $0 < d_{k+1} < d_k$ sowie $d_k^2 > 2$ für jedes $k \in \mathbb{N}$ gilt!
- 2. Man weise nach, daß die Folge (d_k) gegen den Grenzwert $\sqrt{2} \in \mathbb{R}$ konvergiert!
- 3. Man beweise, daß es *keine* rationale Zahl $d \in \mathbb{Q}$ mit $d^2 = 2$ gibt, mit anderen Worten, daß $d = \sqrt{2} \in \mathbb{R}$ eine *irrationale* Zahl ist!

Index	k	1	2	3	4	5
ŭ			,	,	•	665 857/470 832 1/221 682 772 224

Lösung. 1.1. Induktiv wird gezeigt, daß $d_k > 0$ und $d_k^2 > 2$ für jedes $k \in \mathbb{N}$ gilt: Induktionsanfang: Für k = 1 gilt in der Tat $d_1 = 2 > 0$ und $d_1^2 = 4 > 2$.

Induktionsschritt: Unter der Annahme, daß die Induktionsvoraussetzungen $d_k>0$ sowie $d_k^2>2$ für ein $k\in\mathbb{N}$ erfüllt sind, erhält man $d_{k+1}=\frac{d_k}{2}+\frac{1}{d_k}>0$ sowie

$$d_{k+1}^2 = \left(\frac{d_k}{2} + \frac{1}{d_k}\right)^2 = \frac{(d_k^2 + 2)^2}{4d_k^2} = \frac{d_k^4 + 4d_k^2 + 4}{4d_k^2}$$
$$= \frac{d_k^4 - 4d_k^2 + 4}{4d_k^2} + \frac{8d_k^2}{4d_k^2} = \frac{(d_k^2 - 2)^2}{4d_k^2} + 2 > 2.$$

1.2. Da $d_k > 0$ und $d_k^2 > 2$ für jedes $k \in \mathbb{N}$ gilt, ergibt sich daraus die Monotonie

$$d_{k+1} = \frac{d_k}{2} + \frac{1}{d_k} = d_k - \frac{d_k^2 - 2}{2d_k} < d_k$$
 für alle $k \in \mathbb{N}$.

2. Da die Folge (d_k) monoton fallend und nach unten durch $\sqrt{2}$ beschränkt ist, konvergiert sie gegen einen Grenzwert $d \ge \sqrt{2}$. Der Grenzübergang $k \to \infty$ in

$$d_{k+1} = \frac{d_k}{2} + \frac{1}{d_k} \quad \text{liefert} \quad d = \frac{d}{2} + \frac{1}{d}$$

und somit $d^2 = 2$, also den Grenzwert $d = \sqrt{2}$.

2. Angenommen, es gäbe eine rationale Zahl $d \in \mathbb{Q}$ mit $d^2 = 2$, etwa mit der Darstellung $d = \frac{a}{b}$, wobei $a, b \in \mathbb{N}$ nicht gleichzeitig gerade Zahlen sein sollen, da man ansonsten kürzen könnte. Außerdem erhielte man $b \neq 1$, da es kein $a \in \mathbb{N}$ mit $a^2 = 2$ gibt. Aus $d^2 = 2$ würde somit $a^2 = 2b^2$ folgen, das hieße, $a \in \mathbb{N}$ wäre eine gerade Zahl a = 2m mit $m \in \mathbb{N}$. Man erhielte daraus $a^2 = 4m^2 = 2b^2$ und somit $b^2 = 2m^2$, das hieße, $b \in \mathbb{N}$ wäre ebenfalls eine gerade Zahl im Widerspruch zur Wahl von $a, b \in \mathbb{N}$. Die obige Annahme war daher falsch: Es gibt *keine* rationale Zahl $d \in \mathbb{Q}$ mit $d^2 = 2$, also ist $d = \sqrt{2} \in \mathbb{R}$ eine *irrationale* Zahl.

Aufgabe 11. Sei (a_k) eine Zahlenfolge, die gegen den Grenzwert $a \in \mathbb{K}$ konvergiert. Man zeige, daß die durch $b_\ell = \frac{1}{\ell} \sum_{k=1}^{\ell} a_k \in \mathbb{K}$ für $\ell \in \mathbb{N}$ definierte Folge (b_ℓ) der arithmetischen Mittelwerte ebenfalls gegen den Grenzwert $a \in \mathbb{K}$ konvergiert!

Lösung. 1. Sei $\delta \in \mathbb{R}$ mit $\delta > 0$ beliebig fixiert. Dann gibt es wegen der Konvergenz der Folge (a_k) gegen $a \in \mathbb{K}$ ein $k_0 \in \mathbb{N}$, so daß $|a_k - a| \leq \frac{\delta}{2}$ für alle $k \in \mathbb{N}$ mit $k \geq k_0$ gilt. Daraus ergibt sich zunächst für alle $\ell \in \mathbb{N}$ mit $\ell \geq k_0 + 1$ die Abschätzung

$$|b_{\ell} - a| = \left| \frac{1}{\ell} \sum_{k=1}^{\ell} a_k - a \right| = \left| \frac{1}{\ell} \sum_{k=1}^{\ell} (a_k - a) \right| \le \frac{1}{\ell} \sum_{k=1}^{\ell} |a_k - a|$$

$$\le \frac{1}{\ell} \sum_{k=1}^{k_0} |a_k - a| + \frac{1}{\ell} \sum_{k=k_0+1}^{\ell} |a_k - a| \le \frac{1}{\ell} \sum_{k=1}^{k_0} |a_k - a| + \frac{\ell - k_0}{\ell} \cdot \frac{\delta}{2}.$$

2. Wählt man anschließend $\ell_0 \in \mathbb{N}$ derart, daß $\ell_0 \ge \frac{2}{\delta} \sum_{k=1}^{k_0} |a_k - a|$ gilt, so folgt

$$\frac{1}{\ell} \sum_{k=1}^{k_0} |a_k - a| \le \frac{\delta}{2} \quad \text{für alle } \ell \in \mathbb{N} \text{ mit } \ell \ge \ell_0.$$

Mit der Abschätzung aus Schritt 1 ergibt sich $|b_{\ell} - a| \leq \frac{\delta}{2} + \frac{\ell - k_0}{\ell} \cdot \frac{\delta}{2} \leq \delta$ für alle $\ell \in \mathbb{N}$ mit $\ell \geq \max\{k_0 + 1, \ell_0\}$, also die Konvergenz der Folge (b_{ℓ}) gegen $a \in \mathbb{K}$. \square

Aufgabe 12. Man zeige, daß für jedes $b \in \mathbb{R}$ mit b > 0 jede der beiden Folgen $(\sqrt[n]{b})$ und $(\sqrt[n]{n})$ reeller Zahlen jeweils gegen den Grenzwert 1 konvergiert!

Lösung. 1. Für alle $n \in \mathbb{N}$ folgt aus $n \ge 1$ stets $\sqrt[n]{n} \ge 1$, also $\sqrt[n]{n} - 1 \ge 0$. Demnach liefert die binomische Formel für alle $n \in \mathbb{N}$ mit $n \ge 2$ die Abschätzung

$$n = ((\sqrt[n]{n} - 1) + 1)^n = \sum_{k=0}^n \binom{n}{k} (\sqrt[n]{n} - 1)^k \ge \binom{n}{2} (\sqrt[n]{n} - 1)^2 = \frac{n(n-1)}{2} (\sqrt[n]{n} - 1)^2$$

und somit $0 \le \sqrt[n]{n} - 1 \le \frac{\sqrt{2}}{\sqrt{n-1}}$, also $1 \le \sqrt[n]{n} \le 1 + \frac{\sqrt{2}}{\sqrt{n-1}}$ für alle $n \in \mathbb{N}$ mit $n \ge 2$. Wegen $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$ folgt daraus die Konvergenzbeziehung $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

- 2. Im Falle $b \in \mathbb{R}$, $b \ge 1$ erhält man für jedes $n \in \mathbb{N}$ mit $n \ge b$ stets $1 \le \sqrt[n]{b} \le \sqrt[n]{n}$ und somit wegen $\lim_{n \to \infty} \sqrt[n]{n} = 1$ auch $\lim_{n \to \infty} \sqrt[n]{b} = 1$.
- 3. Im Falle $b \in \mathbb{R}$, $0 < b \le 1$ ergibt sich für $d = \frac{1}{b} \ge 1$ zunächst $\lim_{n \to \infty} \sqrt[n]{d} = 1$ und daraus schließlich $\lim_{n \to \infty} \sqrt[n]{b} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{d}} = 1$.

Aufgabe 13. Eine echt gebrochene rationale Funktion $\frac{\varphi}{f}: \mathbb{C} \setminus \{z_1, \dots, z_\ell\} \to \mathbb{C}$ sei als Quotient zweier teilerfremder ganzer rationaler Funktionen $\varphi: \mathbb{C} \to \mathbb{C}$ und $f: \mathbb{C} \to \mathbb{C}$ gegeben. Dabei habe f die Anzahl von $\ell \in \mathbb{N}$ verschiedenen Nullstellen $z_1, \dots, z_\ell \in \mathbb{C}$ der Ordnungen $\alpha_1, \dots, \alpha_\ell \in \mathbb{N}$, mit anderen Worten, die Gestalt

$$f(x) = \prod_{k=1}^{\ell} (x - z_k)^{\alpha_k} \quad \text{für } x \in \mathbb{C},$$

und $\varphi : \mathbb{C} \to \mathbb{C}$ habe die Ordnung $m \in \mathbb{N} \cup \{0\}$ mit $m < \sum_{k=1}^{\ell} \alpha_k$.

Man zeige, daß es eine Darstellung der Funktion $\frac{\varphi}{f}$ als Teilbruchzerlegung

$$\frac{\varphi(x)}{f(x)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{a_{kj}}{(x - z_k)^j} \quad \text{für } x \in \mathbb{C} \setminus \{z_1, \dots, z_\ell\}$$

mit Koeffizienten $a_{k1}, \ldots, a_{k\alpha_k} \in \mathbb{C}$ für $k \in \{1, \ldots, \ell\}$ gibt!

Lösung. 1. Sei die ganze rationale Funktion $f_1: \mathbb{C} \to \mathbb{C}$ durch

$$f_1(x) = \prod_{k=2}^{\ell} (x - z_k)^{\alpha_k}$$
 für $x \in \mathbb{C}$

gegeben. Dann gilt $f(x) = (x - z_1)^{\alpha_1} f_1(x)$ für alle $x \in \mathbb{C}$ sowie $f_1(z_1) \neq \mathbb{O}$. Somit existiert ein $a_{1\alpha_1} \in \mathbb{C}$, so daß $\varphi(z_1) - a_{1\alpha_1} f_1(z_1) = \mathbb{O}$ gilt. Daher gibt es eine ganze rationale Funktion $\varphi_{1\alpha_1} : \mathbb{C} \to \mathbb{C}$, deren Ordnung kleiner als $\sum_{k=1}^{\ell} \alpha_k - 1$ ist, so daß

$$\varphi(x) - a_{1\alpha_1} f_1(x) = (x - z_1) \varphi_{1\alpha_1}(x)$$
 für alle $x \in \mathbb{C}$ gilt.

Für alle $x \in \mathbb{C} \setminus \{z_1, \dots, z_\ell\}$ folgt daraus

$$\frac{\varphi(x)}{f(x)} - \frac{a_{1\alpha_1}}{(x - z_1)^{\alpha_1}} = \frac{(x - z_1)\,\varphi_{1\alpha_1}(x)}{(x - z_1)^{\alpha_1}\,f_1(x)} = \frac{\varphi_{1\alpha_1}(x)}{(x - z_1)^{\alpha_1 - 1}\,f_1(x)}.$$

Wegen $f_1(z_1) \neq \emptyset$ existiert ein $a_{1\alpha_1-1} \in \mathbb{C}$, so daß $\varphi_{1\alpha_1}(z_1) - a_{1\alpha_1-1} f_1(z_1) = \emptyset$ gilt. Daher gibt es eine ganze rationale Funktion $\varphi_{1\alpha_1-1} : \mathbb{C} \to \mathbb{C}$, deren Ordnung kleiner als $\sum_{k=1}^{\ell} \alpha_k - 2$ ist, so daß

$$\varphi_{1\alpha_1}(x) - a_{1\alpha_1 - 1} f_1(x) = (x - z_1) \varphi_{1\alpha_1 - 1}(x)$$
 für alle $x \in \mathbb{C}$ gilt.

Daraus folgt für alle $x \in \mathbb{C} \setminus \{z_1, \dots, z_\ell\}$

$$\frac{\varphi_{1\alpha_1}(x)}{(x-z_1)^{\alpha_1-1}f_1(x)} - \frac{a_{1\alpha_1-1}}{(x-z_1)^{\alpha_1-1}} = \frac{(x-z_1)\varphi_{1\alpha_1-1}(x)}{(x-z_1)^{\alpha_1-1}f_1(x)} = \frac{\varphi_{1\alpha_1-1}(x)}{(x-z_1)^{\alpha_1-2}f_1(x)}.$$

Fährt man in dieser Weise fort, so existiert im α_1 -ten Teilschritt wegen $f_1(z_1) \neq \emptyset$ ein $a_{11} \in \mathbb{C}$, so daß $\varphi_{12}(z_1) - a_{11}f_1(z_1) = \emptyset$ gilt. Daher gibt es eine ganze rationale Funktion $\varphi_1 : \mathbb{C} \to \mathbb{C}$ der Ordnung $m_1 \in \mathbb{N} \cup \{0\}$ mit $m_1 < \sum_{k=2}^{\ell} \alpha_k$, so daß

$$\varphi_{12}(x) - a_{11} f_1(x) = (x - z_1) \varphi_1(x)$$
 für alle $x \in \mathbb{C}$ gilt.

Daraus folgt für alle $x \in \mathbb{C} \setminus \{z_1, \dots, z_\ell\}$

$$\frac{\varphi_{12}(x)}{(x-z_1)f_1(x)} - \frac{a_{11}}{x-z_1} = \frac{(x-z_1)\varphi_1(x)}{(x-z_1)f_1(x)} = \frac{\varphi_1(x)}{f_1(x)}$$

sowie schließlich

$$\frac{\varphi(x)}{f(x)} - \sum_{i=1}^{\alpha_1} \frac{a_{1i}}{(x - z_1)^j} = \frac{\varphi_1(x)}{f_1(x)}$$

durch die Kombination aller α_1 Teilschritte.

2. Wird die ganze rationale Funktion $f_2: \mathbb{C} \to \mathbb{C}$ durch

$$f_2(x) = \prod_{k=3}^{\ell} (x - z_k)^{\alpha_k}$$
 für $x \in \mathbb{C}$

definiert, dann gibt es aufgrund einer zu Schritt 1 analogen Argumentation eine ganze rationale Funktion $\varphi_2: \mathbb{C} \to \mathbb{C}$ der Ordnung $m_2 \in \mathbb{N} \cup \{0\}, m_2 < \sum_{k=2}^{\ell} \alpha_k$, so daß sich die Funktion $\frac{\varphi_1}{f_1}$ wie folgt mit Koeffizienten $a_{21}, \ldots, a_{2\alpha_2} \in \mathbb{C}$ darstellen läßt:

$$\frac{\varphi_1(x)}{f_1(x)} = \sum_{j=1}^{\alpha_2} \frac{a_{2j}}{(x - z_2)^j} + \frac{\varphi_2(x)}{f_2(x)} \quad \text{für } x \in \mathbb{C} \setminus \{z_2, \dots, z_\ell\}.$$

Fährt man auf diese Weise fort, dann gelangt man im $(\ell - 1)$ -ten Schritt zu einer ganzen rationalen Funktion $f_{\ell-1}: \mathbb{C} \to \mathbb{C}$, die durch

$$f_{\ell-1}(x) = (x - z_{\ell})^{\alpha_{\ell}}$$
 für $x \in \mathbb{C}$

definiert wird. Aufgrund einer zu Schritt 1 analogen Argumentation gibt es eine ganze rationale Funktion $\varphi_{\ell-1}: \mathbb{C} \to \mathbb{C}$, so daß sich die Funktion $\frac{\varphi_{\ell-2}}{f_{\ell-2}}$ in der Form

$$\frac{\varphi_{\ell-2}(x)}{f_{\ell-2}(x)} = \sum_{j=1}^{\alpha_{\ell-1}} \frac{a_{\ell-1,j}}{(x - z_{\ell-1})^j} + \frac{\varphi_{\ell-1}(x)}{f_{\ell-1}(x)} \quad \text{für } x \in \mathbb{C} \setminus \{z_{\ell-1}, z_{\ell}\}$$

mit Koeffizienten $a_{\ell-1,1}, \ldots, a_{\ell-1,\alpha_{\ell-1}} \in \mathbb{C}$ darstellen läßt, wobei $\varphi_{\ell-1} : \mathbb{C} \to \mathbb{C}$ die Ordnung $m_{\ell-1} \in \mathbb{N} \cup \{0\}, m_{\ell-1} < \alpha_{\ell}$ hat.

3. Im ℓ -ten und letzten Schritt angelangt, wählt man im ersten Teilschritt zunächst $a_{\ell\alpha_{\ell}} = \varphi_{\ell-1}(z_{\ell})$. Dann gibt es eine ganze rationale Funktion $\varphi_{\ell\alpha_{\ell}} : \mathbb{C} \to \mathbb{C}$, deren Ordnung kleiner ist als $\alpha_{\ell} - 1$ ist, so daß

$$\varphi_{\ell-1}(x) - a_{\ell\alpha_{\ell}} = (x - z_{\ell}) \varphi_{\ell\alpha_{\ell}}(x)$$
 für alle $x \in \mathbb{C}$ gilt.

Daraus folgt

$$\frac{\varphi_{\ell-1}(x)}{f_{\ell-1}(x)} - \frac{a_{\ell\alpha_{\ell}}}{(x - z_{\ell})^{\alpha_{\ell}}} = \frac{(x - z_{\ell})\,\varphi_{\ell\alpha_{\ell}}(x)}{(x - z_{\ell})^{\alpha_{\ell}}} = \frac{\varphi_{\ell\alpha_{\ell}}(x)}{(x - z_{\ell})^{\alpha_{\ell}-1}} \quad \text{für alle } x \in \mathbb{C} \setminus \{z_{\ell}\}.$$

In dieser Weise fortfahrend, wählt man im $(\alpha_{\ell} - 1)$ -ten Teilschritt $a_{\ell 2} = \varphi_{\ell 3}(z_{\ell})$. Demnach gibt es eine ganze rationale Funktion $\varphi_{\ell 2} : \mathbb{C} \to \mathbb{C}$, deren Ordnung kleiner ist als 1, das heißt, eine konstante Funktion mit

$$\varphi_{\ell 3}(x) - a_{\ell 2} = (x - z_{\ell}) \varphi_{\ell 2}(x)$$
 für alle $x \in \mathbb{C}$ gilt.

Daraus folgt

$$\frac{\varphi_{\ell 3}(x)}{(x - z_{\ell})^2} - \frac{a_{\ell 2}}{(x - z_{\ell})^2} = \frac{(x - z_{\ell})\,\varphi_{\ell 2}(x)}{(x - z_{\ell})^2} = \frac{\varphi_{\ell 2}(x)}{x - z_{\ell}} \quad \text{für alle } x \in \mathbb{C} \setminus \{z_{\ell}\}.$$

Im α_{ℓ} -ten und letzten Teilschritt wählt man $a_{\ell 1} = \varphi_{\ell 2}(z_{\ell})$. Offenbar kann man die konstante Funktion $\varphi_{\ell 2}$ nicht weiter zerlegen und erhält

$$\frac{\varphi_{\ell 2}(x)}{x - z_{\ell}} = \frac{a_{\ell 1}}{x - z_{\ell}} \quad \text{und somit} \quad \frac{\varphi_{\ell - 1}(x)}{f_{\ell - 1}(x)} = \sum_{i = 1}^{\alpha_{\ell}} \frac{a_{\ell j}}{(x - z_{\ell})^{j}} \quad \text{für alle } x \in \mathbb{C} \setminus \{z_{\ell}\}$$

durch die Kombination aller α_ℓ Teilschritte. Die Gesamtheit aller ℓ Schritte liefert mit

$$\frac{\varphi(x)}{f(x)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{a_{kj}}{(x - z_k)^j} \quad \text{für } x \in \mathbb{C} \setminus \{z_1, \dots, z_\ell\}$$

schließlich die vollständige Teilbruchzerlegung

Aufgabe 14. Seien $n \in \mathbb{N}$ und Koeffizienten $a_0, \ldots, a_n \in \mathbb{R}$ mit $a_n = 1$ sowie die ganze rationale Funktion $f : \mathbb{R} \to \mathbb{R}$ durch $f(x) = \sum_{k=0}^n a_k x^k$ für $x \in \mathbb{R}$ gegeben. Dabei sei vorausgesetzt, daß es Zahlen ℓ , $q \in \mathbb{N} \cup \{0\}$ sowie $\alpha_1, \ldots, \alpha_\ell \in \mathbb{N}$ und $\beta_1, \ldots, \beta_q \in \mathbb{N}$ mit $\sum_{k=1}^\ell \alpha_k + \sum_{k=1}^q 2\beta_k = n$ sowie $x_1, \ldots, x_\ell \in \mathbb{R}$, $y_1, \ldots, y_q \in \mathbb{R}$ und $d_1, \ldots, d_q \in \mathbb{R} \setminus \{0\}$ gibt, so daß f die Darstellung

$$f(x) = \sum_{k=0}^{n} a_k x^k = \prod_{k=1}^{\ell} (x - x_k)^{\alpha_k} \cdot \prod_{k=1}^{q} ((x - y_k)^2 + d_k^2)^{\beta_k} \quad \text{für alle } x \in \mathbb{R}$$

als Produkt teilerfremder Faktoren besitzt. Seien $m \in \mathbb{N} \cup \{0\}$ mit m < n und Koeffizienten $b_0, \ldots, b_m \in \mathbb{R}$ mit $b_m \neq 0$ gegeben, so daß die durch $\varphi(x) = \sum_{k=0}^m b_k x^k$ für $x \in \mathbb{R}$ definierte ganze rationale Funktion $\varphi : \mathbb{R} \to \mathbb{R}$ teilerfremd zu f ist.

Man zeige, daß unter diesen Voraussetzungen die echt gebrochene rationale Funktion $\frac{\varphi}{f}: \mathbb{R} \setminus \{x_1, \dots, x_\ell\} \to \mathbb{R}$ eine Darstellung als *Teilbruchzerlegung*

$$\frac{\varphi(x)}{f(x)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{A_{kj}}{(x - x_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{B_{kj}(x - y_k) + C_{kj}}{((x - y_k)^2 + d_k^2)^j} \quad \text{für } x \in \mathbb{R} \setminus \{x_1, \dots, x_\ell\}$$

mit Koeffizienten $A_{k1}, \ldots, A_{k\alpha_k} \in \mathbb{R}$ für $k \in \{1, \ldots, \ell\}$ sowie $B_{k1}, \ldots, B_{k\beta_k} \in \mathbb{R}$ und $C_{k1}, \ldots, C_{k\beta_k} \in \mathbb{R}$ für $k \in \{1, \ldots, q\}$ hat!

Lösung. 1. Definiert man die ganzen rationalen Funktionen $h, \psi : \mathbb{C} \to \mathbb{C}$ durch $h(z) = \sum_{k=0}^{n} a_k z^k$ und $\psi(z) = \sum_{k=0}^{m} b_k z^k$ für $z \in \mathbb{C}$, dann besitzt h nach Voraussetzung die Produktdarstellung

$$h(z) = \prod_{k=1}^{\ell} (z - z_k)^{\alpha_k} \cdot \prod_{k=1}^{q} (z - w_k)^{\beta_k} \cdot \prod_{k=1}^{q} (z - \overline{w}_k)^{\beta_k} \quad \text{für alle } z \in \mathbb{C}$$

mit einer Anzahl von $\ell + 2q \in \mathbb{N}$ verschiedenen Nullstellen

$$z_k = (x_k, 0) \in \mathbb{C}$$
 für $k \in \{1, \dots, \ell\}$

sowie

$$w_k = (y_k, d_k) \in \mathbb{C}$$
 und $\overline{w}_k = (y_k, -d_k) \in \mathbb{C}$ für $k \in \{1, \dots, q\}$.

Somit existiert eine Darstellung der rationalen Funktion $\frac{\psi}{h}$ als Teilbruchzerlegung

$$\frac{\psi(z)}{h(z)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{a_{kj}}{(z - z_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{b_{kj}}{(z - w_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{c_{kj}}{(z - \overline{w}_k)^j}$$

für $z \in \mathbb{C} \setminus \{z_1, \dots, z_\ell, w_1, \dots, w_q, \overline{w}_1, \dots, \overline{w}_q\}$ mit Koeffizienten $a_{k1}, \dots, a_{k\alpha_k} \in \mathbb{C}$ für $k \in \{1, \dots, \ell\}$ sowie $b_{k1}, \dots, b_{k\beta_k} \in \mathbb{C}$ und $c_{k1}, \dots, c_{k\beta_k} \in \mathbb{C}$ für $k \in \{1, \dots, q\}$.

2. Da der Imaginärteil des Funktionswerts $\frac{\psi(z)}{h(z)}$ für alle $z=(x,0)\in\mathbb{C}\setminus\{z_1,\ldots,z_\ell\}$ verschwindet, liefert die komplexe Konjugation der obigen Teilbruchzerlegung für jedes $z=(x,0)\in\mathbb{C}\setminus\{z_1,\ldots,z_\ell\}$ die Gleichung

$$\sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{a_{kj}}{(z - z_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{b_{kj}}{(z - w_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{c_{kj}}{(z - \overline{w}_k)^j}$$

$$= \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{\overline{a}_{kj}}{(z - z_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{\overline{b}_{kj}}{(z - \overline{w}_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{\overline{c}_{kj}}{(z - w_k)^j},$$

also $\overline{a}_{kj} = a_{kj}$ für alle $k \in \{1, ..., \ell\}$ und $j \in \{1, ..., \alpha_k\}$ sowie $\overline{c}_{kj} = b_{kj}$ für alle $k \in \{1, ..., q\}$ und $j \in \{1, ..., \beta_k\}$ wegen der Eindeutigkeit der Teilbruchzerlegung, woraus sich für jedes $z = (x, 0) \in \mathbb{C} \setminus \{z_1, ..., z_\ell\}$ die Darstellung

$$\frac{\psi(z)}{h(z)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{a_{kj}}{(z - z_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{\overline{c}_{kj} (z - \overline{w}_k)^j + c_{kj} (z - w_k)^j}{(z - w_k)^j (z - \overline{w}_k)^j}$$

ergibt. Damit hat die rationale Funktion $\frac{\varphi}{f}: \mathbb{R} \setminus \{x_1, \dots, x_\ell\} \to \mathbb{R}$ eine Darstellung

$$\frac{\varphi(x)}{f(x)} = \sum_{k=1}^{\ell} \sum_{j=1}^{\alpha_k} \frac{A_{kj}}{(x - x_k)^j} + \sum_{k=1}^{q} \sum_{j=1}^{\beta_k} \frac{B_{kj}(x - y_k) + C_{kj}}{((x - y_k)^2 + d_k^2)^j} \quad \text{für } x \in \mathbb{R} \setminus \{x_1, \dots, x_\ell\}$$

mit Koeffizienten $A_{k1}, \ldots, A_{k\alpha_k} \in \mathbb{R}$ für $k \in \{1, \ldots, \ell\}$ sowie $B_{k1}, \ldots, B_{k\beta_k} \in \mathbb{R}$ und $C_{k1}, \ldots, C_{k\beta_k} \in \mathbb{R}$ für $k \in \{1, \ldots, q\}$.