Vorlesung 18

Uneigentliche Integrale

Es werden uneigentliche Integrale über Funktionen mit Werten in $\mathbb{L} \in \{\mathbb{R}, \mathbb{C}\}$ betrachtet, die unbeschränkt oder auf unbeschränkten Intervallen definiert sein können. Dazu wird das Konvergenzverhalten eigentlicher Integrale über abgeschlossenen beschränkten Teilintervallen untersucht:

Linksseitig uneigentliche Integrale. Seien Intervallgrenzen $-\infty < a < b \le \infty$ und eine Funktion $g:[a,b[\to \mathbb{L} \text{ vorgegeben, welche für jedes } x \in]a,b[\text{ im Intervall} [a,x] \text{ reguliert ist. Existiert der linksseitige Grenzwert}$

$$\int_{a}^{b} g(\xi) d\xi = \lim_{x \uparrow b} \int_{a}^{x} g(\xi) d\xi \in \mathbb{L},$$

dann heißt dieser Grenzwert uneigentliches Integral über g von a bis b.

Rechtsseitig uneigentliche Integrale. Seien Intervallgrenzen $-\infty \le a < b < \infty$ und eine Funktion $g:]a,b] \to \mathbb{L}$ gegeben, die für jedes $x \in]a,b[$ im Intervall [x,b] reguliert ist. Existiert der rechtsseitige Grenzwert

$$\int_{a}^{b} g(\xi) d\xi = \lim_{x \downarrow a} \int_{x}^{b} g(\xi) d\xi \in \mathbb{L},$$

so nennt man diesen Grenzwert uneigentliches Integral über g von a bis b.

Beidseitig uneigentliche Integrale. 1. Seien Intervallgrenzen $-\infty \le a < b \le \infty$ und eine Funktion $g:]a,b[\to \mathbb{L}$ gegeben, welche für alle $x,y \in]a,b[$ mit x < y im Intervall [x,y] reguliert ist. Existieren für einen (und damit für jeden) Punkt $c \in]a,b[$ die beiden einseitigen Grenzwerte

$$\int_{a}^{c} g(\xi) d\xi = \lim_{x \downarrow a} \int_{x}^{c} g(\xi) d\xi \in \mathbb{L} \quad \text{sowie} \quad \int_{c}^{b} g(\xi) d\xi = \lim_{y \uparrow b} \int_{c}^{y} g(\xi) d\xi \in \mathbb{L},$$

so definiert man das uneigentliche Integral über g von a bis b als Summe

$$\int_a^b g(\xi) d\xi = \int_a^c g(\xi) d\xi + \int_c^b g(\xi) d\xi \in \mathbb{L}.$$

2. Seien Intervallgrenzen $a, b, c \in \mathbb{R}$ mit a < c < b vorgegeben. Ferner betrachtet man eine Funktion $g : [a, c[\cup]c, b] \to \mathbb{L}$, welche für alle $x \in]a, c[$ und $y \in]c, b[$ in den Intervallen [a, x] und [y, b] reguliert ist. Existieren die einseitigen Grenzwerte

$$\int_{a}^{c} g(\xi) d\xi = \lim_{x \uparrow c} \int_{a}^{x} g(\xi) d\xi \in \mathbb{L} \quad \text{sowie} \quad \int_{c}^{b} g(\xi) d\xi = \lim_{y \downarrow c} \int_{y}^{b} g(\xi) d\xi \in \mathbb{L},$$

dann definiert man das uneigentliche Integral über g von a bis b als Summe

$$\int_a^b g(\xi) d\xi = \int_a^c g(\xi) d\xi + \int_c^b g(\xi) d\xi \in \mathbb{L}.$$

Uneigentliche Integrale über Potenzfunktionen. Sei $\beta \in \mathbb{R}$ und die Potenzfunktion $g:]0, \infty[\to \mathbb{R}$ durch $g(\xi) = \xi^{\beta}$ für $\xi \in]0, \infty[$ vorgegeben.

1. Der Grenzwert $\lim_{x\to\infty} \int_1^x g(\xi) d\xi \in \mathbb{R}$ existiert genau dann, wenn $\beta < -1$ gilt:

$$\int_{1}^{\infty} g(\xi) \, d\xi = \lim_{x \to \infty} \int_{1}^{x} \xi^{\beta} d\xi = \lim_{x \to \infty} \frac{x^{\beta + 1} - 1}{\beta + 1} = -\frac{1}{\beta + 1} \,.$$

2. Der Grenzwert $\lim_{x\downarrow 0} \int_x^1 g(\xi) d\xi \in \mathbb{R}$ existiert genau dann, wenn $\beta > -1$ gilt:

$$\int_0^1 g(\xi) \, d\xi = \lim_{x \downarrow 0} \int_x^1 \xi^{\beta} d\xi = \lim_{x \downarrow 0} \frac{1 - x^{\beta + 1}}{\beta + 1} = \frac{1}{\beta + 1} \,.$$

3. Im Falle $\beta=-1$ gilt $\lim_{x\to\infty}\int_1^x\frac{d\xi}{\xi}=\infty$ sowie $\lim_{x\downarrow 0}\int_x^1\frac{d\xi}{\xi}=\infty$ wegen

$$\int_{x}^{y} \frac{d\xi}{\xi} = \ln(y) - \ln(x) \quad \text{für alle } x, y \in]0, \infty[.$$

Cauchy-Kriterium. Seien $-\infty < a < b \le \infty$ und eine Funktion $g:[a,b[\to \mathbb{L}$ vorgegeben, welche für jedes $x \in]a,b[$ im Intervall [a,x] reguliert ist.

Der Grenzwert $\lim_{x\uparrow b} \int_a^x g(\xi) d\xi \in \mathbb{L}$ existiert genau dann, wenn es für jedes $\varepsilon > 0$ ein $x_0 \in]a, b[$ gibt, so daß $\left| \int_{x_1}^{x_2} g(\xi) d\xi \right| \le \varepsilon$ für alle $x_1, x_2 \in [x_0, b[$ gilt.

Majorantenkriterium. Seien $-\infty < a < b \le \infty$ und $g : [a, b[\to \mathbb{L}, h : [a, b[\to \mathbb{R}$ Funktionen, welche für jedes $x \in]a, b[$ im Intervall [a, x] reguliert sind.

Existiert der Grenzwert $\lim_{x\uparrow b}\int_a^x h(\xi)\,d\xi\in\mathbb{R}$ und gilt $|g(x)|\leq h(x)$ für jeden Punkt $x\in[a,b[$, dann existieren auch die Grenzwerte $\lim_{x\uparrow b}\int_a^x g(\xi)\,d\xi\in\mathbb{L}$ sowie $\lim_{x\uparrow b}\int_a^x |g(\xi)|\,d\xi\in\mathbb{R}$, und es gilt die Abschätzung

$$\left| \int_a^b g(\xi) \, d\xi \right| \le \int_a^b |g(\xi)| \, d\xi \le \int_a^b h(\xi) \, d\xi.$$

Reihenkriterium. Seien $-\infty < a < b \le \infty$ und eine Funktion $g: [a,b] \to \mathbb{L}$ vorgegeben, welche für jedes $x \in]a,b[$ auf dem Intervall [a,x] reguliert ist.

Der Grenzwert $\lim_{x\uparrow b} \int_a^x g(\xi) d\xi \in \mathbb{L}$ existiert genau dann, wenn für jede monoton wachsende Folge (x_k) von Punkten $x_k \in [a, b[$ mit $x_0 = a$ und $\lim_{k\to\infty} x_k = b$ die Reihe $\left(\sum_{k=0}^n \int_{x_k}^{x_{k+1}} g(\xi) d\xi\right)$ stets gegen die gleiche Summe konvergiert. Dann gilt

$$\int_{a}^{b} g(\xi) d\xi = \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} g(\xi) d\xi.$$

Grenzwertkriterium. Seien $-\infty < a < b \le \infty$ und Funktionen $g : [a, b[\to [0, \infty[$, $h : [a, b[\to]0, \infty[$ vorgegeben, welche für jedes $x \in]a, b[$ im Intervall [a, x] reguliert sind und für die der Grenzwert $\lim_{x \uparrow b} \frac{g(x)}{h(x)} = q \in [0, \infty[$ existiert.

Dann folgt aus der Existenz des Grenzwerts $\lim_{x\uparrow b} \int_a^x h(\xi) d\xi \in \mathbb{R}$ die Existenz des Grenzwerts $\lim_{x\uparrow b} \int_a^x g(\xi) d\xi \in \mathbb{R}$. Im Falle q > 0 existiert genau dann der Grenzwert $\lim_{x\uparrow b} \int_a^x h(\xi) d\xi \in \mathbb{R}$, wenn der Grenzwert $\lim_{x\uparrow b} \int_a^x g(\xi) d\xi \in \mathbb{R}$ existiert.