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Abstract. This text is devoted to maximal regularity results for second
order parabolic systems on Lipschitz domains of space dimension n ≥ 3
with diagonal principal part, nonsmooth coefficients, and nonhomoge-
neous mixed boundary conditions. We show that the corresponding class
of initial-value problems generates isomorphisms between two scales of
Sobolev–Morrey spaces for solutions and right-hand sides introduced in
the first part [12] of our presentation. The solutions depend smoothly
on the data of the problem. Moreover, they are Hölder continuous in
time and space up to the boundary for a certain range of Morrey ex-
ponents. Due to the complete continuity of embedding and trace maps
these results remain true for a broad class of unbounded lower-order
coefficients.

1. Formulation of the regularity problem

Many instationary drift-diffusion problems are formulated in terms of second
order parabolic boundary-value problems with nonsmooth data. To prove
existence and uniqueness results or further qualitative properties like regular-
ity or asymptotic behaviour of solutions it is useful to get apriori estimates
for solutions of the original or at least of some auxiliary linear parabolic
problem in spaces of bounded or Hölder continuous functions.

In the first part [12] of our presentation we introduced and discussed in de-
tail new classes of Sobolev–Morrey spaces allowing a satisfactory treatment
of the regularity problem for second order linear parabolic boundary-value
problems

(Eu)′ + Au+ Bu = f ∈ L2(S;Y ∗), u(t0) = 0, (1.1)

of drift-diffusion-type on regular sets G ⊂ Rn with Lipschitz boundary. The
natural choice for the Hilbert space Y in the functional analytic formulation
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of elliptic and parabolic problems with mixed boundary conditions is the
Sobolev space Y = H1

0 (G) and its dual Y ∗ = H−1(G), see also Gröger,
Rehberg [16, 17, 18], and Griepentrog, Recke [10, 14].

In (1.1) the operator E ∈ L2(S;Y ) → L2(S;Y ∗) is associated with the
bounded open time interval S = (t0, t1) and the map E ∈ L(Y ;Y ∗) via
(Eu)(s) = Eu(s) for s ∈ S, u ∈ L2(S;Y ). Here, E ∈ L(Y ;Y ∗) is defined by

〈Ev,w〉Y =

∫
G
avw dλn for v, w ∈ Y .

The nonsmooth capacity coefficient a ∈ L∞(G◦) satisfies

ε ≤ ess inf
x∈G◦

a(x), esssup
x∈G◦

a(x) ≤ 1

ε

for some constant ε ∈ (0, 1]. Moreover, we consider nonsmooth diffusivity
coefficients A ∈ L∞(S × G◦;Sn) with values in the set Sn of symmetric
(n× n)-matrices, and we assume that for all ξ ∈ Rn we have

ε ‖ξ‖2 ≤ ess inf
(s,x)∈S×G◦

A(s, x)ξ · ξ, esssup
(s,x)∈S×G◦

A(s, x)ξ · ξ ≤ 1

ε
‖ξ‖2.

With regard to problem (1.1) the principal part A : L2(S;Y ) → L2(S;Y ∗)
is of the form

〈Au,w〉L2(S;Y ) =

∫
S

∫
G
A∇u(s) · ∇w(s) dλn ds for u, w ∈ L2(S;Y ).

Given lower-order coefficients

b ∈ L∞(S ×G◦;Rn), b0 ∈ L∞(S ×G◦), bΓ ∈ L∞(S × Γ),

which describe drift and damping phenomena, we define B : L2(S;Y ) →
L2(S;Y ∗) by

〈Bu,w〉L2(S;Y ) =

∫
S

∫
G

(
u(s)b · ∇w(s) + b0u(s)w(s)

)
dλn ds

+

∫
S

∫
Γ
bΓKΓu(s)KΓw(s) dλΓ ds

for u, w ∈ L2(S;Y ). Here, Γ = ∂G is the Lipschitz boundary of the regular
set G ⊂ Rn, and KΓ ∈ L(H1

0 (G);L2(Γ)) denotes the trace map.
Using Gröger’s functional analytic framework for evolution equations, dis-

cussed in detail in [15] and the first part [12] of our presentation, we get
unique solvability and well-posedness of problem (1.1) in the Hilbert space

WE(S;Y ) =
{
u ∈ L2(S;Y ) : (Eu)′ ∈ L2(S;Y ∗)

}
.
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Theorem 1.1 (Unique solvability). The solution operator associated with
problem (1.1) is a linear isomorphism between the spaces L2(S;H−1(G)) and{
u ∈WE(S;H1

0 (G)) : u(t0) = 0
}

.

Proof. As we will see it suffices to show that the bounded linear Volterra
operator M = A + B + αE : L2(S;Y ) → L2(S;Y ∗) is positively definite
whenever α > 1 is large enough. Due to our assumptions for all u ∈ L2(S;Y )
we obtain

〈(A + αE)u, u〉L2(S;Y ) ≥ ε ‖u‖2L2(S;Y ) + ε(α− 1)‖u‖2L2(S;L2(G◦)).

For the trace map KΓ ∈ L(H1
0 (G);L2(Γ)) the multiplicative inequality [12,

Eq. (3.1)] holds true: We find some constant cG > 0 such that

‖KΓv‖2L2(Γ) ≤ cG‖v‖H1
0 (G)‖v‖L2(G◦) for all v ∈ H1

0 (G).

Applying Young’s inequality for all u ∈ L2(S;Y ) and δ > 0 this yields∣∣〈Bu, u〉L2(S;Y )

∣∣ ≤ δL(cG + 1)

2
‖u‖2L2(S;Y ) + L

(
cG + 1

2δ
+ 1

)
‖u‖2L2(S;L2(G◦)).

Here, L = max
{
‖b‖L∞(S×G◦;Rn), ‖b0‖L∞(S×G◦), ‖bΓ‖L∞(S×Γ)

}
> 0 is the

common bound of the lower-order coefficients. If we choose δ > 0 small
enough and α > 1 large enough such that

δL(cG + 1)

2
< ε, L

(
cG + 1

2δ
+ 1

)
≤ ε(α− 1),

then M = A+B+αE : L2(S;Y )→ L2(S;Y ∗) is positively definite. Using [12,
Theorem 2.4] the solution operator associated with problem (1.1) maps
L2(S;H−1(G)) isomorphically onto

{
u ∈WE(S;H1

0 (G)) : u(t0) = 0
}

. �

Following the theory of Ladyzhenskaya, Solonnikov, Uraltseva [21] it is
true that the solution u of problem (1.1) is Hölder continuous in time and
space up to the boundary provided that f ∈ Lq(S;W−1,p(G)) and q > 2,
p > n with 2/q+n/p < 1. But in contrast to the case n = 2 it has turned out
that for n ≥ 3 it is not possible to find q > 2, p > n satisfying 2/q+n/p < 1
such that maximal regularity

u ∈ Lq(S;W 1,p(G◦)), (Eu)′ ∈ Lq(S;W−1,p(G)),

holds true for every f ∈ Lq(S;W−1,p(G)) without further assumptions on
the smoothness of the data, see also Gröger, Rehberg [16, 17, 18].

Fortunately, we have found alternative function spaces for solutions and
right-hand sides meeting both the requirements of Hölder continuity and
maximal regularity in the case n ≥ 3. The main goal of this text is to prove
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the following maximal regularity result: For a certain range of parameters
0 ≤ ω < ω̄ε(G) with ω̄ε(G) > n the class of problems (1.1) generates linear
isomorphisms between two scales of Sobolev–Morrey spaces

{
u ∈Wω

E (S;Y ) :

u(t0) = 0
}

and Lω2 (S;Y ∗) of solutions and functionals, respectively. Here,
the function space

Wω
E (S;Y ) =

{
u ∈ Lω2 (S;Y ) : (Eu)′ ∈ Lω2 (S;Y ∗)

}
⊂WE(S;Y )

is embedded into a space of Hölder continuous functions for ω > n, where

Lω2 (S;Y ) ⊂ L2(S;Y ), Lω2 (S;Y ∗) ⊂ L2(S;Y ∗),

are suitably chosen Sobolev–Morrey spaces. We refer to the first part [12]
for the theory of the above function spaces.

As the starting point for our regularity theory we consider the case B = 0.
In the first step we are interested in local estimates for solutions of (1.1)
restricted to families of time intervals Ir(t) = (t − r2, t) ⊂ S, and cubes
Qr(x) = {y ∈ Rn : |y − x| < r} ⊂ G, regardless of initial or boundary
conditions, see Section 2. Here, t ∈ S and x ∈ G are fixed, whereas the
radius 0 < r ≤ 1 varies in a certain range. One advantage of considering
solutions in the function space WE(S;Y ) is that we can completely avoid
the technique of Steklov averages. Instead of this method we use integration
by parts formulae which can be found in Section 1 and Appendix B of the
first part [12] of our presentation.

We carry over results well-known for the case of constant capacity co-
efficients, see Moser [23, 24], Ladyzhenskaya, Solonnikov, Uraltseva [21],
Aronson, Serrin [3], Trudinger [29], and Lieberman [22]. Note, that in the
case of nonsmooth capacity coefficients a comprehensive regularity theory
for (fundamental) solutions of Cauchy’s problem can be found in the work
of Porper, Eidelman [25, 26] generalizing classical results of Aronson [1, 2].

Based on energy estimates for solutions, in Section 3 we obtain local
boundedness results using the Moser iteration technique. As a byproduct,
we fill some gap in the proof of Porper, Eidelman [26, Theorem 2] arised
from an illegal extension of local solutions to solutions of Cauchy’s problem.

Combined with Harnack-type inequalities, see Section 4, this paves the
way to estimate the oscillation of solutions which leads to the Campanato
inequality for the spatial gradients of solutions on concentric cubes, see Sec-
tion 5. To do so, we generalize methods introduced by Kruzhkov [19, 20] and
used by Hong-Ming Yin [30] to the case of nonsmooth capacity coefficients.
In addition to that, we apply some special variant of the Poincaré inequality
contained in Appendix A of the first part [12] of this presentation, see also
Struwe [27].
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To prove the global regularity result, in Section 6 we define a suitable
class of admissible sets consisting of all regular sets G ⊂ Rn for which the
desired regularity in Sobolev–Morrey spaces holds true for the case B = 0.
The invariance of this concept with respect to the principles of localization,
Lipschitz transformation, and reflection has already turned out to be suc-
cessful in the elliptic regularity theory, see Griepentrog, Recke [10, 14]. To
show that every regular set is admissible, therefore, it remains to prove the
admissibility of some standard cuboids. For that purpose, we use the Cam-
panato inequality for the spatial gradients of solutions on concentric cubes,
see Section 5.

Finally, in Section 7 we end up our considerations with isomorphism
properties for parabolic operators. For bounded lower-order coefficients the
solution operator associated with problem (1.1) maps the Sobolev–Morrey
space Lω2 (S;Y ∗) of linear functionals isomorphically to the Sobolev–Morrey
space

{
u ∈ Wω

E (S;Y ) : u(t0) = 0
}

of solutions for all Morrey exponents
0 ≤ ω < ω̄ε(G), where ω̄ε(G) > n depends on n, ε, S, and G, only. The
solution depends smoothly on the coefficients A, b, b0, bΓ.

Note, that for ω ∈ (n, n + 2] the embedding and trace operators from
Wω
E (S;Y ) into spaces of Hölder continuous functions are completely contin-

uous. As a consequence, for n < ω < ω̄ε(G) all the results remain true if the
operator B contains unbounded lower-order coefficients

b ∈ Lω2 (S;L2(G◦;Rn)), b0 ∈ Lω−2
2 (S;L2(G◦)), bΓ ∈ Lω−1

2 (S;L2(Γ)),

belonging to well-known Morrey spaces. Moreover, all the assertions can
be generalized to weakly coupled systems, that means, to problems with
principal parts E and A of diagonal structure and operators B containing
strongly coupled lower-order terms.

This allows to prove the unique solvability and regularity of second or-
der drift-diffusion problems with linear diffusion terms and nonlinear drift
terms which describe, for instance, transport processes of charged particles
in semiconductor heterostructures, chemotactical aggregation of biological
organisms in heterogeneous environments, or phase separation processes of
nonlocally interacting particles, see Gajewski, Skrypnik [4, 5, 6] and Griepen-
trog [11].

In these applications the drift coefficients b are proportional to the spatial
gradients ∇v of interaction potentials v which are solutions to similar qua-
sistationary elliptic or parabolic subproblems having exactly the required
regularity ∇v ∈ Lω2 (S;L2(G◦;Rn)). Hence, in the case n ≥ 3 our approach
avoids artificial assumptions on the smoothness of the data which are in
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general necessary to prove that, for instance, ∇v ∈ Lq(S;Lp(G◦;Rn)) holds
true for some q > 2, p > n satisfying 2/q + n/p < 1.

2. Local model problem

Assuming that B = 0, we are looking for local estimates for solutions of
problem (1.1) restricted to families of time intervals Ir(t) = (t − r2, t) ⊂ S,
and concentric cubes Qr(x) = {y ∈ Rn : |y − x| < r} ⊂ G, regardless of
initial or boundary conditions. Here, t ∈ R and x ∈ Rn are fixed, and the
radius 0 < r ≤ 1 varies in a certain range. Hence, if there is no fear of
misunderstanding we shortly write Ir and Qr, respectively.

Our local model problem describes, for instance, a heat conduction process
during the time interval Ir inside a cube Qr which contains an inhomoge-
neous material. Its thermal properties are described by a nonsmooth heat
capacity coefficient a ∈ L∞(Qr) which satisfies

ε ≤ ess inf
y∈Qr

a(y), esssup
y∈Qr

a(y) ≤ 1

ε
,

and a nonsmooth heat conduction coefficient A ∈ L∞(Ir × Qr; Sn) with
values in the set Sn of symmetric (n× n)-matrices satisfying

ε ‖ξ‖2 ≤ ess inf
(s,y)∈Ir×Qr

A(s, y)ξ · ξ, esssup
(s,y)∈Ir×Qr

A(s, y)ξ · ξ ≤ 1

ε
‖ξ‖2

for all ξ ∈ Rn and some ellipticity constant 0 < ε ≤ 1.
For the functional analytic formulation we choose Hilbert spaces Yr =

H1
0 (Qr) and Xr = H1(Qr). The space Hr = L2(Qr) is equipped with the

weighted scalar product defined by

(v|w)Hr =

∫
Qr

vw dλna for v, w ∈ Hr,

where λna is the weighted Lebesgue measure defined as

λna(Ω) =

∫
Ω
a dλn for Lebesgue measurable subsets Ω ⊂ Qr.

We consider the completely continuous embedding Kr ∈ L(Xr;Hr) of Xr

in Hr. Note that the restriction Kr|Yr ∈ L(Yr;Hr) has a dense range Kr[Yr]
in Hr. In addition to that, we introduce Er : L2(Ir;Xr)→ L2(Ir;Y

∗
r ) as the

linear operator associated with Ir and Er = (Kr|Yr)∗JHrKr ∈ L(Xr;Y
∗
r ).

The next three sections are dedicated to the local regularity properties of
functions v ∈WEr(Ir;Xr)∩C(Ir;Hr) satisfying the homogeneous variational
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problem∫
Ir

〈(Erv)′(s), w(s)〉Yr ds+

∫
Ir

∫
Qr

A∇v(s) · ∇w(s) dλn ds = 0, (2.1)

or the inhomogeneous variational problem∫
Ir

〈(Erv)′(s), w(s)〉Yr ds+

∫
Ir

∫
Qr

A∇v(s) · ∇w(s) dλn ds

=

∫
Ir

〈f(s), w(s)〉Yr ds (2.2)

for all test functions w ∈ L2(Ir;Yr) and exterior heat sources f ∈ L2(Ir;Y
∗
r ).

3. Caccioppoli inequalities and local boundedness

Energy estimates. We start our regularity theory with the proof of the
local boundedness of solutions to the homogeneous problem (2.1). To do so,
we use the following energy estimates:

Lemma 3.1 (Caccioppoli inequalities). Let ι ∈ C2(R) satisfy ι′, ι′′ ∈ BC(R)
and assume that ι′′ι ∈ BC(R) is nonnegative. For all 0 < δ < r ≤ 1 and
every solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) the estimates

sup
s∈Iδ

∫
Qδ

|u(s)|2 dλn ≤ 20

ε2(r − δ)2

∫
Ir

∫
Qr

|u(s)|2 dλn ds, (3.1)∫
Iδ

∫
Qδ

‖∇u(s)‖2 dλn ds ≤ 20

ε2(r − δ)2

∫
Ir

∫
Qr

|u(s)|2 dλn ds, (3.2)

hold true for the composition u = ι ◦ v ∈ L2(Ir;Xr) ∩ C(Ir;Hr).

Proof. 1. Let 0 < δ < r ≤ 1 and τ ∈ Iδ be fixed. Now, we choose a cut-off
function ζ ∈ C∞0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤ 2

r − δ
, ζ(y) =

{
0 if y ∈ Rn \Qr,
1 if y ∈ Qδ,

and some cut-off function ϑ ∈ C∞(R) such that for all s ∈ R we have

0 ≤ ϑ(s) ≤ 1, |ϑ′(s)| ≤ 2

(r − δ)2
, ϑ(s) =

{
0 if s ≤ t− r2,

1 if s ≥ t− δ2.
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2. Suppose that v ∈ WEr(Ir;Xr) ∩ C(Ir;Hr) solves the variational equa-
tion (2.1). Because of (ι2)′′ = 2

(
ι′′ι+ |ι′|2

)
∈ BC(R), the function

w = ζ2 · χ[t−r2,τ ] · ϑ2 · (ι2)′ ◦ v ∈ L2(Ir;Yr)

is an admissible test function for (2.1). The chain rule [12, Lemma B.1,
Eq. (B.1)] yields∫

Ir

〈(Erv)′(s), w(s)〉Yr ds

=

∫
Qr

ζ2|u(τ)|2 a dλn − 2

∫ τ

t−r2

∫
Qr

ζ2ϑ(s)ϑ′(s)|u(s)|2 a dλn ds

≥ ε
∫
Qδ

|u(τ)|2 dλn − 4

ε(r − δ)2

∫
Ir

∫
Qr

|u(s)|2 dλn ds.

3. In addition to that, a straight-forward calculation leads to∫
Ir

∫
Qr

A∇v(s) · ∇w(s) dλn ds

= 2

∫ τ

t−r2

∫
Qr

ζ2ϑ2(s)A∇u(s) · ∇u(s) dλn ds

+ 2

∫ τ

t−r2

∫
Qr

ζ2ϑ2(s) ι′′(v(s))ι(v(s))A∇v(s) · ∇v(s) dλn ds

+ 4

∫ τ

t−r2

∫
Qr

ϑ2(s) ζu(s)A∇ζ · ∇u(s) dλn ds.

Due to the nonnegativity of ι′′ι ∈ BC(R), Young’s inequality, and the posi-
tive definiteness of A this yields∫

Ir

∫
Qr

A∇v(s) · ∇w(s) dλn ds

≥
∫ τ

t−r2

∫
Qr

ζ2ϑ2(s)A∇u(s) · ∇u(s) dλn ds

− 4

∫ τ

t−r2

∫
Qr

ϑ2(s)|u(s)|2A∇ζ · ∇ζ dλn ds,

and hence,∫
Ir

∫
Qr

A∇v(s) · ∇w(s) dλn ds
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≥ ε
∫ τ

t−δ2

∫
Qδ

‖∇u(s)‖2 dλn ds− 16

ε(r − δ)2

∫
Ir

∫
Qr

|u(s)|2 dλn ds.

4. Summing up the results of the preceeding steps we arrive at∫
Qδ

|u(τ)|2 dλn +

∫ τ

t−δ2

∫
Qδ

‖∇u(s)‖2 dλn ds

≤ 20

ε2(r − δ)2

∫
Ir

∫
Qr

|u(s)|2 dλn ds.

Because τ ∈ Iδ was arbitrarily fixed at the beginning, we end up with the
inequalities (3.1) and (3.2). �

Remark 3.1. The function ι ∈ C2(R) defined as ι(z) = z for z ∈ R, is an
admissible composition function in Lemma 3.1. Hence, the solution v itself
satisfies the Caccioppoli inequalities (3.1) and (3.2).

Local boundedness. To prove the local boundedness of solutions to the ho-
mogeneous problem (2.1) we use the Moser iteration technique, that means,
a recursive application of Caccioppoli inequalities to suitable powers of the
solution, see Moser [23, 24].

Theorem 3.2 (Local boundedness). Let the convex function ι ∈ C2(R) be
nonnegative on supp(ι′′) which is assumed to be compact in R. Then there
exists some constant c = c(n, ε) > 0, such that for all 0 < r ≤ 1 and every
solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) the estimate

esssup
(s,y)∈Ir/2×Qr/2

|u(s, y)|2 ≤ c−
∫
Ir

−
∫
Qr

|u(s)|2 dλn ds (3.3)

holds true for the composition u = ι ◦ v ∈ L2(Ir;Xr) ∩ C(Ir;Hr).

Proof. 1. Let û ∈ L2(Ir;Xr) ∩ C(Ir;Hr) be given and set κ = 1 + 2/n.
Then for all 0 < δ ≤ r ≤ 1 Hölder’s inequality yields∫

Iδ

∫
Qδ

|û(s)|2κ dλn ds

≤
∫
Iδ

(∫
Qδ

|û(s)|2n/(n−2) dλn
)(n−2)/n(∫

Qδ

|û(s)|2 dλn
)κ−1

ds.

Due to the Sobolev inequality we find a constant c1 = c1(n) > 0 such that(∫
Qδ

|w|2n/(n−2) dλn
)(n−2)/n

≤ c1

∫
Qδ

(
|w|2

δ2
+ ‖∇w‖2

)
dλn
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for all w ∈ Xδ = H1(Qδ), which yields∫
Iδ

∫
Qδ

|û(s)|2κ dλn ds

≤ c1

δ2

(
esssup
s∈Iδ

∫
Qδ

|û(s)|2 dλn
)κ−1 ∫

Iδ

∫
Qδ

|û(s)|2 dλn ds

+ c1

(
esssup
s∈Iδ

∫
Qδ

|û(s)|2 dλn
)κ−1 ∫

Iδ

∫
Qδ

‖∇û(s)‖2 dλn ds.

If û ∈ L2(Ir;Xr) ∩ C(Ir;Hr) satisfies the Caccioppoli inequalities

sup
s∈Iδ

∫
Qδ

|û(s)|2 dλn ≤ 20

ε2(%− δ)2

∫
I%

∫
Q%

|û(s)|2 dλn ds,∫
Iδ

∫
Qδ

‖∇û(s)‖2 dλn ds ≤ 20

ε2(%− δ)2

∫
I%

∫
Q%

|û(s)|2 dλn ds

for all δ, % > 0 with r
2 ≤ δ < % ≤ r ≤ 1, then we obtain∫

Iδ

∫
Qδ

|û(s)|2κ dλn ds

≤
(
c1ε

2(%− δ)2

20δ2
+ c1

)(
20

ε2(%− δ)2

∫
I%

∫
Q%

|û(s)|2 dλn ds

)κ

.

Due to 0 < r
2 ≤ δ < % ≤ r ≤ 1 and nκ = n+ 2 we have

4(%− δ)2 ≤ r2 ≤ 4δ2, %(n+2)κ ≤ r2κ+n+2 ≤ (2δ)2κ+n+2,

and we find some constant c2 = c2(n, ε) > 0 such that

1

δn+2

∫
Iδ

∫
Qδ

|û(s)|2κ dλn ds ≤ c2δ
2κ

(%− δ)2κ

(
1

%n+2

∫
I%

∫
Q%

|û(s)|2 dλn ds

)κ

.

2. In the following we make use of this estimate for shrinking radii

rk =
r

2
+

r

2k+1
for k ∈ N.

Obviously, for all k ∈ N we have

r

2
< rk+1 < rk ≤ r, rk − rk+1 =

r

2k+2
,
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and, hence,

c2r
2κ
k+1

(rk − rk+1)2κ ≤ 4(k+2)κc2 ≤ ck+1
3 for all k ∈ N,

where c3 = c3(n, ε) > 0 is some constant. Setting δ = rk+1, % = rk for all
k ∈ N this yields

1

rn+2
k+1

∫
Irk+1

∫
Qrk+1

|û(s)|2κ dλn ds

≤ ck+1
3

(
1

rn+2
k

∫
Irk

∫
Qrk

|û(s)|2 dλn ds

)κ

. (3.4)

3. We construct a sequence of smooth functions approximating the convex

function ιk ∈ C(R) defined by ιk(z) = |z|κk for z ∈ R, k ∈ N. To do so, for
k, ` ∈ N we define nonnegative convex functions ι⊕k , ι	k , ι⊕k`, ι

	
k` ∈ C(R) by

ι⊕k (z) =

{
0 if z ≤ 0,

zκ
k

if 0 ≤ z,
ι⊕k`(z) =

{
ι⊕k (z) if z ≤ `,
κk`κk−1(z − `) + `κ

k
if ` ≤ z,

and

ι	k (z) =

{
|z|κk if z ≤ 0,

0 if 0 ≤ z,
ι	k`(z) =

{
κk`κk−1|z + `|+ `κ

k
if z ≤ −`,

ι⊕k (z) if −` ≤ z.

Let ϕ ∈ C∞0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫
R
ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.

Moreover, for ` ∈ N we define ϕ⊕` , ϕ	` ∈ C
∞
0 (R) by

ϕ⊕` (z) = `ϕ(`z − 1), ϕ	` (z) = `ϕ(`z + 1) for z ∈ R.

For k, ` ∈ N we consider convolutions σ⊕k`, σ
	
k` ∈ C

∞(R) given by

σ⊕k`(z) =

∫
R
ι⊕k`(z − s)ϕ

⊕
` (s) ds, σ	k`(z) =

∫
R
ι	k`(z − s)ϕ

	
` (s) ds for z ∈ R.

By construction, for ` → ∞ and fixed k ∈ N the sequences
(
σ⊕k`
)

and
(
σ	k`
)

converge monotonously to ι⊕k and ι	k : For all k, ` ∈ N, and z ∈ R we have

σ⊕k`(z) ≤ ι
⊕
k`(z) ≤ ι

⊕
k (z), lim

`→∞
σ⊕k`(z) = ι⊕k (z),

σ	k`(z) ≤ ι
	
k`(z) ≤ ι

	
k (z), lim

`→∞
σ	k`(z) = ι	k (z).



1042 Jens A. Griepentrog

Both the nonnegative and convex functions ιk` = ι⊕k` + ι	k` ∈ C(R) and

σk` = σ⊕k` + σ	k` ∈ C
∞(R) approximate ιk = ι⊕k + ι	k ∈ C(R) for fixed k ∈ N:

For all k, ` ∈ N, and z ∈ R we have

ικk (z) = ιk+1(z), σk`(z) ≤ ιk`(z) ≤ ιk(z), lim
`→∞

σk`(z) = ιk(z),

and σ′′k` ∈ C∞0 (R). Because of ι ∈ C2(R) and the compactness of supp(ι′′)
in R we get σk` ◦ ι ∈ C2(R), (σk` ◦ ι)′ = (σ′k` ◦ ι) ι′ ∈ BC(R), and

(σk` ◦ ι)′′ = (σ′k` ◦ ι) ι′′ + (σ′′k` ◦ ι)|ι′|2 ∈ BC(R) for all k, ` ∈ N.

Due to our assumption ι is nonnegative on supp(ι′′). Together with the
monotonicity of σk` on [0,∞) and the nonnegativity of ι′′ and σ′′k` we obtain
that (σk` ◦ ι)′′ is nonnegative, too. Hence, for every k, ` ∈ N the nonnegative
function σk`◦ι ∈ C2(R) is an admissible composition function in Lemma 3.1,
that means, the compositions

uk` = σk` ◦ ι ◦ v ∈ L2(Ir;Xr) ∩ C(Ir;Hr)

satisfy the Caccioppoli inequalities (3.1), (3.2). Consequently, from (3.4) it
follows that for all k, ` ∈ N we have

1

rn+2
k+1

∫
Irk+1

∫
Qrk+1

|uk`(s)|2κ dλn ds

≤ ck+1
3

(
1

rn+2
k

∫
Irk

∫
Qrk

|uk`(s)|2 dλn ds

)κ

. (3.5)

4. To prove that for all i ∈ N we obtain higher integrability |u|κi+1 ∈
L2(Iri+1 ;Hri+1) together with the estimate

1

rn+2
i+1

∫
Iri+1

∫
Qri+1

|u(s)|2κi+1
dλn ds

≤ ci+1
3

(
1

rn+2
i

∫
Iri

∫
Qri

|u(s)|2κi dλn ds

)κ

, (3.6)

we proceed by induction: Due to the assumptions on ι ∈ C2(R) the com-
position u = ι ◦ v ∈ L2(Ir;Xr) ∩ C(Ir;Hr) satisfies the Caccioppoli in-
equalities. Hence, for i = 0 the result follows directly from (3.4). Next,
we suppose that (3.6) holds true for i = k − 1. Because of (3.5) and

uk` = σk` ◦ u ≤ ιk ◦ u = |u|κk this yields the estimate
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1

rn+2
k+1

∫
Irk+1

∫
Qrk+1

|uk`(s)|2κ dλn ds

≤ ck+1
3

(
1

rn+2
k

∫
Irk

∫
Qrk

|u(s)|2κk dλn ds

)κ

.

Due to the monotonous convergence of (σk`) to ιk and ικk = ιk+1 we apply
Fatou’s lemma to the left-hand side and pass to the limit ` → ∞. This
proves (3.6) for the case i = k.

5. Applying the estimates (3.6) for i ∈ {0, . . . , k − 1} recursively, we get

1

rn+2
k

∫
Irk

∫
Qrk

|u(s)|2κk dλn ds ≤ cpk(κ)
3

(
1

rn+2
0

∫
Ir0

∫
Qr0

|u(s)|2 dλn ds

)κk

for all k ∈ N, where we have introduced the polynomial

pk(κ) =
k−1∑
i=0

(k − i)κi for k ∈ N.

Because of the property

κ−kpk(κ) =

k−1∑
i=0

(k − i)κi−k =

k∑
i=1

iκ−i ≤ κ
(κ − 1)2

for all k ∈ N,

we find some constant c4 = c4(n, ε) > 0 such that(
1

rn+2
k

∫
Irk

∫
Qrk

|u(s)|2κk dλn ds

)κ−k

≤ c4

rn+2

∫
Ir

∫
Qr

|u(s)|2 dλn ds,

Finally, passing to the limit k →∞ we end up with

esssup
(s,y)∈Ir/2×Qr/2

|u(s, y)|2 ≤ c5−
∫
Ir

−
∫
Qr

|u(s)|2 dλn ds,

where c5 = c5(n, ε) > 0 is some constant. �

Remark 3.2. Note that the function ι ∈ C2(R), given by ι(z) = z for z ∈ R,
is an admissible composition function in Theorem 3.2. Hence, the solution v
itself is locally bounded and satisfies (3.3).
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4. Harnack-type inequalities

To estimate the oscillation of solutions we need not only local boundedness
but also Harnack-type inequalities concerning level sets of nonnegative solu-
tions to the homogeneous problem (2.1), see Kruzhkov [19, 20] for the case
of constant heat capacity coefficients.

Let Ω ⊂ Rn be open and w : Ω → R be some Lebesgue measurable
function. Then for every value z ∈ R we introduce the level set

Nz(w,Ω) = {y ∈ Ω : w(y) ≥ z}.

Lemma 4.1 (Measure estimate). There exist constants 0 < κ1, κ2, θ < 1
depending on n and ε, only, such that for all 0 < r ≤ 1 and every nonnegative
solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) which satisfies

−
∫
Ir

λna
(
N1(v(s), Qr)

)
ds ≥ 1

2
λna(Qr), (4.1)

the following pointwise estimate holds true:

λna
(
Nθ(v(τ), Qκ2r)

)
≥ 1

4
λna(Qκ2r) for all τ ∈ Iκ1r. (4.2)

Proof. 1. Let 0 < κ1 <
1
2 be some constant. Assume, that for each s ∈

(t− r2, t− κ2
1r

2) the inequality

λna
(
N1(v(s), Qr)

)
<

1
2 − κ

2
1

1− κ2
1

λna(Qr)

holds true. Then by integration over Ir we get the relation∫ t−κ21r2

t−r2
λna
(
N1(v(s), Qr

)
ds+

∫ t

t−κ21r2
λna
(
N1(v(s), Qr

)
ds

<

∫ t−κ21r2

t−r2

1
2 − κ

2
1

1− κ2
1

λna(Qr) ds+ κ2
1r

2 λna(Qr) =
1

2
r2λna(Qr)

which is a contradiction to (4.1).
Therefore, we have proved that for every constant 0 < κ1 <

1
2 there exists

some τ1 ∈ (t− r2, t− κ2
1r

2) such that

λna
(
N1(v(τ1), Qr)

)
≥

1
2 − κ

2
1

1− κ2
1

λna(Qr). (4.3)

2. Let 0 < θ < 1
2 be some constant which will be fixed later. We con-

struct a sequence of smooth functions approximating the nonnegative convex
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function ι ∈ C(R) given by

ι(z) =


− z
θ − ln θ if z ≤ 0,

− ln(z + θ) if 0 ≤ z ≤ 1− θ,
0 if 1− θ ≤ z.

To do so, let ϕ ∈ C∞0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫
R
ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.

For k ∈ N we define ϕk ∈ C∞0 (R) by

ϕk(z) = kϕ(kz + 1) for z ∈ R,
and we introduce nonnegative convex functions ιk ∈ C∞(R) by

ιk(z) =

∫
R
ι(z − s)ϕk(s) ds for z ∈ R, k ∈ N.

By construction, for k →∞ the sequence (ιk) converges monotonously to ι.
Moreover, for all k ∈ N we have ι′′k ∈ C∞0 (R) and

0 ≤ ιk(z) ≤ ι(z) ≤ ln 1
θ for all z ≥ 0, ι(z) = ιk(z) = 0 for all z ≥ 1.

Calculating the derivatives

ι′k(z) = −1

θ

∫ ∞
z

ϕk(s) ds−
∫ z

z−(1−θ)

ϕk(s)

z + θ − s
ds,

ι′′k(z) = ϕk(z − (1− θ)) +

∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds,

and using Hölder’s inequality, for all k ∈ N and z ≥ 0 we obtain

|ι′k(z)|2 =

∣∣∣∣ ∫ z

z−(1−θ)

ϕk(s)

z + θ − s
ds

∣∣∣∣2
≤
(∫ z

z−(1−θ)
ϕk(s) ds

)(∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds

)
≤
∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds ≤ ι′′k(z).

3. Let 0 < κ1 <
1
2 and 0 < κ2 < 1 be given constants which will be fixed

later. We choose a cut-off function ζ ∈ C∞0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤ 2

(1− κ2)r
, ζ(y) =

{
0 if y ∈ Rn \Qr,
1 if y ∈ Qκ2r.
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Furthermore, let τ1 ∈ (t − r2, t − κ2
1r

2) and τ2 ∈ Iκ1r be fixed. Because
ιk ∈ C∞(R) and ι′′k ∈ C∞0 (R) holds true, for all k ∈ N the function

wk = ζ2 · χ[τ1,τ2] · ι′k ◦ v ∈ L2(Ir;Yr)

is an admissible test function for (2.1). Using the chain rule [12, Lemma B.1,
Eq. (B.1)] for all k ∈ N we get∫

Ir

〈(Erv)′(s), wk(s)〉Yr ds =

∫
Qr

ζ2ιk(v(τ2)) dλna −
∫
Qr

ζ2ιk(v(τ1)) dλna .

4. Additionally, by a straight-forward calculation for all k ∈ N we obtain∫
Ir

∫
Qr

A∇v(s) · ∇wk(s) dλn ds

=

∫ τ2

τ1

∫
Qr

ζ2ι′′k(v(s))A∇v(s) · ∇v(s) dλn ds

+ 2

∫ τ2

τ1

∫
Qr

ζA∇ζ · ∇(ιk ◦ v)(s) dλn ds.

Applying the relation ι′′k ≥ |ι′k|2 on [0,∞) and the positive definiteness of A,
for all k ∈ N we get∫

Ir

∫
Qr

A∇v(s) · ∇wk(s) dλn ds

≥
∫ τ2

τ1

∫
Qr

ζ2A∇(ιk ◦ v)(s) · ∇(ιk ◦ v)(s) dλn ds

+ 2

∫ τ2

τ1

∫
Qr

ζA∇ζ · ∇(ιk ◦ v)(s) dλn ds.

Hence, Young’s inequality yields some constant c1 = c1(ε, n) > 0 such that∫
Ir

∫
Qr

A∇v(s) · ∇wk(s) dλn ds

≥ ε

2

∫ τ2

τ1

∫
Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds− c1

∫ τ2

τ1

∫
Qr

‖∇ζ‖2 dλn ds.

5. Summing up the results of the preceeding steps and using the properties
of the cut-off functions we find some constant c2 = c2(ε, n) > 0 such that for
all k ∈ N we have∫

Qr

ζ2ιk(v(τ2)) dλna +
ε

2

∫ τ2

τ1

∫
Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds
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≤
∫
Qr

ζ2ιk(v(τ1)) dλna +
c2

κn2 (1− κ2)2
λna(Qκ2r). (4.4)

Neglecting the second integral term on the left-hand side, we pass to the
limit k → ∞ in the two remaining integrals: The monotone convergence of
(ιk) to ι on [0,∞) yields

lim
k→∞

∫
Qr

ζ2ιk(v(τ2)) dλna =

∫
Qr

ζ2ι(v(τ2)) dλna

≥
∫
Qκ2r\Nθ(v(τ2),Qκ2r)

ι(v(τ2)) dλna .

Because v(τ2) + θ ≤ 2θ < 1 and, hence, ι(v(τ2)) ≥ ln 1
2θ > 0 hold true

λna -almost everywhere on Qκ2r \Nθ(v(τ2), Qκ2r), it follows

lim
k→∞

∫
Qr

ζ2ιk(v(τ2)) dλna ≥ λna
(
Qκ2r \Nθ(v(τ2), Qκ2r)

)
ln

1

2θ
. (4.5)

Using the same argument as above, we get

lim
k→∞

∫
Qr

ζ2ιk(v(τ1)) dλna =

∫
Qr

ζ2ι(v(τ1)) dλna

≤
∫
Qr\N1(v(τ1),Qr)

ι(v(τ1)) dλna .

Note, that λna -almost everywhere on Qr we have ι(v(τ1)) ≤ ln 1
θ . This yields

lim
k→∞

∫
Qr

ζ2ιk(v(τ1)) dλna ≤
(
λna(Qr)− λna

(
N1(v(τ1), Qr)

))
ln

1

θ
. (4.6)

Passing to the limit k →∞ in (4.4) we use (4.5) und (4.6) to get

λna
(
Qκ2r \Nθ(v(τ2), Qκ2r)

)
ln

1

2θ

≤
(
λna(Qr)− λna

(
N1(v(τ1), Qr)

))
ln

1

θ
+

c2

κn2 (1− κ2)2
λna(Qκ2r).

In view of (4.3) for every 0 < κ1 <
1
2 there exists some τ1 ∈ (t− r2, t−κ2

1r
2)

such that

λna
(
Qκ2r \Nθ(v(τ2), Qκ2r)

)
ln

1

2θ

≤ 1

2(1− κ2
1)
λna(Qr) ln

1

θ
+

c2

κn2 (1− κ2)2
λna(Qκ2r).
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Due to ε ≤ ess infy∈Qr a(y) and esssupy∈Qr a(y) ≤ 1/ε we obtain

λna(Qr) ≤
(

1 +
1− κn2
ε2κn2

)
λna(Qκ2r),

which yields

λna
(
Qκ2r \Nθ(v(τ2), Qκ2r)

)
≤ c2

κn2 (1− κ2)2 ln 1
2θ

λna(Qκ2r)

+
1

1− κ2
1

(
1 +

1− κn2
ε2κn2

)(
1

2
+

ln 2

2 ln 1
2θ

)
λna(Qκ2r).

Here, we fix constants 0 < κ1 <
1
2 and 0 < κ2 < 1 such that

1

1− κ2
1

(
1 +

1− κn2
ε2κn2

)
≤ 9

8
.

After that, we choose 0 < θ < 1
2 such that both

ln 2

2 ln 1
2θ

≤ 1

18
and

c2

κn2 (1− κ2)2 ln 1
2θ

≤ 1

8
.

Indeed, we have found three constants 0 < κ1, κ2, θ < 1 depending on ε
and n, only, such that for all τ2 ∈ Iκ1r the estimate

λna
(
Qκ2r \Nθ(v(τ2), Qκ2r)

)
≤ 3

4
λna(Qκ2r)

holds true, which proves the desired result. �

Theorem 4.2 (Harnack-type inequality). We find constants 0 < γ < 1
2 and

0 < κ < 1
2 depending on n and ε, only, such that for all 0 < r ≤ 1 and every

nonnegative solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) satisfying

−
∫
Ir

λna
(
N1(v(s), Qr)

)
ds ≥ 1

2
λna(Qr),

the following estimate holds true:

ess inf
(s,y)∈Iκr×Qκr

v(s, y) ≥ γ. (4.7)

Proof. 1. In view Lemma 4.1 and estimate (4.2) we find 0 < κ1, κ2, θ < 1
depending on ε and n, only, such that

λn
(
Nθ(v(τ), Qκ2r)

)
≥ 1

4
ε2λn(Qκ2r) for all τ ∈ Iκ1r. (4.8)
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2. Let γ > 0 be some constant with γ2 < θ
2 which will be fixed later. We

take a sequence of smooth functions approximating the nonnegative convex
function ι ∈ C(R) defined as

ι(z) =


− z
γ2
− ln γ2

θ if z ≤ 0,

− ln z+γ2

θ if 0 ≤ z ≤ θ − γ2,

0 if θ − γ2 ≤ z.

To that end, let ϕ ∈ C∞0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫
R
ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.

For k ∈ N we define ϕk ∈ C∞0 (R) by

ϕk(z) = kϕ(kz + 1) for z ∈ R,
and we construct nonnegative convex functions ιk ∈ C∞(R) by

ιk(z) =

∫
R
ι(z − s)ϕk(s) ds for z ∈ R, k ∈ N.

By construction, for k →∞ the sequence (ιk) converges monotonously to ι.
Furthermore, for all k ∈ N we have ι′′k ∈ C∞0 (R) and

0 ≤ ιk(z) ≤ ι(z) ≤ ln θ
γ2

for all z ≥ 0, ι(z) = ιk(z) = 0 for all z ≥ θ.

Using the same arguments as in Step 2 of the proof of Lemma 4.1 we get
|ι′k(z)|2 ≤ ι′′k(z) for all k ∈ N and z ≥ 0.

3. We choose some cut-off function ζ ∈ C∞0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤ 2

(1− κ2)r
, ζ(y) =

{
0 if y ∈ Rn \Qr,
1 if y ∈ Qκ2r.

Moreover, let τ1 = t − κ2
1r

2 and τ2 ∈ Iκ1r be fixed. Since ιk ∈ C∞(R) and
ι′′k ∈ C∞0 (R) holds true, for all k ∈ N the function

wk = ζ2 · χ[τ1,τ2] · ι′k ◦ v ∈ L2(Ir;Yr)

is an admissible test function for (2.1). Following exactly the same arguments
as in Step 3 and 4 of the proof of Lemma 4.1, we get an estimate analogous
to (4.4): We obtain∫

Qr

ζ2ιk(v(τ2)) dλna +
ε

2

∫ τ2

τ1

∫
Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds

≤
∫
Qr

ζ2ιk(v(τ1)) dλna +
c1

κn2 (1− κ2)2
λna(Qκ2r) (4.9)
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for some constant c1 = c1(n, ε) > 0.
Due to the fact that ιk(z) ≤ ln θ

γ2
holds true for all z ≥ 0 and k ∈ N, we

estimate the first term of the right-hand side by∫
Qr

ζ2ιk(v(τ1)) dλna ≤ λna(Qr) ln
θ

γ2
.

Neglecting the first term on the left-hand side of (4.9), this yields∫
Iκ1r

∫
Qκ2r

‖∇(ιk ◦ v)(s)‖2 dλn ds ≤ c2r
n ln

3θ

γ2
(4.10)

for all k ∈ N, where c2 = c2(n, ε) > 0 is some constant.
In view of (4.8) we apply a weighted version of the Poincaré inequality [12,

Lemma A.2, Eq. (A.1)] to find a constant c3 = c3(ε, n) > 0 such that∫
Iκ1r

∫
Qκ2r

∣∣∣∣ιk(v(s))−−
∫
Nθ(v(s),Qκ2r)

ιk(v(s)) dλn
∣∣∣∣2 dλn ds

≤ c3(κ2r)
2

∫
Iκ1r

∫
Qκ2r

‖∇(ιk ◦ v)(s)‖2 dλn ds.

Using the fact, that for all s ∈ Iκ1r we have v(s) ≥ θ and, hence, ιk(v(s)) = 0
λn-almost everywhere on Nθ(v(s), Qκ2r), the mean value in the integrand of
the left-hand side vanishes. Remembering (4.10) this yields some constant
c4 = c4(n, ε) > 0 such that∫

Iκ1r

∫
Qκ2r

|ιk(v(s))|2 dλn ds ≤ c4r
n+2 ln

3θ

γ2
. (4.11)

4. For every k ∈ N the nonnegative convex function ιk ∈ C∞(R) satisfies
ι′′k ∈ C∞0 (R). Due to Theorem 3.2 we find a constant c5 = c5(n, ε) > 0 such

that for κ = 1
2 min{κ1, κ2} and all k ∈ N we obtain the estimate

esssup
(s,y)∈Iκr×Qκr

|ιk(v(s, y))|2 ≤ c5−
∫
I2κr

−
∫
Q2κr

|ιk(v(s))|2 dλn ds.

Hence, applying (4.11) and using the monotone convergence of (ιk) to ι on
[0,∞), we arrive at

esssup
(s,y)∈Iκr×Qκr

|ι(v(s, y))|2 ≤ c6 ln
3θ

γ2
, (4.12)

where c6 = c6(n, ε) > 0 is some constant.
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In view of the properties of logarithmic and quadratic functions we fix
some constant γ > 0 depending on n and ε, only, such that

γ2 < min
{
θ
2 , θ

2
}
, c6

(
ln 3θ − ln γ2

)
< (ln θ − ln γ)2.

Using (4.12) for all s ∈ Iκr this yields(
ln

θ

v(s) + γ2

)2

≤ c6 ln
3θ

γ2
≤
(

ln
θ

γ

)2

λn-almost everywhere on Qκr \ Nθ−γ2(v(s), Qκr). Therefore, for all s ∈ Iκr
we obtain v(s) ≥ γ−γ2 > 0 λn-almost everywhere on Qκr\Nθ−γ2(v(s), Qκr).

Note, that by definition for all s ∈ Iκr we get v(s) ≥ θ − γ2 > 0 λn-almost
everywhere on Nθ−γ2(v(s), Qκr),

Finally, by setting γ∗ = min
{
θ − γ2, γ − γ2

}
we have got two constants

0 < γ∗, κ < 1
2 depending on n and ε, only, such that the desired estimate

ess inf
(s,y)∈Iκr×Qκr

v(s, y) ≥ γ∗

holds true. �

5. Campanato inequalities

Using both local boundedness and the Harnack-type inequality we prove the
De Giorgi–Moser–Nash inequality to estimate the oscillation of solutions.
The proofs use ideas of Troianiello [28] and Hong-Ming Yin [30].

Theorem 5.1 (De Giorgi–Moser–Nash inequality). There exist constants
0 < ν < 1 and c > 0 depending on n and ε, only, such that for all 0 < δ ≤
r ≤ 1 and every solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) the following
estimate holds true:

esssup
(s,y),(ŝ,ŷ)∈Iδ/2×Qδ/2

|v(s, y)− v(ŝ, ŷ)|2 ≤ c
(
δ

r

)2ν

−
∫
Ir

−
∫
Qr

|v(s)|2 dλn ds. (5.1)

Proof. 1. Let 0 < % ≤ r
2 be given and consider an essentially bounded

function v ∈WE%(I%;X%) ∩ C(I%;H%) which satisfies∫
I%

〈(E%v)′(s), w(s)〉Y% ds+

∫
I%

∫
Q%

A∇v(s) · ∇w(s) dλn ds = 0 (5.2)

for all w ∈ L2(I%;Y%). We define the bounds m∗, m
∗ ∈ R by

m∗ = ess inf
(s,y)∈I%×Q%

v(s, y) ≤ esssup
(s,y)∈I%×Q%

v(s, y) = m∗. (5.3)
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In the following step we prove that there exist constants 0 < γ, κ < 1
2

depending on n, ε, only, and M∗, M
∗ ∈ R such that both

M∗ ≤ ess inf
(s,y)∈Iκ%×Qκ%

v(s, y) ≤ esssup
(s,y)∈Iκ%×Qκ%

v(s, y) ≤M∗ (5.4)

and

M∗ −M∗ ≤ (1− γ)(m∗ −m∗) (5.5)

holds true:
2. In the case m∗ = m∗ the statement is obviously true. Hence, assume

that m∗ < m∗ and let z∗ ∈ [m∗,m
∗] be the supremum of all z ∈ [m∗,m

∗]
which satisfy

−
∫
I%

λna
(
{y ∈ Q% : v(s, y) < z}

)
ds ≤ 1

2
λna(Q%).

Introducing the level sets

Fk(s) =
{
y ∈ Q% : v(s, y) ≤ z∗ − 1

k

}
,

F (s) =
{
y ∈ Q% : v(s, y) < z∗

}
,

for all s ∈ I% and k ∈ N we get Fk(s) ⊂ Fk+1(s) and ∪∞k=1Fk(s) = F (s)
which yields

−
∫
I%

λna(F (s)) ds = lim
k→∞

−
∫
I%

λna(Fk(s)) ds ≤
1

2
λna(Q%).

In other words, we have

−
∫
I%

λna
(
{y ∈ Q% : v(s, y) < z∗}

)
ds ≤ 1

2
λna(Q%). (5.6)

Analogously, introducing the level sets

Gk(s) =
{
y ∈ Q% : v(s, y) < z∗ + 1

k

}
,

G(s) =
{
y ∈ Q% : v(s, y) ≤ z∗

}
,

for all s ∈ I% and k ∈ N we get Gk+1(s) ⊂ Gk(s) and ∩∞k=1Gk(s) = G(s)
which yields

−
∫
I%

λna(G(s)) ds = lim
k→∞

−
∫
I%

λna(Gk(s)) ds ≥
1

2
λna(Q%).

Hence, we also get

−
∫
I%

λna
(
{y ∈ Q% : v(s, y) > z∗}

)
ds ≤ 1

2
λna(Q%). (5.7)
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2.1. In the case m∗ < z∗ the nonnegative function

v∗ =
v −m∗
z∗ −m∗

∈WE%(I%;X%) ∩ C(I%;H%)

solves (5.2) as well as v. By construction, from (5.6) we get the estimate

−
∫
I%

λna
(
{y ∈ Q% : v∗(s, y) ≥ 1}

)
ds ≥ 1

2
λna(Q%).

Applying Theorem 4.2 there exist two constants 0 < γ, κ < 1
2 depending on

n and ε, only, such that the Harnack-type inequality (4.7)

ess inf
(s,y)∈Iκ%×Qκ%

v∗(s, y) ≥ γ

holds true. Hence, setting

M∗ = m∗ + γ(z∗ −m∗) = z∗ − (1− γ)(z∗ −m∗),

we get

M∗ ≤ ess inf
(s,y)∈Iκ%×Qκ%

v(s, y),

which remains true in the case z∗ = m∗ due to (5.3).
2.2. Analogously to Step 2.1, in the case z∗ < m∗ the nonnegative function

v∗ =
m∗ − v
m∗ − z∗

∈WE%(I%;X%) ∩ C(I%;H%)

solves (5.2), too. From (5.7) we obtain

−
∫
I%

λna
(
{y ∈ Q% : v∗(s, y) ≥ 1}

)
ds ≥ 1

2
λna(Q%),

and Theorem 4.2 yields

ess inf
(s,y)∈Iκ%×Qκ%

v∗(s, y) ≥ γ,

where the constants 0 < γ, κ < 1
2 are the same as in Step 2.1. Therefore,

setting

M∗ = m∗ − γ(m∗ − z∗) = z∗ + (1− γ)(m∗ − z∗),
we get

esssup
(s,y)∈Iκ%×Qκ%

v(s, y) ≤M∗,

which remains true in the case z∗ = m∗ because of (5.3). Summing up the
results of Step 2.1 and 2.2 we have shown both (5.4) and (5.5).
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3. For 0 < % ≤ r
2 we define the oscillation of v with respect to I%, Q% by

o(%) = esssup
(s,y),(ŝ,ŷ)∈I%×Q%

|v(s, y)− v(ŝ, ŷ)|.

A recursive application of (5.3), (5.4), and (5.5), see Step 1, to shrinking
radii % = 1

2κ
ir yields

o
(

1
2κ

ir
)
≤ (1− γ)i o

(
r
2

)
for all i ∈ N.

For every pair of radii 0 < δ ≤ r we choose i ∈ N such that κi+1r < δ ≤ κir.
In the case o

(
δ
2

)
> 0 we obtain

ln o
(
δ
2

)
− ln o

(
r
2

)
≤ ln

1

1− γ
+ (i+ 1) ln(1− γ) ≤ ln

1

1− γ
+

ln(1− γ)

lnκ
ln
δ

r
.

Setting ν = ln(1−γ)
lnκ ∈ (0, 1), we get

o
(
δ
2) ≤

o
(
r
2

)
1− γ

(
δ

r

)ν
which holds true also in the trivial case o

(
δ
2

)
= 0. Hence, due to Remark 3.2

concerning the local boundedness of v, for all 0 < δ ≤ r ≤ 1 we end up with

esssup
(s,y),(ŝ,ŷ)∈Iδ/2×Qδ/2

|v(s, y)− v(ŝ, ŷ)|2 ≤ c
(
δ

r

)2ν

−
∫
Ir

−
∫
Qr

|v(s)|2 dλn ds,

where c = c(n, ε) > 0 is some constant. �

Campanato inequalities. Due to the De Giorgi–Moser–Nash inequality
we get the Campanato inequality for the spatial gradients of solutions to the
homogeneous problem (2.1).

Lemma 5.2 (Campanato inequality). There exist constants c > 0 and ω̄ ∈
(n, n + 2) depending on n and ε, only, such that for all 0 < δ ≤ r ≤ 1 and
every solution v ∈WEr(Ir;Xr) ∩ C(Ir;Hr) of (2.1) we have∫

Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c
(
δ

r

)ω̄ ∫
Ir

∫
Qr

‖∇v(s)‖2 dλn ds.

Proof. 1. First, we consider the case 0 < δ ≤ r
4 . Setting

v̄ = −
∫
I2δ

−
∫
Q2δ

v(s) dλn ds,
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the difference v − v̄ ∈ WEr(Ir;Xr) ∩ C(Ir;Hr) satisfies (2.1) as well as v.
In view of the Caccioppoli inequality (3.2) and the local boundedness, see
Remark 3.1 and 3.2, this leads to the estimate∫

Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ 20

ε2δ2

∫
I2δ

∫
Q2δ

|v(s)− v̄|2 dλn ds

≤ c1δ
n esssup

(s,y)∈I2δ×Q2δ

|v(s, y)− v̄|2,

where c1 = c1(n, ε) > 0 is some constant. Due to the relation

ess inf
(s,y)∈I2δ×Q2δ

v(s, y) ≤ v ≤ esssup
(s,y)∈I2δ×Q2δ

v(s, y),

this yields∫
Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c1δ
n esssup

(s,y),(ŝ,ŷ)∈I2δ×Q2δ

|v(s, y)− v(ŝ, ŷ)|2. (5.8)

2. Introducing the mean value

v̂ = −
∫
Ir

−
∫
Qr

v(s) dλn ds,

again we make use of the fact, that v − v̂ satisfies (2.1) as well as v. We
apply the De Giorgi–Moser–Nash inequality (5.1) to the function

v − v̂ ∈WEr(Ir;Xr) ∩ C(Ir;Hr)

to estimate its oscillation: We find two constants c2 > 0 and 0 < ν < 1
depending on n and ε, only, such that for all 0 < δ ≤ r

4

esssup
(s,y),(ŝ,ŷ)∈I2δ×Q2δ

|v(s, y)− v(ŝ, ŷ)|2 ≤ c2

(
δ

r

)2ν

−
∫
Ir

−
∫
Qr

|v(s)− v̂|2 dλn ds.

Together with (5.8) for 0 < δ ≤ r
4 we obtain∫

Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c3

r2

(
δ

r

)ω̄ ∫
Ir

∫
Qr

|v(s)− v̂|2 dλn ds,

where ω̄ = n + 2ν ∈ (n, n + 2) and c3 = c3(n, ε) > 0 are constants. Hence,
using the Poincaré inequality, see [12, Theorem A.3], we find some constant
c4 = c4(ε, n) > 0 such that∫

Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c4

(
δ

r

)ω̄ ∫
Ir

∫
Qr

‖∇v(s)‖2 dλn ds

+ c4

(
δ

r

)ω̄ ∫
Ir

‖(Erv)′(s)‖2H−1(Qr)
ds.
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Since v ∈WEr(Ir;Xr)∩C(Ir;Hr) satisfies the variational equation (2.1), for
all 0 < δ ≤ r

4 we arrive at the sought-for estimate∫
Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c5

(
δ

r

)ω̄ ∫
Ir

∫
Qr

‖∇v(s)‖2 dλn ds,

where c5 = c5(ε, n) > 0 is some constant. Obviously, a relation of this type
holds true in the case r

4 ≤ δ ≤ r, too. �

We conclude our local regularity theory with the Campanato inequality
for the spatial gradients of solutions to the inhomogeneous problem (2.2).
This estimate serves as the starting point of our global regularity theory for
second order parabolic boundary-value problems in Lipschitz domains with
nonsmooth coefficients and mixed boundary conditions in Sobolev–Morrey
spaces.

Theorem 5.3 (Campanato inequality). We find constants n < ω̄ < n + 2
and c > 0 depending on n and ε, only, such that for all 0 < δ ≤ r ≤ 1, every
functional f ∈ L2(Ir;Y

∗
r ), and every solution u ∈ WEr(Ir;Xr) ∩ C(Ir;Hr)

of the variational equation (2.2) we have∫
Iδ

∫
Qδ

‖∇u(s)‖2 dλn ds

≤ c
(
δ

r

)ω̄ ∫
Ir

∫
Qr

‖∇u(s)‖2 dλn ds+ c

∫
Ir

‖f(s)‖2Y ∗r ds. (5.9)

Proof. 1. Let u0 ∈ WEr|Yr(Ir;Yr) be the function which solves (2.2) and

satisfies u0(t − r2) = 0, see Theorem 1.1. Using w = u0 as a test function
and having in mind the Sobolev–Friedrichs inequality∫

Qr

|u0(s)|2 dλn ≤ 4r2

∫
Qr

‖∇u0(s)‖2 dλn for s ∈ Ir,

we apply Young’s inequality to obtain the following estimate

ε

∫
Ir

∫
Qr

‖∇u0(s)‖2 dλn ds ≤
∫
Ir

〈f(s), u0(s)〉Yr ds

≤ c1

∫
Ir

‖f(s)‖2Y ∗r ds+
ε

2

∫
Ir

∫
Qr

‖∇u0(s)‖2 dλn ds,

where c1 = c1(ε, n) is some constant. Consequently, we get∫
Ir

∫
Qr

‖∇u0(s)‖2 dλn ds ≤ 2c1

ε

∫
Ir

‖f(s)‖2Y ∗r ds. (5.10)
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2. Let u ∈ WEr(Ir;Xr) ∩ C(Ir;Hr) be a solution of (2.2). Then the
difference v = u − u0 ∈ WEr(Ir;Xr) ∩ C(Ir;Hr) solves the homogeneous
problem (2.1). Due to Lemma 5.2 and v = u− u0, for all 0 < δ ≤ r ≤ 1 we
obtain the estimate∫

Iδ

∫
Qδ

‖∇v(s)‖2 dλn ds ≤ c2

(
δ

r

)ω̄ ∫
Ir

∫
Qr

‖∇v(s)‖2 dλn ds

≤ 2c2

(
δ

r

)ω̄ ∫
Ir

∫
Qr

(
‖∇u(s)‖2 + ‖∇u0(s)‖2

)
dλn ds,

where ω̄ ∈ (n, n+ 2) and c2 > 0 are two constants depending on n and ε.
In view of u = u0 +v and estimate (5.10) this yields the existence of some

constant c3 = c3(n, ε) > 0 such that the desired inequality holds true. �

6. Global regularity for a model problem

Let S = (t0, t1) be a bounded open interval, G ⊂ Rn a regular set, and
0 < ε ≤ 1 some constant. To formulate our model problem we consider the
following type of parabolic operators.

Definition 6.1 (Parabolic operator). 1. The pair of leading coefficients
(a,A) is called ε-definite with respect to S and G◦ if a ∈ L∞(G◦) fulfills

ε ≤ ess inf
y∈G◦

a(y), esssup
y∈G◦

a(y) ≤ 1

ε
,

and A ∈ L∞(S ×G◦; Sn) satisfies the ellipticity condition

ε ‖ξ‖2 ≤ ess inf
(s,y)∈S×G◦

A(s, y)ξ · ξ, esssup
(s,y)∈S×G◦

A(s, y)ξ · ξ ≤ 1

ε
‖ξ‖2

for all ξ ∈ Rn. Here Sn is the set of symmetric (n× n)-matrices.
2. Let the pair (a,A) of leading coefficients be ε-definite with respect

to S and G◦. Consider the operator E ∈ L(H1
0 (G);H−1(G)) associated

with a and introduce its time-dependent counterpart E : L2(S;H1
0 (G)) →

L2(S;H−1(G)) as usual by (Eu)(s) = Eu(s) for u ∈ L2(S;H1
0 (G)) and s ∈ S.

Moreover, for u, w ∈ L2(S;H1
0 (G)) we define the bounded linear operator

A : L2(S;H1
0 (G))→ L2(S;H−1(G)) by

〈Au,w〉L2(S;H1
0 (G)) =

∫
S

∫
G
A∇u(s) · ∇w(s) dλn ds.

3. We define the parabolic operator

P :
{
u ∈WE(S;H1

0 (G)) : u(t0) = 0
}
→ L2(S;H−1(G)),
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associated with the maps E and A, by setting

Pu = (Eu)′ + Au for u ∈WE(S;H1
0 (G)) with u(t0) = 0.

We formulate the model problem to find a solution u ∈WE(S;H1
0 (G)) of

Pu = f ∈ L2(S;H−1(G)), u(t0) = 0. (6.1)

Applying Theorem 1.1 the operator P is an isomorphism between the
Hilbert spaces

{
u ∈ WE(S;H1

0 (G)) : u(t0) = 0
}

and L2(S;H−1(G)): For

every f ∈ L2(S;H−1(G)) the initial-value problem (6.1) admits a uniquely
determined solution u ∈ WE(S;H1

0 (G)). This section is dedicated to the
maximal regularity properties of the parabolic operator P. To that end we
introduce the concept of admissibility for regular sets G ⊂ Rn:

Definition 6.2 (Admissible sets). Let ε ∈ (0, 1], G ⊂ Rn be a regular set
and F ⊂ Rn be a regular subset of G.

1. We denote by ω̄ε(F,G) ∈ [0, n + 2] the supremum of all ω̄ ∈ [0, n + 2]
such that for every ω ∈ [0, ω̄), all bounded open intervals S = (t0, t1), every
functional f ∈ Lω2 (S;H−1(G)), and all coefficients (a,A) being ε-definite
with respect to S and G◦, for the solution u ∈ WE(S;H1

0 (G)) to the model
problem (6.1) the estimate

‖RS,Fu‖Lω2 (S;H1(F ◦)) ≤ c1

(
‖f‖Lω2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
holds true, where c1 > 0 is some constant which depends on n, ε, ω, S, G,
and F , only. In the case F = G we set ω̄ε(G) = ω̄ε(G,G).

2. The set F is called admissible with respect to the set G, if and only if
ω̄ε(F,G) > n for all ε ∈ (0, 1]. We call G admissible, if and only if ω̄ε(G) > n
for all ε ∈ (0, 1].

Theorem 6.1. If G ⊂ Rn is admissible, then for every 0 ≤ ω < ω̄ε(G)
the restriction Pω of the parabolic operator P associated with the coefficients
(a,A) being ε-definite with respect to S = (t0, t1) and G◦ is a linear isomor-
phism from

{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
onto Lω2 (S;H−1(G)).

Proof. Let G ⊂ Rn be admissible and 0 ≤ ω < ω̄ε(G) be some given
parameter. In view of the above definition, for every f ∈ Lω2 (S;H−1(G)) the
solution u ∈ WE(S;H1

0 (G)) of problem (6.1) belongs to Lω2 (S;H1
0 (G)) and

satisfies the estimate

‖u‖Lω2 (S;H1
0 (G)) ≤ c1

(
‖f‖Lω2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
, (6.2)

where c1 > 0 is some constant depending on n, ε, ω, S, and G, only. Us-
ing [12, Remark 3.2, Theorem 5.6] this yields Au ∈ Lω2 (S;H−1(G)) and,
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hence, maximal regularity (Eu)′ = f − Au ∈ Lω2 (S;H−1(G)) with a norm
estimate

‖(Eu)′‖Lω2 (S;H−1(G)) ≤ c2

(
‖f‖Lω2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
, (6.3)

where c2 > 0 is some constant depending on n, ε, ω, S, and G, only.
Since the operator P−1 maps L2(S;H−1(G)) continuously into the space

WE(S;H1
0 (G)), see Theorem 1.1, and Lω2 (S;H−1(G)) is continuously em-

bedded into L2(S;H−1(G)), the above estimates (6.2) and (6.3) leads to

‖P−1f‖Wω
E (S;H1(G◦)) ≤ c3 ‖f‖Lω2 (S;H−1(G)) for all f ∈ Lω2 (S;H−1(G)),

where c3 = c3(n, ε, ω, S,G) > 0 is some constant.
From the theory of functions spaces Lω2 (S;H−1(G)), see [12, Theorem 5.6],

it follows that the restriction Pω of the parabolic operator P is a bounded
linear operator from

{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
into Lω2 (S;H−1(G)).

Combining both results, we have proved the isomorphism property. �

Remark 6.1. We want to emphasize that for admissible sets G ⊂ Rn in
the case n < ω < ω̄ε(G) the solution u = P−1f ∈ Lω+2

2 (S;L2(G◦)) is Hölder
continuous in time and space up to the boundary, see [12, Theorem 3.4,
Theorem 6.8]. Hence, the aim of this section is to prove the admissibility of
all regular sets G ⊂ Rn.

Invariance principles for admissible sets. In the following we prove
that the concept of admissibility is invariant with respect to localization,
transformation and reflection.

Lemma 6.2 (Localization). Let G ⊂ Rn be a regular set and {U1, . . . , Um},
{V1, . . . , Vm} two open coverings of G such that for every i ∈ {1, . . . ,m} the
inclusion Vi ⊂ Ui holds true, and Vi∩G is admissible with respect to Ui∩G.
Then the set G is admissible.

Proof. 1. Let ε ∈ (0, 1] and take a smooth partition {χ1, . . . , χm} ⊂ C∞0 (Rn)
of unity subordinate to the open covering {V1, . . . , Vm} of G. We choose
some δ > 0 such that Qδ(x) ⊂ Vi holds true for every x ∈ supp(χi) and
i ∈ {1, . . . ,m}. Since Vi ∩G is admissible with respect to Ui ∩G we choose
ω̄ ∈ (n, n+ 2] satisfying

ω̄ ≤ ω̄ε(Vi ∩G,Ui ∩G) for all i ∈ {1, . . . ,m}.

2. Let the coefficients (a,A) be ε-definite with respect to S and G◦. For
every i ∈ {1, . . . ,m} we define the restriction ai ∈ L∞(Ui ∩ G◦), the asso-
ciated operator Ei ∈ L(H1

0 (Ui ∩ G);H−1(Ui ∩ G)), and the bounded linear
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map Ai : L2(S;H1
0 (Ui ∩G))→ L2(S;H−1(Ui ∩G)) by

〈Aiv, w〉L2(S;H1
0 (Ui∩G)) =

∫
S

∫
Ui∩G

A∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S;H1
0 (Ui ∩G)).

3. Let ω ∈ (0, ω̄] be fixed. For every functional f ∈ Lω2 (S;H−1(G)), the
corresponding solution u ∈WE(S;H1

0 (G)) of the problem

(Eu)′ + Au = f, u(t0) = 0,

and every i ∈ {1, . . . ,m} we define the function

ui = RS,Ui∩G(χiu) ∈WEi(S;H1
0 (Ui ∩G))

and the functional f0i ∈ L2(S;H−1(Ui ∩G)) by

〈f0i, w〉L2(S;H1
0 (Ui∩G)) =

∫
S

∫
Ui∩G

u(s)A∇χi · ∇w(s) dλn ds

−
∫
S

∫
Ui∩G

w(s)A∇u(s) · ∇χi dλn ds

for w ∈ L2(S;H1
0 (Ui ∩G)). Using [12, Lemma 6.2, Lemma 6.3] we obtain

〈(Eiui)′ + Aiui − f0i, w〉L2(S;H1
0 (Ui∩G)) = 〈(Eu)′ + Au,ZS,G(χiw)〉L2(S;H1

0 (G))

= 〈f,ZS,G(χiw)〉L2(S;H1
0 (G))

for all w ∈ L2(S;H1
0 (Ui ∩G)). Thus, setting

fi = f0i + f1i, f1i = LS,Ui∩G(χif) ∈ L2(S;H−1(Ui ∩G)),

for every i ∈ {1, . . . ,m} the function ui ∈ WEi(S;H1
0 (Ui ∩ G)) solves the

localized problem

(Eiui)
′ + Aiui = fi, ui(t0) = 0. (6.4)

4. Due to the continuous embedding of WE(S;H1
0 (G)) in L2

2(S;L2(G◦)),
see [12, Theorem 3.4, Theorem 6.8], we get

‖uA∇χi‖ ∈ L2
2(S;L2(G◦)), −A∇u · ∇χi ∈ L2(S;L2(G◦)),

see [12, Remark 3.2]. Using [12, Theorem 5.6] for µ = min{ω, 2} we obtain
f0i ∈ Lµ2 (S;H−1(Ui ∩ G)), and we find some constant c1 > 0 depending on
ε, G, and the above partition of unity such that

‖f0i‖Lµ2 (S;H−1(Ui∩G)) ≤ c1 ‖u‖WE(S;H1
0 (G)) for all i ∈ {1, . . . ,m}.

Due to [12, Lemma 5.2, Lemma 5.3] we get f1i ∈ Lµ2 (S;H−1(Ui ∩G)) and

‖f1i‖Lµ2 (S;H−1(Ui∩G)) ≤ c2 ‖f‖Lµ2 (S;H−1(G)) for all i ∈ {1, . . . ,m},
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where the constant c2 > 0 depends on the partition of unity.
In view of the admissibility of Vi ∩G with respect to Ui ∩G there exists

some constant c3 > 0 depending on n, ε, µ, S, G, the coverings {U1, . . . , Um},
{V1, . . . , Vm}, and the partition of unity, only, such that for every i ∈
{1, . . . ,m} the solution ui ∈ WEi(S;H1

0 (Ui ∩ G)) to the localized prob-
lem (6.4) satisfies the estimate

‖RS,Vi∩Gui‖Lµ2 (S;H1
0 (Vi∩G)) ≤ c3

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
.

In view of [12, Remark 3.3] we arrive at

u =

m∑
i=1

χiu =

m∑
j=1

ZS,Gui ∈ Lµ2 (S;H1
0 (G))

together with the estimate

‖u‖Lµ2 (S;H1
0 (G)) ≤ c4

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
,

where c4 > 0 is some constant depending on n, ε, µ, S, G, δ, the partition
of unity, and the coverings {U1, . . . , Um}, {V1, . . . , Vm}.

5. We complete the proof using iterative arguments: Since Step 4 and [12,
Theorem 5.6] yields

(Eu)′ = f −Au ∈ Lµ2 (S;H−1(G)),

and the embedding of Wµ
E(S;H1

0 (G)) into Lµ+2
2 (S;L2(G◦)) is continuous,

see [12, Theorem 6.8], there exists some constant c5, c6 > 0 depending on n,
ε, µ, S, G, the partition of unity, and {U1, . . . , Um}, {V1, . . . , Vm} such that

‖u‖Wµ
E(S;H1

0 (G)) ≤ c5

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
,

‖u‖
Lµ+2
2 (S;L2(G◦)) ≤ c6

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
.

Using [12, Theorem 3.4] for µ = min{ω, 4} and every i ∈ {1, . . . ,m} we
obtain

‖uA∇χi‖ ∈ Lµ2 (S;L2(G◦)), −A∇u · ∇χi ∈ Lµ−2
2 (S;L2(G◦)).

Applying [12, Theorem 5.6] we get f0i ∈ Lµ2 (S;H−1(Ui ∩ G)) for every i ∈
{1, . . . ,m} together with a constant c7 > 0 depending on n, ε, µ, S, G, the
partition of unity, and {U1, . . . , Um}, {V1, . . . , Vm} such that

‖f0i‖Lµ2 (S;H−1(Ui∩G)) ≤ c7

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
.
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Using [12, Lemma 5.2, Lemma 5.3] we see that f1i ∈ Lµ2 (S;H−1(Ui ∩ G))
and

‖f1i‖Lµ2 (S;H−1(Ui∩G)) ≤ c8 ‖f‖Lµ2 (S;H−1(G)) for all i ∈ {1, . . . ,m},
where c8 > 0 depends on the partition of unity. As in Step 4 the admissibility
of Vi ∩G with respect to Ui ∩G yields u ∈ Lµ2 (S;H1

0 (G)) and

‖u‖Lµ2 (S;H1
0 (G)) ≤ c9

(
‖f‖Lµ2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
,

where c9 > 0 is some constant depending on n, ε, µ, S, G, δ, the partition
of unity, and the coverings {U1, . . . , Um}, {V1, . . . , Vm}. Repeating these
arguments, after a finite number of analogous steps we arrive at µ = ω,
which proves the admissibility of G. �

Lemma 6.3 (Transformation). Let F ⊂ G ⊂ Rn be two regular sets and T
some Lipschitz transformation from an open neighborhood of G into Rn.
Then F∗ = T [F ] is admissible with respect to G∗ = T [G], if and only if F is
admissible with respect to G.

Proof. 1. Let L ≥ 1 be a Lipschitz constant of T and ε∗ ∈ (0, 1]. We
consider coefficients (a∗, A∗) being ε∗-definite with respect to S and G◦∗ and
the map E∗ ∈ L(H1

0 (G∗);H
−1(G∗)) associated with a∗. Moreover, we define

the bounded linear map A∗ : L2(S;H1
0 (G∗))→ L2(S;H−1(G∗)) by

〈A∗v∗, w∗〉L2(S;H1
0 (G∗)) =

∫
S

∫
G∗

A∗∇v∗(s) · ∇w∗(s) dλn ds

for v∗, w∗ ∈ L2(S;H1
0 (G∗)).

Due to the properties of the Jacobi matrix DT and its determinant JT
the pair (a,A) of transformed coefficients

a = |JT | · T∗a∗, A = |JT | · ((DT )−1)∗(T∗A∗)(DT )−1,

is ε-definite with respect to S and G◦ with ε = ε∗/L
n+2. We introduce the

operator E ∈ L(H1
0 (G);H−1(G)) associated with a and the bounded linear

map A : L2(S;H1
0 (G))→ L2(S;H−1(G)) by

〈Av, w〉L2(S;H1
0 (G)) =

∫
S

∫
G
A∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S;H1
0 (G)). Due to the chain rule and the change of variable

formula we have both E∗ = T∗ET∗ and A∗ = T∗AT∗.
2. Suppose that F is admissible with respect to G and fix the parameter

0 ≤ ω < ω̄ε(F,G). For every functional f∗ ∈ Lω2 (S;H−1(G∗)) the problem

(E∗u∗)
′ + A∗u∗ = f∗, u∗(t0) = 0,
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admits a uniquely determined solution u∗ ∈ WE∗(S;H1
0 (G∗)). Using the

invariance of the Morrey spaces with respect to Lipschitz transformations,
see [12, Lemma 5.4, Lemma 6.4], the functions u = T∗u∗ ∈ WE(S;H1

0 (G))
and f ∈ Lω2 (S;H−1(G)) defined by T∗f = f∗ satisfy

〈(Eu)′ + Au,T∗w∗〉L2(S;H1
0 (G)) = 〈T∗(ET∗u∗)′ + T∗AT∗u∗, w∗〉L2(S;H1

0 (G∗))

= 〈(E∗u∗)′ + A∗u∗, w∗〉L2(S;H1
0 (G∗))

= 〈f,T∗w∗〉L2(S;H1
0 (G))

for all w∗ ∈ L2(S;H1
0 (G∗)). Applying [12, Lemma 4.4] we obtain, that

u = T∗u∗ ∈WE(S;H1
0 (G)) solves the transformed problem

(Eu)′ + Au = f, u(t0) = 0.

3. Due to the admissibility of F with respect to G we find some constant
c1 > 0 depending on n, ε, ω, S, F , G such that

‖RS,Fu‖Lω2 (S;H1(F ◦)) ≤ c1

(
‖f‖Lω2 (S;H−1(G)) + ‖u‖WE(S;H1

0 (G))

)
.

In view of the invariance of the Morrey spaces with respect to Lipschitz
transformations, see [12, Lemma 4.4, Lemma 5.4, Lemma 6.4], we end up
with the estimate

‖RS,F∗u∗‖Lω2 (S;H1(F ◦∗ )) ≤ c2

(
‖f∗‖Lω2 (S;H−1(G∗)) + ‖u∗‖WE∗ (S;H1

0 (G∗))

)
,

where the constant c2 > 0 depending on n, ε, ω, T , S, F , G. This proves the
admissibility of F∗ with respect to G∗. The proof of the inverse statement
can be done in the same manner. �

Lemma 6.4 (Reflection). If Q% is admissible with respect to Q for some
0 < % ≤ 1, then Q+

% and Q−% are admissible with respect to Q+ and Q−,
respectively.

Proof. 1. Let 0 < ε ≤ 1. We consider coefficients (a−, A−) being ε-definite
with respect to S and Q− and the map E− ∈ L(H1

0 (Q−);H−1(Q−)) as-
sociated with a−. Furthermore, we define the bounded linear map A− :
L2(S;H1

0 (Q−))→ L2(S;H−1(Q−)) by

〈A−u−, w−〉L2(S;H1
0 (Q−)) =

∫
S

∫
Q−

A−∇v−(s) · ∇w−(s) dλn ds

for u−, w− ∈ L2(S;H1
0 (Q−)).

The pair (a,A) of reflected coefficients

a = R+a−, A = R+A−,
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is ε-definite with respect to S and Q. Let E ∈ L(H1
0 (Q);H−1(Q)) be

associated with a and the bounded linear operator A : L2(S;H1
0 (Q)) →

L2(S;H−1(Q)) defined as

〈Av, w〉L2(S;H1
0 (Q)) =

∫
S

∫
Q
A∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S;H1
0 (Q)). Note, that the properties of the reflection ensure

both the relations ER− = R−E− and AR− = R−A−.
2. Assume that Q% is admissible with respect to Q for some % ∈ (0, 1] and

let 0 ≤ ω < ω̄ε(Q%, Q) be fixed. For every functional f− ∈ Lω2 (S;H−1(Q−))
the problem

(E−u−)′ + A−u− = f−, u−(t0) = 0,

has a uniquely determined solution u− ∈ WE−(S;H1
0 (Q−)). In view of

the invariance of the Morrey spaces with respect to antireflection, see [12,
Lemma 5.5, Lemma 6.5], the function u = R−u− ∈ WE(S;H1

0 (Q)) and the
functional f = R−f− ∈ Lω2 (S;H−1(Q)) satisfy the identity

〈(Eu)′ + Au,w〉L2(S;H1
0 (Q)) = 〈(ER−u−)′ + AR−u−, w〉L2(S;H1

0 (Q))

= 〈R−(E−u−)′ + R−A−u−, w〉L2(S;H1
0 (Q))

= 〈R−f−, w〉L2(S;H1
0 (Q))

for all w ∈ L2(S;H1
0 (Q)). Thus, u = R−u− ∈ WE(S;H1

0 (Q)) solves the
reflected problem

(Eu)′ + Au = f, u(t0) = 0.

3. The admissibility of Q% with respect to Q yields some constant c1 > 0
depending on n, ε, ω, %, S such that

‖RS,Q%u‖Lω2 (S;H1(Q%)) ≤ c1

(
‖f‖Lω2 (S;H−1(Q)) + ‖u‖WE(S;H1

0 (Q))

)
.

Consequently, the invariance of the Morrey spaces Lω2 (S;H−1(Q−)) under
antireflection, see [12, Lemma 4.5, Lemma 5.5, Lemma 6.5], leads to the
estimate

‖RS,Q−% u
−‖Lω2 (S;H1(Q−% )) ≤ c2

(
‖f−‖Lω2 (S;H−1(Q−)) + ‖u−‖WE− (S;H1

0 (Q−))

)
,

where the constant c2 > 0 depends on n, ε, ω, %, and S. This yields the
admissibility of Q−% with respect to Q−. Analogously, we prove that Q+

% is

admissible with respect to Q+. �
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Admissibility of regular sets. To prove the admissibility of all regular
sets G ⊂ Rn, we begin with the unit cube Q and the half-cubes Q+, Q−,
and Q±. In a first step we show that the cube Q% is admissible with respect
to the unit cube Q for every 0 < % < 1. We use the Campanato inequality
for the spatial gradient of solutions on concentric cubes, see Theorem 5.3.

Lemma 6.5. For 0 < % < 1 the cube Q% is admissible with respect to Q.

Proof. 1. Let ε ∈ (0, 1]. We consider coefficients (a,A) which are ε-definite
with respect to S and Q, the operator E ∈ L(H1

0 (Q);H−1(Q)) associated
with a, and the bounded linear map A : L2(S;H1

0 (Q)) → L2(S;H−1(Q))
defined by

〈Av, w〉L2(S;H1
0 (Q)) =

∫
S

∫
Q
A∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S;H1
0 (Q)). Let u ∈ WE(S;H1

0 (Q)) be the solution of the
problem

(Eu)′ + Au = f, u(t0) = 0,

where f ∈ L2(S;H−1(Q)) is some given functional.
We define ε-definite coefficients (a,A0) with respect to S0 = (t0 − 1, t1)

and Q by setting

A0(s, y) =

{
A(s, y) if (s, y) ∈ S ×Q,
(δij) otherwise,

and extensions u0 ∈WE(S0;H1
0 (Q)), f0 ∈ L2(S0;H−1(Q)) by

u0(s) =

{
u(s) if s ∈ S,
0 otherwise,

f0(s) =

{
f(s) if s ∈ S,
0 otherwise.

Then u0 ∈WE(S0;H1
0 (Q)) solves the extended problem

(E0u0)′ + A0u0 = f0, u(t0 − 1) = 0,

where the operator E0 : L2(S0;H1
0 (Q)) → L2(S0;H−1(Q)) is associated

with S0 and E ∈ L(H1
0 (Q);H−1(Q)), and the bounded linear map A0 :

L2(S0;H1
0 (Q))→ L2(S0;H−1(Q)) is defined by

〈A0v, w〉L2(S0;H1
0 (Q)) =

∫
S0

∫
Q
A0∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S0;H1
0 (Q)).

2. In the next steps we make use of the local regularity properties of
u0 ∈ WE(S0;H1

0 (Q)): Let 0 < % < 1 be given. We fix t ∈ S, x ∈ Q%
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arbitrarily, and we consider radii 0 < δ ≤ 1− %. Furthermore, we introduce
the operator Eδ : L2(Iδ(t);H

1(Qδ(x))) → L2(Iδ(t);H
−1(Qδ(x))) associated

with Iδ(t) and Eδ ∈ L(H1(Qδ(x));H−1(Qδ(x))) which is defined by

〈Eδv, w〉H1(Qδ(x)) =

∫
Qδ(x)

avw dλn for v ∈ H1(Qδ(x)), w ∈ H1
0 (Qδ(x)).

Then for all t ∈ S, x ∈ Q%, and 0 < δ ≤ 1− % the restriction

v = RIδ(t),Qδ(x)u0 ∈WEδ(Iδ(t);H
1(Qδ(x))) ∩ C(Iδ(t);L

2(Qδ(x)))

of u0 satisfies the localized variational equation∫
Iδ(t)
〈(Eδv)′(s), w(s)〉H1

0 (Qδ(x)) ds+

∫
Iδ(t)

∫
Qδ(x)

A0∇v(s) · ∇w(s) dλn ds

=

∫
Iδ(t)
〈LQδ(x)f0(s), w(s)〉H1

0 (Qδ(x)) ds

for all w ∈ L2(Iδ(t);H
1
0 (Qδ(x))).

3. Using the Campanato inequality (5.9), see Theorem 5.3, we find con-
stants ω̄ ∈ (n, n + 2] and c1 > 0 depending on n and ε, only, such that for
all t ∈ S, x ∈ Q%, and 0 < δ ≤ r ≤ 1− % we have∫

Iδ(t)

∫
Qδ(x)

‖∇u0(s)‖2 dλn ds ≤ c1

(
δ

r

)ω̄ ∫
Ir(t)

∫
Qr(x)

‖∇u0(s)‖2 dλn ds

+ c1

∫
Ir(t)
‖LQr(x)f0(s)‖2H−1(Qr(x)) ds.

Let ω ∈ [0, ω̄) be fixed and f ∈ Lω2 (S;H−1(Q)). For all t ∈ S, x ∈ Q%, and
0 < δ ≤ r ≤ 1− % we obtain∫

Iδ(t)

∫
Qδ(x)

‖∇u0(s)‖2 dλn ds

≤ c1

(
δ

r

)ω̄ ∫
Ir(t)

∫
Qr(x)

‖∇u0(s)‖2 dλn ds+ c1r
ω[f ]2Lω2 (S;H−1(Q)).

Note, that the integral on the left-hand side is a nonnegative and nondecreas-
ing function of the radius 0 < δ ≤ 1 − %. Hence, for all 0 < δ ≤ r ≤ 1 − %
the application of an elementary inequality yields∫

Iδ(t)

∫
Qδ(x)

‖∇u0(s)‖2 dλn ds
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≤ c2

(
δ

r

)ω ∫
Ir(t)

∫
Qr(x)

‖∇u0(s)‖2 dλn ds+ c2δ
ω[f ]2Lω2 (S;H−1(Q)), (6.5)

where the constant c2 > 0 depends on n, ε, ω, ω̄, %, see Giaquinta [7, 8].
After specifying r = 1 − % and dividing by δω we take the supremum over
all 0 < δ ≤ 1− %, t ∈ S, and x ∈ Q% to estimate the Morrey seminorm

[‖∇RS,Q%u‖]2Lω2 (S;L2(Q%)) ≤ c3

(
‖∇u(s)‖2L2(S;L2(Q;Rn)) + [f ]2Lω2 (S;H−1(Q))

)
,

where c3 > 0 depends on n, ε, ω, ω̄, %, only.
4. Applying the Poincaré inequality to v = RIδ(t),Qδ(x)u0, see [12, Theo-

rem A.3], for all t ∈ S, x ∈ Q%, and 0 < δ ≤ 1− % we get∫
Iδ(t)

∫
Qδ(x)

∣∣∣∣v(s)−−
∫
Iδ(t)
−
∫
Qδ(x)

v(τ) dλn dτ

∣∣∣∣2 dλn ds
≤ c4δ

2

∫
Iδ(t)

(∫
Qδ(x)

‖∇v(s)‖2 dλn + ‖LQδ(x)(Eδv)′(s)‖2H−1(Qδ(x))

)
ds,

where c4 = c4(n, ε) > 0. Since the restriction v = RIδ(t),Qδ(x)u0 solves
the localized variational equation, see Step 2, we find some constant c5 =
c5(ε, n) > 0 such that∫

Iδ(t)

∫
Qδ(x)

∣∣∣∣u0(s)−−
∫
Iδ(t)
−
∫
Qδ(x)

u0(τ) dλn dτ

∣∣∣∣2 dλn ds
≤ c5δ

2

∫
Iδ(t)

(∫
Qδ(x)

‖∇u0(s)‖2 dλn + ‖LQδ(x)f0(s)‖2H−1(Qδ(x))

)
ds

holds true for all t ∈ S, x ∈ Q%, and 0 < δ ≤ 1 − %. Remembering esti-
mate (6.5) for r = 1− % this yields∫

Iδ(t)

∫
Qδ(x)

∣∣∣∣u0(s)−−
∫
Iδ(t)
−
∫
Qδ(x)

u0(τ) dλn dτ

∣∣∣∣2 dλn ds
≤ c6δ

ω+2

(1− %)ω

∫
S

∫
Q
‖∇u(s)‖2 dλn ds+ c6δ

ω+2[f ]2Lω2 (S;H−1(Q)),

where the constant c6 > 0 depends on n, ε, ω, ω̄, %, only. After applying
the minimal property of the integral mean value to the left-hand side and
dividing by δω+2 we take the supremum over all 0 < δ ≤ 1 − %, t ∈ S, and
x ∈ Q% to obtain an estimate of the Campanato seminorm

[RS,Q%u]2
Lω+2
2 (S;L2(Q%))

≤ c7

(
‖∇u(s)‖2L2(S;L2(Q;Rn)) + [f ]2Lω2 (S;H−1(Q))

)
,
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where c7 > 0 depends on n, ε, ω, ω̄, %, only.
5. Using [12, Theorem 3.4] and the estimates for the seminorms of RS,Q%u,

see Step 3 and 4, we find some constant c8 > 0 depending on n, ε, ω, ω̄, %,
only, such that

‖RS,Q%u‖Lω2 (S;H1(Q%)) ≤ c8

(
‖f‖Lω2 (S;H−1(Q)) + ‖u‖L2(S;H1

0 (Q))

)
.

Consequently, Q% is admissible with respect to Q for every 0 < % < 1. �

Lemma 6.6. The unit cube Q is admissible.

Proof. Since Q is a regular set, we find an atlas
{

(T1, U1), . . . , (Tm, Um)
}

for Q, see [12, Lemma 4.2], and radii 0 < %′ < % < 1 such that the systems
{V ′1 , . . . , V ′m} and {V1, . . . , Vm} defined by

V ′i = T−1
i [Q%′ ], Vi = T−1

i [Q%] for i ∈ {1, . . . ,m},
are open coverings of Q. Using Lemma 6.5 the cube Q%′ is admissible with

respect to Q%. Applying Lemma 6.4 the half-cube Q−%′ is admissible with

respect to Q−% . Lemma 6.3 yields the admissibility of V ′i ∩Q with respect to
Vi ∩Q for every i ∈ {1, . . . ,m}. Due to Lemma 6.2 the result follows. �

Lemma 6.7. The half-cubes Q+, Q− and Q± are admissible sets.

Proof. Because of Lemma 6.4 and 6.6 both the half-cubes Q+ and Q− are
admissible. Note, that there exists a Lipschitz transformation from Rn onto
Rn which maps Q+ onto Q±, see Griepentrog, Höppner, Kaiser, Rehberg
[9, 13]. Hence, Lemma 6.3 yields the admissibility of Q±. �

Theorem 6.8 (Maximal regularity). For every regular set G ⊂ Rn there
exists some parameter ω̄ε(G) ∈ (n, n+ 2] such that for every 0 ≤ ω < ω̄ε(G)
the restriction Pω of the parabolic operator P associated with the coefficients
(a,A) being ε-definite with respect to S = (t0, t1) and G◦ is a linear isomor-
phism from

{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
onto Lω2 (S;H−1(G)).

Proof. Since G is regular, we find an atlas
{

(T1, U1), . . . , (Tm, Um)
}

for G,
see [12, Lemma 4.2], and % ∈ (0, 1) such that the system {V1, . . . , Vm} defined
by

Vi = T−1
i [Q%] for i ∈ {1, . . . ,m},

is an open covering of the closure G. Applying Lemma 6.7, all the half-
cubes Q+

% , Q−% , and Q±% are admissible sets. Using Lemma 6.6 the cube
Q% is admissible, too. Hence, Lemma 6.3 yields the admissibility of the
intersection Vi ∩G for every i ∈ {1, . . . ,m}. Due to Lemma 6.2 we arrive at
the admissibility of the set G. In view of Theorem 6.1 this yields the desired
isomorphism property for Pω. �
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Remark 6.2. Let S = (t0, t`) be some bounded open interval. Due the
above result for every 0 ≤ ω < ω̄ε(G) we find some constant c1 > 0 depending
on ε, n, ω, G, and S such that for all coefficients (a,A) being ε-definite
with respect to S and G◦, and every f ∈ Lω2 (S;H−1(G)) the solution u ∈
WE(S;H1

0 (G)) of problem (6.1) satisfies the estimate

‖u‖Wω
E (S;H1

0 (G)) ≤ c1‖f‖Lω2 (S;H−1(G)). (6.6)

We fix some t1 ∈ S and consider the subinterval S1 = (t0, t1) of S. In the
following we show that estimate (6.6) remains true with the same constant
c1 > 0 when both the solution u and the functional f are restricted to
u1 ∈ Wω

E (S1;H1
0 (G)) and f1 ∈ Lω2 (S1;H−1(G)), respectively. To do so, we

introduce the interval S0 = (t1 + t0 − t`, t1) which contains S1 and has the
same length than S. We introduce ε-definite coefficients (a,A0) with respect
to S0 and G◦ by setting

A0(s, y) =

{
A(s, y) if (s, y) ∈ S1 ×G◦,
(δij) otherwise,

and define extensions u0 ∈Wω
E (S0;H1

0 (G)), f0 ∈ Lω2 (S0;H−1(G)) by

u0(s) =

{
u(s) if s ∈ S1,

0 otherwise,
f0(s) =

{
f(s) if s ∈ S1,

0 otherwise.

Then u0 ∈Wω
E (S0;H1

0 (G)) solves the extended problem

(E0u0)′ + A0u0 = f0, u(t0 + t1 − t`) = 0,

and satisfies estimate (6.6) with the same constant c1 > 0. Because of
the construction of the extensions and the definition of the norm in the
corresponding Morrey spaces we obtain the desired estimate

‖u1‖Wω
E (S1;H1

0 (G)) = ‖u0‖Wω
E (S0;H1

0 (G))

≤ c1‖f0‖Lω2 (S0;H−1(G)) = c1‖f1‖Lω2 (S1;H−1(G)).

7. Maximal regularity for problems with lower-order terms

In this section we conclude with isomorphism properties of second order lin-
ear parabolic operators with lower-order terms. Suppose that ε ∈ (0, 1],
G ⊂ Rn is a regular set, and Γ = ∂G denotes its Lipschitz boundary.
Throughout this section we assume that the parabolic operator P is associ-
ated with the pair of leading coefficients (a,A) being ε-definite with respect
to some bounded open interval S = (t0, t`) and G◦.
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Bounded lower-order coefficients. In order to generalize the isomor-
phism result for P, see Theorem 6.8, we consider bounded linear operators
generated by lower-order terms:

Definition 7.1. Given a set of lower-order coefficients

b ∈ L∞(S ×G◦;Rn), b0 ∈ L∞(S ×G◦), bΓ ∈ L∞(S × Γ),

we define the bounded linear map B : L2(S;H1
0 (G))→ L2(S;H−1(G)) by

〈Bu,w〉L2(S;H1
0 (G)) =

∫
S

∫
G

(
u(s)b · ∇w(s) + b0u(s)w(s)

)
dλn ds

+

∫
S

∫
Γ
bΓKΓu(s)KΓw(s) dλΓ ds

for u, w ∈ L2(S;H1
0 (G)).

Using Theorem 1.1 the operator P + B is a linear isomorphism from{
u ∈ WE(S;H1

0 (G)) : u(t0) = 0
}

onto L2(S;H−1(G)): For every f ∈
L2(S;H−1(G)) the initial-value problem

Pu+ Bu = f, u(t0) = 0, (7.1)

admits a uniquely determined solution u ∈WE(S;H1
0 (G)). We show that the

isomorphism property between the corresponding Sobolev–Morrey spaces
carries over from P to P + B:

Lemma 7.1 (Continuity). For every ω ∈ [0, n + 2] the restriction Bω

of B to
{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
is a bounded linear map into

Lω2 (S;H−1(G)).

Proof. The embedding from Wω
E (S;H1

0 (G)) into Lω+2
2 (S;L2(G◦)) and the

trace map from Wω
E (S;H1

0 (G)) into Lω+1
2 (S;L2(Γ)) are continuous, see [12,

Theorem 6.8, Theorem 6.11]. Due to [12, Remark 3.2, Remark 3.5] and [12,
Theorem 3.4, Theorem 3.6, Theorem 5.6] the continuity of the map Bω from{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
into Lω2 (S;H−1(G)) follows. �

Theorem 7.2 (Maximal regularity). Let 0 ≤ ω < ω̄ε(G) be given. For every
pair (a,A) of leading coefficients being ε-definite with respect to S and G◦

and all lower-order coefficients

b ∈ L∞(S ×G◦;Rn), b0 ∈ L∞(S ×G◦), bΓ ∈ L∞(S × Γ),

Pω+Bω is a linear isomorphism from
{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
onto

Lω2 (S;H−1(G)).
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Proof. 1. First, we prove the surjectivity of Pω+Bω: Let f ∈ Lω2 (S;H−1(G))
be given and u ∈ WE(S;H1

0 (G)) be the unique solution of problem (7.1).
Consequently, u ∈WE(S;H1

0 (G)) solves the model problem

Pu = (Eu)′ + Au = f −Bu, u(t0) = 0.

Due to [12, Theorem 6.8, Theorem 6.11] we know that both the embedding
operator from WE(S;H1

0 (G)) into L2
2(S;L2(G◦)) and the trace map from

WE(S;H1
0 (G)) into L1

2(S;L2(Γ)) are bounded. Using [12, Theorem 3.4, The-
orem 3.6] we get u ∈ L2

2(S;L2(G◦)) and KS,Γu ∈ L1
2(S;L2(Γ)). Applying [12,

Theorem 5.6] for µ = min{ω, 2} we obtain f −Bu ∈ Lµ2 (S;H−1(G)), which
leads to u ∈Wµ

E(S;H1
0 (G)), see Theorem 6.8.

We apply a bootstrap argument: The embedding from Wµ
E(S;H1

0 (G))

into Lµ+2
2 (S;L2(G◦)) and the trace map from Wµ

E(S;H1
0 (G)) into the space

Lµ+1
2 (S;L2(Γ)) are continuous, see [12, Theorem 6.8, Theorem 6.11]. Us-

ing [12, Theorem 3.4, Theorem 3.6] for µ = min{ω, 4} we obtain u ∈
Lµ2 (S;L2(G◦)) and KS,Γu ∈ Lµ−1

2 (S;L2(Γ)). Therefore, by [12, Theorem 5.6]
and Theorem 6.8 this yields f−Bu ∈ Lµ2 (S;H−1(G)) and u ∈Wµ

E(S;H1
0 (G)).

After a finite number of analogous steps we arrive at µ = ω which yields the
surjectivity of Pω + Bω.

2. In view of Lemma 7.1 the operator Bω is a bounded linear map from the
space

{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
into Lω2 (S;H−1(G)). By definition

the same holds true for Pω and, therefore, for the sum Pω + Bω, too. The
unique solvability of the problem (7.1), and the surjectivity, see Step 1,
yields that the operator Pω + Bω maps

{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
onto Lω2 (S;H−1(G)). Therefore, by the Inverse Mapping Theorem it is a
linear isomorphism between these spaces. �

Theorem 7.3 (Continuous dependence). Let ε ∈ (0, 1] and 0 ≤ ω < ω̄ε(G)
be given constants. Then for every pair (a,A) of leading coefficients being
ε-definite with respect to S and G◦ and all lower-order coefficients

b ∈ L∞(S ×G◦;Rn), b0 ∈ L∞(S ×G◦), bΓ ∈ L∞(S × Γ),

the assignment (A, b, b0, bΓ) 7→ (P + B)−1 is a continuous map from the
metric space of admissible coefficients equipped with the metric d defined by

d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
= ‖A−A‖L∞(S×G◦;Sn) + ‖b− b‖L∞(S×G◦;Rn)

+ ‖b0 − b0‖L∞(S×G◦) + ‖bΓ − bΓ‖L∞(S×Γ),

into the Banach space L(Lω2 (S;H−1(G));Wω
E (S;H1

0 (G))) of solution maps
corresponding to problem (7.1).
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Proof. We consider the operators P, B, P, and B associated with the sets
(a,A, b, b0, bΓ), (a,A, b, b0, bΓ) of admissible coefficients, respectively. Using
the same arguments as in the proof of Lemma 7.1 for all u ∈Wω

E (S;H1
0 (G))

we obtain

‖Pu+ Bu− Pu−Bu‖Lω2 (S;H−1(G))

≤ c1d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
‖u‖Wω

E (S;H1
0 (G)), (7.2)

where c1 = c1(n, ε, ω, S,G) > 0 is some constant. Therefore, for every fixed
set (A, b, b0, bΓ) of admissible coeffcients we find some constant δ > 0 such
that for all admissible coefficients (A, b, b0, bΓ) which satisfy

d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
< δ, (7.3)

the following relation holds true

2 ‖(P + B)−1‖L(Lω2 ;Wω
E )‖P + B− P−B)‖L(Wω

E ;Lω2 ) < 1.

Using the identities

P + B = (P + B)(I− (P + B)−1(P + B− P−B)),

(P + B)−1 − (P + B)−1 = (P + B)−1(P + B− P−B)(P + B)−1,

for all admissible coefficients (A, b, b0, bΓ) which satisfy (7.3) the above esti-
mates and the von Neumann expansion leads to

‖(P + B)−1‖L(Lω2 ;Wω
E ) ≤ 2 ‖(P + B)−1‖L(Lω2 ;Wω

E )

and, consequently,

‖(P + B)−1 − (P + B)−1‖L(Lω2 ;Wω
E )

≤ 2 ‖(P + B)−1‖2L(Lω2 ;Wω
E )‖P + B− P−B‖L(Wω

E ;Lω2 ).

Applying (7.2) we end up with the desired estimate

‖(P + B)−1 − (P + B)−1‖L(Lω2 ;Wω
E )

≤ 2c1d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
‖(P + B)−1‖2L(Lω2 ;Wω

E )

for all admissible coefficients (A, b, b0, bΓ) which satisfy (7.3). �
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Unbounded lower-order coefficients. It turns out that for the most
interesting range of parameters n < ω < ω̄ε(G) the above results for the
parabolic operator P + B remain true under weaker assumptions on the
lower-order coefficients. Corresponding to [12, Theorem 5.6] it is sufficient
to suppose that

b ∈ Lω2 (S;L2(G◦;Rn)), b0 ∈ Lω−2
2 (S;L2(G◦)), bΓ ∈ Lω−1

2 (S;L2(Γ)).

Lemma 7.4 (Complete continuity). For every ω ∈ (n, n+ 2] the restriction
Bω of B to

{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
is a completely continuous map

into Lω2 (S;H−1(G)).

Proof. Let ω ∈ (n, n + 2] be fixed and take σ ∈ (n, ω). Then the embed-
ding from Wω

E (S;H1
0 (G)) into Lσ+2

2 (S;L2(G◦)) and the trace map KS,Γ from

Wω
E (S;H1

0 (G)) into Lσ+1
2 (S;L2(Γ)) are completely continuous, see [12, The-

orem 6.9, Theorem 6.12]. Following [12, Remark 3.2, Remark 3.5] and [12,
Theorem 3.4, Theorem 3.6, Theorem 5.6] this yields that the operator Bω

is a completely continuous map from
{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
into

Lω2 (S;H−1(G)). �

Theorem 7.5 (Maximal regularity). Let ε ∈ (0, 1] and n < ω < ω̄ε(G) be
given constants. For every pair (a,A) of leading coefficients being ε-definite
with respect to S and G◦ and all lower-order coefficients

b ∈ Lω2 (S;L2(G◦;Rn)), b0 ∈ Lω−2
2 (S;L2(G◦)), bΓ ∈ Lω−1

2 (S;L2(Γ)),

Pω+Bω is a linear isomorphism from
{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
onto

Lω2 (S;H−1(G)).

Proof. 1. Let n < ω < ω̄ε(G) be given. Since Pω is an isomorphism between{
u ∈Wω

E (S;H1
0 (G)) : u(t0) = 0

}
and Lω2 (S;H−1(G)), see Theorem 6.8, and

Bω is completely continuous from
{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
into

Lω2 (S;H−1(G)), see Lemma 7.4, the sum Pω +Bω is a Fredholm operator of
index zero between these spaces. Hence, it suffices to prove the injectivity
of the linear operator Pω + Bω.

2. Suppose, that u ∈ Wω
E (S;H1

0 (G)) is a solution of the homogeneous
initial-value problem

Pu+ Bu = 0, u(t0) = 0. (7.4)

For fixed t1 ∈ S we consider the subinterval S1 = (t0, t1) of S, the restriction
u1 ∈ Wω

E (S1;H1
0 (G)) of u and the restriction f1 ∈ Lω2 (S1;H−1(G)) of Bu ∈

Lω2 (S;H−1(G)). Due to Remark 6.2 we get

‖u1‖Wω
E (S1;H1

0 (G)) ≤ c1‖f1‖Lω2 (S1;H−1(G)), (7.5)
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where the constant c1 > 0 may depend on S but not on t1. To estimate the
right-hand side of (7.5) we use [12, Theorem 6.8, Theorem 6.11] and [12,
Remark 3.2, Remark 3.5, Theorem 5.6] to find a constant c2 = c2(n,G) > 0
such that

‖f1‖Lω2 (S1;H−1(G)) ≤ c2cB‖u1‖C(S1;C(G)), (7.6)

where cB > 0 is given by

c2
B = ‖b‖2Lω2 (S;L2(G◦;Rn)) + ‖b0‖2Lω−2

2 (S;L2(G◦))
+ ‖bΓ‖2Lω−1

2 (S;L2(Γ))
.

To estimate the left-hand side of (7.5) we consider the interval S0 =
(t1 + t0 − t`, t1) which contains S1 and has the same length than S, and we
define the zero extension u0 ∈Wω

E (S0;H1
0 (G)) by

u0(s) =

{
u(s) if s ∈ S1,

0 otherwise.

In view of the continuity of the embedding from Wω
E (S0;H1

0 (G)) into the

Hölder space C0,α(S0;C(G)) for α = (ω − n)/4, see [12, Theorem 3.4, The-
orem 6.8], and the definition of the norms in the corresponding Morrey and
Hölder spaces, the above construction yields

‖u1‖C0,α(S1;C(G)) ≤ ‖u0‖C0,α(S0;C(G))

≤ c3‖u0‖Wω
E (S0;H1

0 (G)) = c3‖u1‖Wω
E (S1;H1

0 (G)),

where the constant c3 > 0 may depend on S but not on t1. Together
with (7.5) and (7.6) this leads to the key estimate

‖u1‖C0,α(S1;C(G)) ≤ c4‖u1‖C(S1;C(G)), (7.7)

where the constant c4 = c1c2c3cB > 0 does not depend on t1.
3. Because t1 ∈ S was arbitrarily fixed at the beginning we may choose

tk = t0 + k
` (t` − t0) for k ∈ {1, . . . , `},

where ` ∈ N, ` > 1 is large enough to satisfy the condition

2c4(t` − t0)α < `α. (7.8)

Furthermore, for k ∈ {1, . . . , `} we introduce the intervals Sk = (tk−1, tk)
and the restrictions uk ∈Wω

E (Sk;H
1
0 (G)) of u ∈Wω

E (S;H1
0 (G)).

We prove that for every k ∈ {1, . . . , `−1} from u(tk−1) = 0 it follows that
u(s) = 0 for all s ∈ Sk. To do so, we proceed by induction: Starting from
k = 1 and using (7.7), condition (7.8) ensures that for all s ∈ S1 we have

‖u(s)− u(t0)‖C(G) ≤ (s− t0)α‖u1‖C0,α(S1;C(G)) ≤
1
2‖u1‖C(S1;C(G)).
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Since u(t0) = 0 this leads to u(s) = 0 for all s ∈ S1.
Assuming that u(tk−1) = 0 holds true for some k ∈ {1, . . . , ` − 1}, we

apply (7.7) and (7.8) to uk ∈Wω
E (Sk;H

1
0 (G)) to get

‖u(s)− u(tk−1)‖C(G) ≤ (s− tk−1)α‖uk‖C0,α(Sk;C(G)) ≤
1
2‖uk‖C(Sk;C(G))

for all s ∈ Sk. Therefore, u(tk−1) = 0 yields u(s) = 0 for all s ∈ Sk.
Hence, we have proved, that u = 0 is the unique solution of the homoge-

neous problem (7.4) in the space Wω
E (S;H1

0 (G)). Following Step 1, the linear
operator Pω + Bω is an injective Fredholm operator of index zero and, con-
sequently, a linear isomorphism between

{
u ∈ Wω

E (S;H1
0 (G)) : u(t0) = 0

}
and Lω2 (S;H−1(G)). �

Theorem 7.6 (Continuous dependence). Let ε ∈ (0, 1] and n < ω < ω̄ε(G)
be given constants. Then, for every pair (a,A) of leading coefficients being
ε-definite with respect to S and G◦ and all lower-order coefficients

b ∈ Lω2 (S;L2(G◦;Rn)), b0 ∈ Lω−2
2 (S;L2(G◦)), bΓ ∈ Lω−1

2 (S;L2(Γ)),

the assignment (A, b, b0, bΓ) 7→ (P + B)−1 is a continuous map from the
metric space of admissible coefficients equipped with the metric d defined by

d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
= ‖A−A‖L∞(S×G◦;Sn) + ‖b− b‖Lω2 (S;L2(G◦;Rn))

+ ‖b0 − b0‖Lω−2
2 (S;L2(G◦)) + ‖bΓ − bΓ‖Lω−1

2 (S;L2(Γ)),

into the Banach space L(Lω2 (S;H−1(G));Wω
E (S;H1

0 (G))) of solution maps
corresponding to problem (7.1).

Proof. Consider the maps P, B, P, and B that are associated with the sets
(a,A, b, b0, bΓ) and (a,A, b, b0, bΓ) of admissible coefficients, respectively. By
the same arguments as in the proof of Lemma 7.4 for all u ∈Wω

E (S;H1
0 (G))

we get

‖Pu+ Bu− Pu−Bu‖Lω2 (S;H−1(G))

≤ c1d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
‖u‖Wω

E (S;H1
0 (G)),

where c1 = c1(n, ε, ω, S,G) > 0 is some constant. Hence, for every fixed set
(A, b, b0, bΓ) of admissible coefficients there exists a constant δ > 0 such that
for all admissible coefficients (A, b, b0, bΓ) which satisfy

d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
< δ, (7.9)
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the relation

2 ‖(P + B)−1‖L(Lω2 ;Wω
E )‖P + B− P−B)‖L(Wω

E ;Lω2 ) < 1

holds true. Now we repeat exactly the same arguments as in the proof of
Theorem 7.3 to get the estimate

‖(P + B)−1 − (P + B)−1‖L(Lω2 ;Wω
E )

≤ 2c1d
(
(A, b, b0, bΓ), (A, b, b0, bΓ)

)
‖(P + B)−1‖2L(Lω2 ;Wω

E )

for all admissible coefficients (A, b, b0, bΓ) which satisfy (7.9). �

Remark 7.1. All the results can be generalized to weakly coupled systems,
that means, to problems with principal parts E and A of diagonal structure
and operators B containing strongly coupled lower-order terms.

Remark 7.2. One problem left open is the continuous dependence of the
solution u ∈ Wω

E (S;H1
0 (G)) to problem (7.1) on the ε-definite capacity co-

efficient a. Since the space Wω
E (S;H1

0 (G)) depends highly sensitive on that
coefficient, a result in the spirit of Theorem 7.6 cannot be true in general.
Nevertheless, it would be interesting to know whether the quantity

‖(Eu)′ − (Eu)′‖Lω2 (S;H−1(G)) + ‖u− u‖Lω2 (S;H1
0 (G))

can be estimated in terms of ‖f − f‖Lω2 (S;H−1(G)) and the modified distance

d
(
(a,A, b, b0, bΓ), (a,A, b, b0, bΓ)

)
= ‖a− a‖L∞(G◦) + ‖A−A‖L∞(S×G◦;Sn) + ‖b− b‖Lω2 (S;L2(G◦;Rn))

+ ‖b0 − b0‖Lω−2
2 (S;L2(G◦)) + ‖bΓ − bΓ‖Lω−1

2 (S;L2(Γ)),

defined for admissible coefficients (a,A, b, b0, bΓ), (a,A, b, b0, bΓ). Here, u ∈
Wω
E (S;H1

0 (G)) and u ∈Wω
E (S;H1

0 (G)) are solutions to the problems

(Eu)′ + Au+ Bu = f ∈ Lω2 (S;H−1(G)), u(t0) = 0,

(Eu)′ + Au+ Bu = f ∈ Lω2 (S;H−1(G)), u(t0) = 0.
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