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Abstract. Under general (including mixed) boundary condition, nonsmooth coeffcients
and weak assumptions on the spatial domain of arbitrary space dimension, resolvent esti-
mates for second order elliptic operators in divergence form are proved. The semigroups
generated by them are analytic, map into Hölder spaces, are positivity improving, and
their heat kernels are Hölder continuous in both arguments. We regard perturbations of
the elliptic operator by nonnegative potentials, by first order differential operators and
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1 Introduction

During the last years considerable progress has been made in the investigation of ellip-
tic differential operators in connection with nonsmooth situations. This concerns results
covering Lipschitz domains, cf. Jerison, Kenig [19], as well as possibly jumping co-
efficients. In particular, in case of Dirichlet boundary conditions explicit ranges of p’s
are known, where −∆ provides an isomorphism from W 1,p

0 and the dual of W 1,p′

0 . Little
effort has been made, however, to tackle mixed boundary conditions, although they play
an important role in applied problems, cf. Amann [2] or Gajewski, Gröger [17] and
the references cited there.
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The present work is motivated by the study of rection-diffusion equations of the type

∂u

∂t
− div

(
D(u) gradu

)
= f(u, gradu), (1.1)

where u is a concentration, D(u) is a diffusion coefficient, J = −D(u) gradu is the cur-
rent, and f represents external sources and reactions, cf. also Amann [2] and Gröger,
Gajewski [17]. In nonsmooth situations equations of this type have usually been re-
garded in negatively indexed Sobolev spaces, cf. [17] and the references cited there. The
serious disadvantage of this approach is that one does not know in the end that for any
time point the divergence of the current is a function from Lp; one only obtains that it is
a distribution.

However, it would be highly satisfactory that the normal flow over any part of the
Dirichlet boundary is well defined by Gauss’ theorem, because the continuity of the nor-
mal component plays an essential role in connecting and embedding of potential flow
systems (1.1), not least in electronic device simulation, cf. Gajewski [11].

In order to deal with equation (1.1) in a function space we investigate elliptic partial
differential operators in divergence form on Lp. Inspecting existing theories which can
be possibly applied, cf. Amann [1, 3], Lunardi [23], Pazy [25] and references cited
there, one recognizes that a cornerstone are always resolvent estimates uniform on the left
complex half plane which imply the generation property of an analytic semigroup in the
appropriate space. The generator property of an analytic semigroup on Lp for operators
div a grad with general boundary conditions has already been proved by Arendt, ter
Elst [4, Sect. 4]. However, the approach in [4] rests on a Nash–Moser type iteration by
Fabes, Stroock [10], and explicit resolvent estimates are not available. Moreover, the
underlying concept of minimally smooth boundary in the sense of Stein [28], while ad-
mitting unbounded sets, excludes some possibly useful bounded domains, cf. Remark 2.3.
We take a different approach to the problem: By means of recently obtained Cα regu-
larity results of Griepentrog, Recke [14], operating in the conceptual framework of
regular sets in the sense of Gröger [16], and an old estimation technique taken from
Pazy [25, Ch. 7.3, Th. 3.6], we are able to give explicit reolvent estimates in terms of
the coefficient function. Moreover, we prove that a finite power of the resolvent maps L2

into Cα. A fortiori the semigroup operators map L2 continuously into Cα, are nuclear
and the corresponding heat kernel is not only essentially bounded but Hölder continuous
in both arguments. This provides the persistence of spectral properties of the elliptic
operator on the scale of Lp spaces, cf. Davies [6]. Moreover, the semigroup is positivity
improving.

The reader will notice that one of the main results, Theorem 5.2, is not only formulated
for operators div a grad but for operators U div a grad, where U is a measurable, positive
L∞ function, bounded from below be a stricly positive constant, cf. also Ouhabaz [24].
This is motivated as follows: In material heterostructures the concentration u in (1.1)
may be given by a function relative to another, u = ũ/U , where U is a fixed function
representing material properties, cf. e.g. Gröger, Gajewski [17]. Multiplying (1.1)
by the reference density U leads to an operator U div a grad. There are other settings
dealing with reference functions U from L∞, cf. Griepentrog [13, Ch. 2]; however,
in Lp spaces they canonically act as multipliers.
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Using, that the operator U div a grad generates an analytic semigroup on Lp and the
continuous embedding of the elliptic operators domain into a Cα space, we prove that the
solutions of corresponding linear and semilinear parabolic equations are Hölder continuous
in space and time.

2 Notations, definitions, prerequisities

In the sequel Ω will always be a bounded domain in Rd and Γ a part of its boundary, which
may be empty. If p is from [1,∞[, then Lp = Lp(Ω) is the space of complex, Lebesgue
measurable, p-integrable functions on Ω, and W 1,p = W 1,p(Ω) is the usual Sobolev space
on Ω. The Lp-Lp

′
duality shall be given by the extended L2 duality

〈ψ1, ψ2〉 =

∫
Ω

ψ1(x)ψ2(x) dx. (2.1)

L∞ = L∞(Ω) is the space of Lebesgue measurable, essentially bounded functions on Ω,
and Cα = Cα(Ω) the space of up to the boundary α-Hölder continuous functions on Ω.

We assume that Ω ∪ Γ is a regular set in the following sense:

Definition 2.1. Let Ω ⊂ Rd be a bounded domain and Γ ⊂ ∂Ω be a part of its boundary.
Ω ∩ Γ is a regular set if for every point x̃ ∈ ∂Ω there exist two open sets U, V ⊂ Rd

and a bi-Lischitz transformation L from U onto V such that, x̃ ∈ U, and L
(
U ∩ (Ω ∪ Γ)

)
coincides with one of the three model sets

E1 =
{
x ∈ Rd : |x| < 1, xd < 0

}
,

E2 =
{
x ∈ Rd : |x| < 1, xd ≤ 0

}
,

E3 =
{
x ∈ E2 : xd < 0 or x1 > 0

}
.

(2.2)

Definition 2.2. We define W 1,p
0 as the closure in W 1,p of the set

C∞0 (Ω ∪ Γ)
def
=
{
u|Ω : u ∈ C∞0 (Rd), supp(u) ∩

(
Ω \ (Ω ∪ Γ)

)
= ∅

}
, (2.3)

and W−1,p as the dual space to W 1,p′

0 , where 1/p+ 1/p′ = 1.

Remark 2.3. The above concept coincides exactly with Gröger’s definition of regular
sets, cf. [16], which is well-adjusted to mixed boundary value problems. N.B. from the
definition of the regular set follows that Γ is relatively open in ∂Ω. We can identify Γ
with the Neumann and ∂Ω \ Γ with the Dirichlet part of the boundary ∂Ω. Please note,
that every bounded open set Ω ⊂ Rd with minimally smooth boundary in the sense of
Stein, cf. [28, Ch. VI, § 3.3], i.e. a Lipschitz boundary, is regular, but the converse
statement is not true. Indeed, Grisvard’s lightning set is regular but does not have
a minimally smooth bondary, cf. Grisvard [15, Ch. 1.2.1.4]. Nevertheless, it is easy
to prove the W 1,p extension domain property of Ω in Rd, by means of the localization,
transformation and reflection principles, cf. e.g. Griepentrog [13, Ch. 1.1]. Thus one
obtains the usual embedding theorems W 1,p ↪→ Lq. Furthermore, an adequate concept of



90

surface measure σ on the boundary can be established by passing the boundary measure
from the three model sets (2.2) via the bi-Lipschitz transformation L to the boundary of
Ω. In particular, the embedding W 1,2 ↪→ L2(∂Ω, σ) is compact, cf. e.g. Griepentrog,
Recke [14], and there is∫

∂Ω

|ψ|2 dσ ≤M ‖ψ‖L2

√∫
Ω

(
‖ gradψ‖2

Cd + |ψ|2
)
dx for ψ ∈ W 1,2, (2.4)

with a positive constant M , cf. [13, Ch. 1.1].

Throughout this paper B(X;Y ) denotes the space of bounded linear operators from X
to Y , X and Y being Banach spaces.

Definition 2.4. Let a = {ak,l}k,l : Ω→ B(Cd;Cd), be a measurable mapping into the set
of real, symmetric d× d-matrices, with

‖a(x)‖B(Cd;Cd) ≤ a• and
d∑

k,l=1

ak,l(x) ξk ξl ≥ a•

d∑
k=1

ξ2
k (2.5)

for almost every x ∈ Ω, all ξ = (ξ1, . . . , ξd) ∈ Rd and two strictly positive constants a•
and a•. Further, let β be a nonnegative function from L∞(Γ, dσ). Then, tΩ and tΓ are
the following sesquilinear forms on W 1,2

0 ×W 1,2
0 :

tΩ[ψ1, ψ2]
def
=

∫
Ω

〈a gradψ1, gradψ2〉Cd dx, (2.6a)

tΓ[ψ1, ψ2]
def
=

∫
Γ

β ψ1 ψ2 dσ. (2.6b)

The form t is defined as the sum of the forms tΩ and tΓ.

We intend to define an operator on L2 which corresponds to the form t by the repre-
sentation theorem of forms. Before doing this, we collect some properties of the forms.

Lemma 2.5. Let tΩ, tΓ, and t be according to Definition 2.4.

(i) The forms tΩ, tΓ, and t are well-defined and symmetric on W 1,2
0 .

(ii) The quadratic forms associated to tΩ, tΓ, and t are nonnegative.

(iii) The forms tΩ and t are densely defined on L2 and closed.

The proof is standard; the closedness of t on W 1,2
0 results from the closedness of tΩ and

the relative boundedness of tΓ with respect to tΩ, which easily follows from (2.4).

Definition 2.6. A2 is the selfadjoint, nonnegative operator on L2 which corresponds to
the form t from Definition 2.4 by the first representation theorem of forms, cf. Kato [20,
Ch. VI, § 2, Th. 2.1 and Th. 2.6]. For p > 2, Ap is the restriction of A2 to Lp.
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From the properties of the forms one can conclude

Theorem 2.7. The resolvent of A2 is compact. The semigroup generated by −A2 is
contractive. If σ(∂Ω \ Γ) > 0 or

∫
Γ
β dσ > 0, then the operator A2 has a strictly positive

lower bound and the semigroup generated by −A2 is even strictly contractive.

The next theorems concern positivity properties of the semigroup generated by A2 +W ,
where W is nonnegative potential. We give the precise statements, because they have not
been proved as yet for the underlying concept of regular sets, cf. Definition 2.1 and
Remark 2.3, but we will not work the proofs out in detail, since the ideas are standard.

Theorem 2.8. Let W be a nonnegative L∞ function. Then the operators e−t(A2+W ), t > 0
and (A2 +W + ρ)−1, ρ > 0 are positivity preserving.

Proof. According to the first Beurling–Deny criterion, cf. Davies [6, Th. 1.3.2], the
statements on e−t(A2+W ) and (A2 + W + ρ)−1 imply each other. One has to show two
things, cf. Liskevich, Semenov [22, Proposition 1.6], namely

(i) Each operator e−t(A2+W ), t > 0 maps real valued functions from L2 onto real valued
functions.

(ii) Phillips’s condition〈
(A2 +W )ψ, ψ+

〉
≥ 0 for all ψ ∈ dom(A2) ∩ L2(Ω;R), (2.7)

ψ+ being the positive part of ψ, holds.

To see that (i) holds true, we first note that A2 + W commutes with the complex
conjugation, so does its resolvent. From the formula

e−t(A2+W ) = s-lim
n→∞

(
1 +

t

n
(A2 +W )

)−n
,

cf. Kato [20, Ch. IX, § 1.2], follows that e−t(A2+W ) also commutes with the complex
conjugation.

In order to show (2.7) one first proves that for real valued functions ψ from dom(A2) ⊂
W 1,2

0 the positive part ψ+ belongs to W 1,2
0 , the form domain of A2 +W . This is obtained

by the usual formula for the partial derivatives of ψ+

∂ψ+

∂xk
=

{
∂ψ
∂xk

a.e. on {ψ > 0},
0 a.e. on {ψ ≤ 0},

(2.8)

cf. Evans, Gariepy [9, Ch. 4.2.2], and a standard mollifier argument to assure that
ψ+ has the correct boundary behaviour, i.e. belongs to the W 1,2 closure of C∞0 (Ω ∪ Γ).
Knowing ψ+ ∈ W 1,2

0 , one calculates by means of (2.8)〈
(A2 +W )ψ, ψ+

〉
=

∫
Ω

〈
a gradψ, gradψ+

〉
Rd dx+

∫
Ω

Wψψ+ dx+

∫
Γ

β ψ ψ+ dσ

=

∫
Ω

〈
a gradψ+, gradψ+

〉
Rd dx+

∫
Ω

W |ψ+|2 dx+

∫
Γ

β |ψ+|2 dσ

which indeed is a nonnegative expression.
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Theorem 2.9. If W is a nonnegative L∞ function, then (A2 + W + ρ)−1 is positivity
improving, hence ergodic, at least for all ρ > − ess infΩW , and e−t(A2+W ) is positivity
improving, hence ergodic, for all t > 0.

According to Reed, Simon [26, Vol. IV, Th. XIII.44], Theorem 2.7 and Theorem 2.8
the proof follows from

Lemma 2.10. If W is a nonnegative L∞ function, then the eigenspace belonging to the
smallest eigenvalue λ1 of A2 + W contains a function ψ which is strictly positive on Ω.
Any other function from this eigenspace is a scalar multiple of ψ.

A proof of this runs along the same lines as that of Gilbarg, Trudinger [12, Th. 8.38].
The cornerstone is Harnack’s inequality, which also holds for the underlying concept of
regular sets in the sense of Gröger, cf. Remark 2.3.

The following regularity result for elliptic boundary value problems is an essential in-
gredient in our subsequent proofs.

Proposition 2.11 (Cf. Griepentrog, Recke [14]). Let Ω ∪ Γ be a regular set in
the sense of Definition 2.1, W be a nonnegative L∞ function, A2 be according to Defini-
tion 2.6, and 0 < a• ≤ a• < ∞ be the constants from (2.5). For every number p with
p ≥ 2 and p > d/2 there is a constant α = α(p, a•, a

•,Ω,Γ) ∈ ]0, 1[ such that for every
f ∈ Lp the solution u ∈ W 1,2

0 of the elliptic boundary value problem (A2 + W )u = f is
Hölder continuous up to the boundary, and∥∥(A2 +W + 1)−1

∥∥
B(Lp;Cα) <∞. (2.9)

Remark 2.12. This result corresponds to one being known since long for the Dirichlet
problem, cf. Gilbarg, Trudinger [12, Ch. 8.10].

From Proposition 2.11 one easily deduces the following

Theorem 2.13. Let α be the Hölder exponent from Proposition 2.11. There is a positive
number j such that for any nonnegative L∞ function W the mapping

(A2 +W + 1)−j : L2 −→ Cα ↪→ L∞ (2.10)

is well-defined and continuous. If d ∈ {2, 3}, then j = 1 suffices. If d ∈ {4, 5}, then j =
3/2 works. Furthermore, each semigroup operator e−t(A2+W ), t > 0, maps L2 continuously
into Cα ↪→ L∞.

Proof. If d ≤ 3, then (2.10) holds with j = 1, according to Proposition 2.11. If d ∈ {4, 5},
then 2d

d−2
> d

2
and Proposition 2.11 yields

L2 (A2+W+1)−1/2

−−−−−−−−−→ dom(t) = W 1,2
0 ↪→ L

2d
d−2

(A2+W+1)−1

−−−−−−−−→ Cα.

If d > 5, then by Definition 2.6 and Proposition 2.11 one has

(A2 +W + 1)−1 : L2 −→ dom(A2) ↪→ dom(t) = W 1,2
0 ↪→ L

2d
d−2
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as well as

(A2 +W + 1)−1 : L
d+1

2 −→ Cα ↪→ L∞.

Hence, by the Riesz–Thorin interpolation theorem the mapping

(A2 +W + 1)−1 : Lpθ −→ Lqθ ↪→ L
d
d−2

pθ

is continuous provided that

1

pθ
=

1− θ
2

+
2θ

d+ 1
and

1

qθ
=

1− θ
2

d− 2

d
for θ ∈ [0, 1[.

Consequently, the mapping

(A2 +W + 1)−1 : L
2d
d−2( d

d−2)
k

−→ L
2d
d−2( d

d−2)
k+1

is continuous for all nonnegative integers k such that

pθ(k) =
2d

d− 2

(
d

d− 2

)k
≤ d+ 1

2
.

Thus with a finite resolvent power (A2 +W + 1)1−j one ends up in L
d+1

2 . Now, applying
once more (A2 +W + 1)−1 one arrives at Cα, due to Proposition 2.11.

As for the second assertion there is∥∥e−t(A2+W )
∥∥
B(L2;Cα) ≤

∥∥(A2 +W + 1)−j
∥∥
B(L2;Cα)

∥∥(A2 +W + 1)j e−t(A2+W )
∥∥
B(L2;L2).

The first factor on the right hand side is finite according to the first assertion, the second
one is finite due to the spectral theorem.

Remark 2.14. The first assertion of Theorem 2.13 can be equivalently formulated: For
each of the spaces X = Cβ, 0 ≤ β ≤ α, α according to Proposition 2.11, and X = Lp,
1 ≤ p ≤ ∞, there is a constant γX such that

‖ψ‖X ≤ γX
∥∥(A2 +W + 1)jψ

∥∥
L2 for all ψ ∈ dom

(
(A2 +W + 1)j

)
. (2.11)

Theorem 2.15. Let W be a nonnegative L∞ function and let j be the number from
Theorem 2.13. The operator (A2 + W + 1)−j : L2 → L2 is Hilbert–Schmidt, and all
semigroup operators e−t(A2+W ) : L2 → L2, t > 0, are nuclear.

Proof. For each of the operators (A2 + W + 1)−j and e−t(A2+W ), t > 0, there is a fac-
torization over L∞, cf. Theorem 2.13. Hence, by the Pietsch factorization theorem, cf.
Diestel, Jarchow, Tonge [8, 2.13 item iv], these operators are Hilbert–Schmidt. By
splitting up e−t(A2+W ) =

(
e−t(A2+W )/2

)
2 one now obtains that each semigroup operator

e−t(A2+W ), t > 0, is nuclear.
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3 Hölder continuity of the heat kernel

Theorem 3.1. Let W be a nonnegative L∞ function and let α be the Hölder exponent
from Proposition 2.11. Each semigroup operator e−t(A2+W ) : L2 → L2, t > 0, is an integral
operator and the corresponding kernels are from the space Cα(Ω× Ω;R).

Proof. According to Theorem 2.15 each semigroup operator e−t(A2+W ), t > 0, is nuclear
and, consequently, an integral operator. Let {λr}∞r=1 be the sequence of eigenvalues of
A2+W , counting multiplicity, and {ψr}∞r=1 a corresponding complete, orthonormal system
of real eigenfunctions. Such a system can always be found because A2 + W commutes
with the complex conjugation on L2. We prove that the series

∞∑
r=1

e−tλr ψr ⊗ ψr (3.1)

converges absolutely in Cα(Ω×Ω;R). This implies that the series represents the integral
kernel of e−t(A2+W ), because for any eigenfunction ψr one obtains the correct image under
e−t(A2+W ). First, it follows from Theorem 2.13 that all eigenfunctions ψr belong to Cα

because they belong to ∩∞l=1 dom
(
(A2 + W )l

)
, thus in particular to dom

(
(A2 + W )j

)
.

Further, it is easy to check the inequality

‖ψ ⊗ ϕ‖Cα(Ω×Ω;R) ≤ 2 ‖ψ‖Cα‖ϕ‖Cα for all ψ, ϕ ∈ Cα. (3.2)

Now one can estimate the terms of the sum (3.1) by means of (3.2) and (2.11) as follows:

‖ψr ⊗ ψr‖Cα(Ω×Ω;R) ≤ 2γ2
Cα

∥∥(A2 +W + 1)jψr
∥∥2
L2 ≤ 2γ2

Cα(λr + 1)2j. (3.3)

N.B. the ψr are L2-normalized. According to Theorem 2.15 (A2 +W + 1)−j is a Hilbert–
Schmidt operator. Hence, the series

∑∞
r=1(λr + 1)−2j is convergent and due to (3.3)

and the exponential decay of the factor e−t(λr+1) the series (3.1) converges absolutely in
Cα(Ω× Ω;R).

4 The operators Ap

In this section we will regard more closely the operators Ap from Definition 2.6 and
operators Ap + W , where W is a multiplication operator, induced by a nonnegative, not
necessarily bounded function. Functions W of this type frequently occur as potentials of
Schrödinger operators, cf. e.g. Reed, Simon [26, Vol. IV, Ch. XIII].

4.a Basic properties of the operators Ap

Theorem 4.1. Suppose p ∈ ]2,∞[. For any ρ > 0 the operator (Ap + ρ)−1 exists and is
compact, hence, Ap is closed.

Proof. Let first p be greater than d/2. According to Proposition 2.11 (Ap + ρ)−1 is a
continuous mapping from Lp into a Hölder space, hence it is compact as a mapping from
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Lp into itself. By Theorem 2.7, also (A2 + ρ)−1 is compact. Thus, using a well-known
interpolation theorem for Lp spaces, cf. Davies [6, Th. 1.6.1], one obtains that (Ap+ρ)−1

exists for p ∈ ]2, d/2] and is compact.
(Ap + ρ)−1 is continuous for any ρ > 0, and, consequently, closed. Thus, Ap + ρ and Ap

are also closed operators.

For any p ∈ [2,∞[ let Jp : Lp −→ Lp
′
, 1/p+ 1/p′ = 1, denote the duality mapping

Jp : ψ 7−→ 1

‖ψ‖p−2
Lp

|ψ|p−2 ψ (4.1)

from Lp into Lp
′
. N.B. the duality was defined by (2.1) as the extended L2 duality, i.e.

antilinear in the second argument. The duality mapping (4.1) has the following properties:

Lemma 4.2. Suppose p ≥ max
{

4, d+1
2

}
. If ψ ∈ dom(Ap), then Jpψ ∈ W 1,2

0 and the
generalized derivatives of Jpψ may be calculated as

∂

∂xl
Jpψ =

1

‖ψ‖p−2
Lp

(
|ψ|p−2 ∂ψ

∂xl
+
p− 2

2
|ψ|p−4 ψ

(
ψ
∂ψ

∂xl
+ ψ

∂ψ

∂xl

))
. (4.2)

Proof. As p ≥ max
{

4, d+1
2

}
we have ψ ∈ C(Ω) due to Proposition 2.11. Moreover, one

has
dom(Ap) ⊂ dom(A2) ↪→ dom(t) = W 1,2

0 . (4.3)

Hence, due to the product rule it is sufficient to prove that |ψ|p−2 is from W 1,2
0 and that

its partial derivatives may be calculated as

∂

∂xl
|ψ|p−2 =

p− 2

2
|ψ|p−4

(
ψ
∂ψ

∂xl
+ ψ

∂ψ

∂xl

)
. (4.4)

For p = 4, what is permitted in the cases d ≤ 7, the statement follows immediately by
the product rule. Let now p be greater than 4 and not smaller than d+1

2
. With ϕ = |ψ|2

the left hand side of (4.4) can be written as ∂
∂xl

(
ϕ p/2−1

)
. The function ϕ ∈ W 1,2

0 ∩ C(Ω)

is positive; we denote its supremum by M , and define the function g : R −→ [0,∞[ by

g(x) =


0 if x ∈ ]−∞, 0[,

x p/2−1 if x ∈ [0,M + 1],

(M + 1) p/2−1 if x ∈ ]M + 1,∞[.

(4.5)

Because the function ϕ takes its values only in the interval [0,M ], we have

|ψ|p−2 = ϕ p/2−1 = g(ϕ).

By construction, g is a continuous and piecewise continuously differentiable function with
g′ ∈ L∞(R); thus the weak partial derivatives of g(ϕ) are

∂

∂xl
g(ϕ) = g′(ϕ)

∂ϕ

∂xl
,

cf. Gilbarg, Trudinger [12, Th. 7.8].
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Lemma 4.2 implies the following result on the numerical range of the operators Ap.

Theorem 4.3. Suppose p ≥ max
{

4, d+1
2

}
. If ψ ∈ dom(Ap), then

∣∣I〈Apψ, Jpψ〉∣∣ ≤ a•

a•

p− 2

2
√
p− 1

R〈Apψ, Jpψ〉. (4.6)

In particular, −Ap is dissipative, and −Ap is the infinitesimal generator of a strongly
continuous semigroup of contractions.

Proof. By Proposition 2.11 and our assumption on p, dom(Ap) is contained in L∞. Hence,
the Lp-Lp

′
duality 〈Apψ, Jpψ〉 is equal to the scalar product between Apψ and Jpψ in L2.

Further, ψ ∈ dom(Ap) implies by (4.3) and Lemma 4.2 that ψ and Jpψ belong to the
space dom(t) = W 1,2

0 , which yields 〈Apψ, Jpψ〉 = t[ψ, Jpψ]. Hence, due to (4.2) there is

‖ψ‖p−2
Lp 〈Apψ, Jpψ〉 =

∫
Ω

d∑
k,l=1

ak,l
∂ψ

∂xk

(
|ψ|p−2 ∂ψ

∂xl
+
p− 2

2
|ψ|p−4 ψ

(
ψ
∂ψ

∂xl
+ ψ

∂ψ

∂xl

))
dx

+

∫
Γ

β |ψ|p dσ. (4.7)

If one neglects the (nonnegative) term
∫

Γ
β |ψ|p dσ, then the real part of the right hand

side of (4.7) decreases. We split

|ψ|
p−4

2 ψ
∂ψ

∂xk

def
= ϕk + iφk

into real and imaginary parts and write down what remains on the right hand side of (4.7),
thereby observing that the coefficient matrix a = {ak,l}k,l is real symmetric:

∫
Ω

d∑
k,l=1

ak,l (ϕk + iφk)

(
(ϕl + iφl) +

p− 2

2

(
(ϕl + iφl) + (ϕl + iφl)

))
dx

=

∫
Ω

d∑
k,l=1

ak,l
(
(p− 1)ϕk ϕl + φk φl + i(p− 2)ϕk φl

)
dx. (4.8)

By means of (2.5), the real part of (4.8) may be estimated from below by

a•

(
(p− 1)

d∑
k=1

∫
Ω

ϕ2
k dx+

d∑
k=1

∫
Ω

φ2
k dx

)
≥ 0, (4.9)

while the absolute value of the imaginary part of (4.8) can be estimated due to (2.5)
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and (4.9) as follows:

(p− 2)

∣∣∣∣∣
∫

Ω

d∑
k,l=1

ak,l ϕk φl dx

∣∣∣∣∣ ≤ a•(p− 2)

√√√√∫
Ω

d∑
k=1

ϕ2
k dx

√√√√∫
Ω

d∑
k=1

φ2
k dx

≤ a•
p− 2

2

(√
p− 1

∫
Ω

d∑
k=1

ϕ2
k dx+

1√
p− 1

∫
Ω

d∑
k=1

φ2
k dx

)

≤ a•
p− 2

2
√
p− 1

(
(p− 1)

∫
Ω

d∑
k=1

ϕ2
k dx+

∫
Ω

d∑
k=1

φ2
k dx

)

what proves the assertion (4.6). Now (4.6) implies immediately the dissipativity of −Ap,
cf. Pazy [25, Ch. 1.4, Def. 4.1], and this together with Theorem 4.1 ensures by the
Lumer–Phillips theorem [25, Ch. 1.4, Th. 4.3], that −Ap is the infinitesimal generator of
a strongly continuous semigroup of contractions.

Remark 4.4. The proof of Theorem 4.3 follows exactly the proof of Pazy [25, Ch. 7.3,
Th. 3.6] for the case of smooth domains, smooth coefficients and homogeneous Dirichlet
boundary conditions. Indeed, the crucial part of the proof in our setting is to show that
the duality mapping Jp maps the domain of the operator Ap into the form domain of t.

Theorem 4.3 permits an essential conclusion:

Theorem 4.5. If p is any number from [2,∞[, then dom(Ap) is dense in Lp.

Proof. At first let p be not smaller than max
{

4, d+1
2

}
. According to a well-known theorem,

cf. Pazy [25, Ch. 1.4, Th. 4.6], it suffices to show that Ap + 1 has the whole space Lp

as its range. Indeed, for any ρ > 0 the operator Ap + ρ is surjective, because, due to
the compactness of the resolvent, cf. Theorem 4.1, in the opposite case ρ would be an
eigenvalue of −Ap. But this is impossible because −Ap is dissipative.

Thus, the assertion is proved for p ≥ p0 =
{

4, d+1
2

}
. Let now p be from [2, p0[. There

is dom(Ap0) ⊂ dom(Ap) for all p ∈ [2, p0[. Hence, as dom(Ap0) is dense in Lp0 and Lp0 is
dense in Lp, dom(Ap0) must be dense in Lp.

Theorem 4.5 justifies the following definition, supplementing Definition 2.6.

Definition 4.6. For p < 2, Ap is the adjoint of Ap′ , where 1/p+ 1/p′ = 1.

With the help of classical duality results, cf. Kato [20, Ch. III, § 5, Th. 5.29 and
Th. 5.30], one easily reproduces the statements on Ap for the case p ∈ ]1, 2[.

Theorem 4.7. Suppose p ∈ ]1, 2[. Ap is closed and densely defined. The restriction of
Ap to L2 is equal to A2. For any ρ > 0 the operator (Ap + ρ)−1 exists and is compact.

Remark 4.8. According to Theorem 4.1 and Theorem 4.7, the operator (Ap + 1)−1 is
compact. Hence, dom(Ap) equipped with the graph norm ‖ψ‖dom(Ap) = ‖(Ap + 1)ψ‖Lp
embeds compactly into Lp for all p ∈ ]1,∞[.
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Now we may conclude the dissipativity of all the operators −Ap, more precisely:

Theorem 4.9. If p ∈ ]1,∞[ and ρ > 0, then∥∥(Ap + ρ)−1
∥∥
B(Lp;Lp) ≤

1

ρ
, (4.10)

hence, −Ap is dissipative.

Proof. In view of (Ap + ρ)−1 =
(
(Ap′ + ρ)−1

)∗, where 1/p + 1/p′ = 1, it suffices to
prove (4.10) for p ∈ [2,∞[. For the cases p = 2 and p ≥ max

{
4, d+1

2

}
the inequality

follows from the dissipativity of −Ap and the surjectivity of Ap + ρ and a well-known
theorem, cf. Pazy [25, Th. 1.4.2]. For p ∈

]
2,max

{
4, d+1

2

}[
, interpolation leads to (4.10),

and the dissipativity of −Ap follows again from [25, Th. 1.4.2].

4.b Ap: Perturbations by nonnegative potentials W

For Ap + W to generate a strongly continuous semigroup of contractions and to allow
resolvent estimates it is sufficient to know that the multiplication operator induced by
the function W is relatively compact with respect to the operator Ap. First we prove a
general lemma about relatively bounded perturbations of Ap+1, which also will be of use
when we later regard perturbations by first order operators.

Lemma 4.10. Suppose p ∈ ]1,∞[ and let T : dom(Ap) −→ Lp be relatively bounded with
respect to Ap + 1, i.e. there are numbers a ≥ 0 and b ≥ 0, such that

‖Tψ‖Lp ≤ a ‖ψ‖Lp + b ‖(Ap + 1)ψ‖Lp for all ψ ∈ dom(Ap). (4.11)

If ρ > 1, then

‖Tψ‖Lp ≤ a ‖ψ‖Lp + 2b ‖(Ap + ρ)ψ‖Lp for all ψ ∈ dom(Ap). (4.12)

Moreover, if b < 1/2, then the operators Ap and Ap + T have the same domain dom(Ap),
are closed and the resolvent of Ap + T is compact.

Proof. First, (4.12) results by means of (4.10) and (4.11) from the inequality

‖(Ap + 1)ψ‖Lp ≤
∥∥((Ap + ρ)− (ρ− 1)

)
(Ap + ρ)−1

∥∥
B(Lp;Lp)‖(Ap + ρ)ψ‖Lp

≤
(
1 + (ρ− 1)

∥∥(Ap + ρ)−1
∥∥
B(Lp;Lp)

)
‖(Ap + ρ)ψ‖Lp

≤ 2 ‖(Ap + ρ)ψ‖Lp .

Ap is closed due to Theorem 4.1 and Theorem 4.7. If b < 1, then the operators Ap and
Ap+T have the same domain dom(Ap) and are closed, cf. Kato [20, Ch. IV, § 1, Th. 1.1].
According to Theorem 4.1 and Theorem 4.7 the operator Ap + ρ is compactly invertible
for all ρ > 0. If b < 1/2, then from (4.10) follows

a
∥∥(Ap + ρ)−1

∥∥
B(Lp;Lp) + 2b ≤ a

ρ
+ 2b < 1

for sufficently great ρ. Hence, due to (4.12) by a general perturbation theorem, cf. [20,
Ch. IV, § 1, Th. 1.16], the resolvent of Ap + T is compact.
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Theorem 4.11. Suppose p ∈ ]1,∞[, and let W be a nonnegative, measurable function
on Ω with lower bound W•. If the multiplication operator, induced by W on Lp is relatively
compact with respect to Ap, then dom(Ap + W ) equals dom(Ap), the operator Ap + W is
closed, its resolvent is compact, and

∥∥(Ap +W + ρ)−1
∥∥
B(Lp;Lp) ≤

1

ρ+W•
for all ρ > −W•. (4.13)

Moreover, the operator −(Ap +W ) generates a strongly continuous semigroup of contrac-
tions on Lp. If σ(∂Ω \ Γ) > 0, or

∫
Γ
β dσ > 0, or W• > 0, then this semigroup is even

strictly contractive.

Proof. The multiplication operator induced by W maps dom(Ap) compactly into Lp.
N.B. dom(Ap) equipped with the graph norm compactly embeds into Lp, cf. Remark 4.8.
Further, the multiplication operator induced on Lp by the function 1

1+W
is continuous and

injective, because W is nonnegative, i.e.

dom(Ap)
W−−−−→

compact
Lp

1
1+W−−−−−−−−−−−→

continuous, injective
Lp,

and by Ehrling’s lemma, cf. e.g. Wloka [32, Ch. I, § 7, Th. 7.3], for every b > 0 there
is a number a > 0, such that

‖Wψ‖Lp ≤ a

∥∥∥∥ Wψ

1 +W

∥∥∥∥
Lp

+ b ‖ψ‖dom(Ap) ≤ a ‖ψ‖Lp + b ‖(Ap + 1)ψ‖Lp .

Thus, the multiplication operator induced by W on Lp is relatively bounded by Ap + 1
with bound zero, and the assertions about Ap +W follow from Lemma 4.10.

The multiplication operator, induced by W −W• on Lp, is dissipative. According to
Theorem 4.3 the operator −Ap is the infinitesimal generator of a strongly continuous
semigroup of contractions, and with the up to now obtained properties of W − W• a
perturbation theorem for such generators, cf. Pazy [25, Ch. 3.3, Cor. 3.3], applies. Thus,
−(Ap + W − W•) is the infinitesimal generator of a strongly continuous semigroup of
contractions, and in particular dissipative. Now the criterion [25, Ch. 1.4, Th. 4.2] for
dissipativity provides

‖(Ap +W −W• + ρ)ψ‖Lp ≥ ρ ‖ψ‖Lp for all ρ > 0, ψ ∈ dom(Ap +W −W•), (4.14)

i.e. the operator Ap +W −W• + ρ is injective. Due to the compactness of the resolvent,
Ap +W −W• + ρ is also surjective. Consequently, (4.14) implies (4.13).

If σ(∂Ω \ Γ) > 0 or
∫

Γ
β dσ > 0, then the semigroup generated by −(A2 + W −W•)

on L2 is strictly contractive, cf. Theorem 2.7. Because the semigroups generated by
−(Ap + W − W•) on Lp are at least contractive, it follows by interpolation that the
semigroups must be strictly contractive for all p ∈ ]1,∞[. If W• > 0, then the strict
contractivity follows from [25, Ch. 1.3, Cor. 3.8].
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4.c Ap: Semigroups on L∞ and L1

Next we will regard the semigroup
{

e−t(A2+W )
}
t>0 with a nonnegative, bounded poten-

tial W on the spaces L1 and L∞.

Theorem 4.12. Let W be a nonnegative L∞ function. Then the semigroup e−t(A2+W ),
t > 0, induces semigroups of contractions on L∞ and L1. The latter semigroup is strongly
continuous, while the first is not.

Proof. From Theorem 2.13 we know that e−t(A2+W ) ∈ B(L∞;L∞), and
{

e−t(A2+W )
}
t>0

forms a semigroup on L∞. It remains to show that e−t(A2+W ) is contractive on L∞.
Indeed, due to the contractivity of e−t(A2+W ) on Lp for any p ∈ [2,∞[, there is∥∥e−t(A2+W )ψ

∥∥
L∞

∞←p←−−−
∥∥e−t(A2+W )ψ

∥∥
Lp ≤ ‖ψ‖Lp

p→∞−−−→ ‖ψ‖L∞ for all ψ ∈ L∞.

N.B. if ψ ∈ L∞, then ‖ψ‖L∞ = limp→∞ ‖ψ‖Lp . The statement for L1 follows by a duality
argument and the strong continuity in L2. The semigroup is not strongly continuous
on L∞ because in the opposite case its generator would have to be densely defined in L∞

according to the Hille–Yosida theorem, cf. Pazy [25, Ch. 1.3, Th. 3.1]. But, due to
Proposition 2.11, dom(A∞ + W ) is contained in a Hölder space Cα, never being dense
in L∞.

Remark 4.13. Fitting together the results of the Theorems 2.7, 2.8, 2.13, and 4.12 one
obtains that A2 + W is generating a symmetric Markov semigroup which is ultracon-
tractive, cf. Davies [6, Ch. 2]. In particular this implies that it is hypercontractive, cf.
Reed, Simon [26, Vol. II, Ch. X.9]. The integral kernels Kt belonging to the operators
e−t(A2+W ), cf. Theorem 3.1, are nonnegative. This follows immediately from the symmet-
ric Markov property and the ultracontractivity, cf. [6, Lemma 2.1.2]. Furthermore, the
following statement on the spectral properties may be deduced, cf. [6, Ch. 1.6].

Theorem 4.14. Suppose p ∈ ]1,∞[, and let W be a nonnegative L∞ function. The spec-
trum of Ap + W coincides with the spectrum of A2 + W and the geometric multiplicities
are the same. For every eigenvalue λ of Ap +W the algebraic multiplicity equals the geo-
metric multiplicity, or, in other words, there are no nontrivial Jordan chains. Moreover,
the eigenspaces coincide for all p.

The next result is again a consequence of Theorem 2.13.

Theorem 4.15. Let V be a real valued L∞ function. The set of eigenvectors of the
operator Ap + V is total in Lp for every p ∈ ]1,∞[.

Proof. The statement holds true for p = 2, due to the selfadjointness of A2 + V . As the
sets of eigenvectors for Ap and A2 are identical, this set is also total in Lp for p ∈ ]1, 2[,
because in that case L2 is dense in Lp. Let now p be from ]2,∞[. It is easy to see that it
suffices to prove the statement for potentials V = W + 1, where W ∈ L∞ is nonnegative,
as one can shift the operator by a scalar without changing the set of eigenvevtors. Let j be
the number from Theorem 2.13. Because −(Ap +W + 1) generates a strongly continuous
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semigroup of contractions on Lp, cf. Theorem 4.11, dom
(
(Ap +W + 1)j

)
is dense in Lp,

cf. Pazy [25, Ch. 1.2, Th. 2.7]. Hence, it suffices to show that any element from the space

dom
(
(Ap +W + 1)j

)
⊂ Lp ↪→ L2

may be approximated by linear combinations of eigenvectors of Ap +W + 1. Let for this
purpose γLp be the embedding constant of Id : dom

(
(A2 +W +1)j

)
→ Lp, which is finite,

cf. Remark 2.14. Further, let ψ ∈ dom
(
(Ap + W + 1)j

)
and ε > 0 be given. Because

the system of eigenvectors of A2 +W + 1 is total in L2, there is a finite sequence {λr}r of
eigenvectors of A2 +W + 1, and a finite sequence {µr}r of complex numbers such that

ε > γLp

∥∥∥∥∥∑
r

µrψr − (A2 +W + 1)jψ

∥∥∥∥∥
L2

= γLp

∥∥∥∥∥ (A2 +W + 1)j

(∑
r

µr

λjr
ψr − ψ

)∥∥∥∥∥
L2

≥

∥∥∥∥∥∑
r

µr

λjr
ψr − ψ

∥∥∥∥∥
Lp

,

i.e. the eigenvectors of Ap +W + 1 form a total set in dom
(
(Ap +W + 1)j

)
.

5 The operators UAp

Now we turn to the investigation of operators U div a grad, where U is in all what follows
a positive L∞ function, bounded from below by a strictly positive constant. We will prove
that these operators generate analytic semigroups on Lp and that this property is stable
with respect to perturbations by first order differential operators, at least for certain p.

5.a Resolvent estimates

This section is devoted to resolvent estimates for operators UAp + W , where Ap is ac-
cording to Definition 2.6 and Definition 4.6. The L∞ function W is always supposed to
be nonnegative; by W• we denote the essential infimum of W on Ω. In the sequel H will
always be the closed complex right half plane. We abbreviate

τp =
a•
a•

2
√
p− 1

p− 2
if p ∈

[
max

{
4, d+1

2

}
,∞
[
, (5.1)

cf. Theorem 4.3.

Theorem 5.1. For any p ∈ ]1,∞[ there exist a constant Mp such that

∥∥(Ap +WU−1 + ρU−1
)−1
∥∥
B(Lp;Lp) ≤

Mp ‖U‖L∞
|ρ|+W•

for all ρ ∈ H \ {0}.

The constant Mp can be specified as follows:

(i) If p = 2, then M2 =
√

2.



102

(ii) If p ∈
[

max
{

4, d+1
2

}
,∞
[
, then Mp =

√
1 + τ 2

p

min{1, τp}
.

(iii) If p ∈
]
2,max

{
4, d+1

2

}[
, then Mp =

(√
2
)

1−θp

( √
1 + τ 2

min{1, τ}

)θp

.

(iv) If p ∈ ]1, 2[, then Mp = Mp′ for 1/p+ 1/p′ = 1.

Here, the constants τ > 0 and θp ∈ [0, 1] are defined by

τ = τmax{4,(d+1)/2} and
1

p
=

θp

max
{

4, d+1
2

} +
1− θp

2
.

Proof. We regard firstly the selfadjoint case p = 2. Let γ be the lower form bound for t,
which is nonnegative, cf. Lemma 2.5. It follows

∥∥(A2 +WU−1 + ρU−1
)
ψ
∥∥
L2‖ψ‖L2 ≥

∣∣∣∣t[ψ, ψ] +

∫
Ω

(ρ+W )U−1|ψ|2 dx
∣∣∣∣

≥
∣∣∣∣γ +

ρ+W•
‖U‖L∞

∣∣∣∣ ‖ψ‖2
L2 ≥

|ρ+W•|
‖U‖L∞

‖ψ‖2
L2 ≥

|ρ|+W•√
2 ‖U‖L∞

‖ψ‖2
L2 , (5.2)

i.e. the operator A2 + WU−1 + ρU−1 is injective. If one can show additionally the
surjectivity of A2 +WU−1 + ρU−1, then (5.2) implies the assertion. Indeed, (W + ρ)U−1

is a bounded linear operator on L2, hence it is A2-bounded with bound equal to zero.
Thus, Lemma 4.10 applies and provides that A2 +WU−1 +ρU−1 has a compact resolvent,
hence, it is surjective as it is injective.

Now let p ∈
[

max
{

4, d+1
2

}
,∞
[
, 1/p+ 1/p′ = 1, and τp according to (5.1). We define

ρ̂ =

{
1 + τpi if ρ ∈ R and ρ > 0,

1− τp sign(Iρ)i if ρ ∈ H \ R.
(5.3)

If ψ ∈ dom(Ap) and ρ ∈ H \ {0}, then due to (4.1)√
1 + τ 2

p

∥∥(Ap + (W + ρ)U−1
)
ψ
∥∥
Lp‖ψ‖Lp = |ρ̂|

∥∥(Ap + (W + ρ)U−1
)
ψ
∥∥
Lp ‖Jpψ‖Lp′

≥
∣∣ρ̂ 〈(Ap + (W + ρ)U−1

)
ψ, Jpψ

〉∣∣
≥ R

(
ρ̂
〈(
Ap + (W + ρ)U−1

)
ψ, Jpψ

〉)
= R

(
ρ̂R〈Apψ, Jpψ〉+ iρ̂ I〈Apψ, Jpψ〉

)
+ R(ρ̂ρ)

〈
U−1ψ, Jpψ

〉
+ R(ρ̂)

〈
WU−1ψ, Jpψ

〉
.

Using (5.3) the summands on the right hand side can be estimated by

R
(
ρ̂R〈Apψ, Jpψ〉+ iρ̂ I〈Apψ, Jpψ〉

)
≥ R〈Ap, Jpψ〉 − τp

∣∣I〈Apψ, Jpψ〉∣∣
and

R(ρ̂ρ)
〈
U−1ψ, Jpψ

〉
+ R(ρ̂)

〈
WU−1ψ, Jpψ

〉
≥ Rρ+ τp |Iρ|+W•

‖U‖L∞
‖ψ‖2

Lp .
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Together with (4.6) this yields

√
1 + τ 2

p

∥∥(Ap + (W + ρ)U−1
)
ψ
∥∥
Lp‖ψ‖Lp ≥ min{1, τp}

|ρ|+W•
‖U‖L∞

‖ψ‖2
Lp .

Hence, for all ψ ∈ dom(Ap) and all ρ ∈ H \ {0} we obtain

‖ψ‖Lp ≤
‖U‖L∞

√
1 + τ 2

p

(|ρ|+W•) min{1, τp}
∥∥(Ap + (W + ρ)U−1

)
ψ
∥∥
Lp . (5.4)

Now the assertion follows in the same way as in the case p = 2.
If p ∈

]
2,max

{
4, d+1

2

}[
, then interpolation between the previous cases p = 2 and

p = max
{

4, d+1
2

}
with the Riesz–Thorin theorem provides the stated result.

If p ∈ ]1, 2[, then one obtains the assertion by duality: Definition 4.6 and Kato [20,
Ch. III, § 5, Th. 5.30] provide(

Ap + (W + ρ)U−1
)−1 =

((
Ap′ + (W + ρ)U−1

)−1
)∗

for 1/p+ 1/p′ = 1, and the already proved cases imply the assertion.

Theorem 5.2. For any p ∈ ]1,∞[ the operator UAp +W is closed, has the same domain
as Ap, and is the infinitesimal generator of an analytic semigroup on Lp. More precisely,
for any ρ ∈ H \ {0} one has

∥∥(UAp +W + ρ
)−1
∥∥
B(Lp;Lp) ≤Mp

∥∥U∥∥L∞∥∥U−1
∥∥
L∞

1

|ρ|+W•
, (5.5)

where the constants Mp are those from Theorem 5.1.

Proof. The multiplication operator induced by U provides a linear homeomorphism on Lp.
Thus the operators UAp + W and Ap + U−1W have the same domain and are closed
simultaneously, i.e. UAp + W is closed (cf. Theorem 4.1 and Theorem 4.7) and has the
domain dom(Ap).

Let ρ be in H \ {0}. According to Theorem 5.1 the operator Ap + (W + ρ)U−1 is
continuously invertible. Hence, UAp +W + ρ is continuously invertible and∥∥(UAp +W + ρ

)−1
∥∥
B(Lp;Lp) ≤

∥∥(Ap + (W + ρ)U−1
)−1
∥∥
B(Lp;Lp)

∥∥U−1
∥∥
L∞

holds. Thus, the asserted inequality (5.5) follows immediately from Theorem 5.1. Esti-
mate (5.5) implies that UAp + W is the infinitesimal generator of an analytic semigroup
on Lp, cf. e.g. Pazy [25, Ch. 2.5].

Remark 5.3. If σ(∂Ω \ Γ) > 0, or
∫

Γ
β dσ > 0, or W• > 0, then ρ = 0 can be admitted

in (5.5).
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5.b Perturbations by first order differential operators

Our next aim is to investigate the influence of perturbations upon an operator UAp by
first order differential operators. First we quote a regularity result for elliptic boundary
value problems which we will need in the sequel.

Proposition 5.4 (Cf. Gröger, Rehberg [18]). Let Ω ∪ Γ be a regular set in the
sense of Definition 2.1, A2 be according to Definition 2.6, and 0 < a• ≤ a• < ∞ be
the constants from (2.5). There is a real constant ε = ε(Ω,Γ, a•, a

•) > 0, such that
(A2 + 1)−1 continuously extends to a topological isomorphism between W−1,p and W 1,p

0 for
all p ∈ [2, 2 + ε[. Denoting the inverse of this isomorphism by Bp, one has the following
resolvent estimate:∥∥(Bp + ρ)−1

∥∥
B(W−1,p;W−1,p) ≤

Np

|ρ|+ 1
for all ρ ∈ H, (5.6)

where the constant Np depends on Ω, Γ, a•, and a•, and H is the closed complex right half
plane.

Remark 5.5. It should be noticed that in view of the example of Shamir [27, p. 151]
one cannot expect in general that ε becomes much greater than zero, even for a smooth
domain and constant coefficients.

Theorem 5.6. Let b1, b2, . . . , bd, and c be essentially bounded, complex valued functions
on Ω. We define the first order differential operator Tp : W 1,p

0 −→ Lp by

Tp : ψ 7−→
d∑

k=1

bk
∂ψ

∂xk
+ cψ. (5.7)

Let ε be the constant from Proposition 5.4. If p ∈
]

2d
d+2

, 2 + ε
[
, then

(i) dom(UAp) compactly embeds into dom(Tp) = W 1,p
0 .

(ii) Tp is relatively bounded with respect to UAp and the bound is equal to zero.

(iii) UAp + Tp has the same domain as Ap and is closed.

(iv) UAp + Tp generates an analytic semigroup on Lp.

(v) The resolvent of UAp + Tp is compact.

Proof. According to Theorem 5.2 there is dom(Ap) = dom(UAp). Let M ⊂ Lp be a set
such that (Ap + 1)M is bounded in Lp. Thus, (Ap + 1)M is a precompact set in W−1,p. If
p ∈ [2, 2 + ε[, then Proposition 5.4 implies that M is precompact in W 1,p

0 . If p ∈
]

2d
d+2

, 2
[
,

then the compactness of the embedding Lp ↪→ W−1,2 provides the precompactness of
(Ap+1)M in W−1,2. Knowing this, the Lax–Milgram theorem implies the precompactness
of M in W 1,2

0 and, by embdding, also in W 1,p
0 . Thus, taking onto account

‖Tpψ‖Lp ≤ max
{
‖c‖L∞ , ‖b1‖L∞ , . . . , ‖bd‖L∞

}
‖ψ‖W 1,p for all ψ ∈ W 1,p

0 ,
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the claim (i) is proved. Assertion (ii) is implied by Ehrling’s lemma, cf. Wloka [32,
Ch. I, § 7, Th. 7.3].

The claims (iii) and (iv) follow from (ii), Theorem 5.2 and abstract perturbation theo-
rems, cf. Kato [20, Ch. IV, § 1, Th. 1.1 and Ch. IX, § 2, Th. 2.4] and Pazy [25, Ch. 3.2,
Th. 2.1]. In view of UAp + Tp + ρ = U

(
Ap + U−1Tp + U−1ρ

)
it sufficed to prove the

assertion (v) for U ≡ 1. In this case it follows from (i), (ii) and Lemma 4.10.

Remark 5.7. Theorem 5.6 is primarily relevant in the low dimensional cases d ∈ {2, 3, 4}
where the permitted interval for p intersects the p-interval where dom(Ap) continuously
embeds into a space Cα, cf. Proposition 2.11. Further, Theorem 5.6 is in correspondence
to the results of Arendt, ter Elst [4], which also require restrictions on the first order
differential operators.

6 Induced analytic semigroups on fractional Sobolev

and Besov spaces

The operator −A2 induces analytic semigroups on Lp space, cf. Theorem 4.3 and on
certain W−1,q spaces, cf. Proposition 5.4 and Gröger, Rehberg [18]. By interpolation
it induces analytic semigroups also on fractional Sobolev spaces and on Besov spaces.

Theorem 6.1. Let ε be the constant from Proposition 5.4. If

q ∈ [2, 2 + ε[, p ∈ ]1,∞[, θ ∈ ]0, 1[, s ∈ [1,∞[, (6.1)

then the operator −A2, cf. Definition 2.6, induces an analytic semigroup on any of the
interpolation spaces (

W−1,q, Lp
)
θ,s and

[
W−1,q, Lp

]
θ . (6.2)

Proof. Let Ap be the operators on Lp from Definition 2.6 and Definition 4.6, let Bq be the
operators on W−1,q from Proposition 5.4, and let H be the closed complex right half plane.
The resolvent estimates for the infinitesimal generators in the interpolation spaces, which
imply the analyticity of the semigroups, cf. Pazy [25, Ch. 2.5], result by interpolation
due to the following facts:

(i) W−1,q and Lp form an interpolation couple, because both embed continuously into
W−1,r, r = min{p, q}.

(ii) For any ρ ∈ H the operators (Ap + 1 + ρ)−1 and (Bq + ρ)−1 coincide on Lmax{2,p}.
This set is dense in Lp and W−1,q; thus (Ap+1+ρ)−1 and (Bq+ρ)−1 may be viewed
as the same operator.

(iii) Real and complex interpolation are exact interpolation functors of type θ, cf. e.g.
Triebel [29, Ch. 1.2.2].

It remains to show that the domain of the operator on the corresponding interpolation
space is dense in this space: one knows, cf. [29, Ch. 1.6.2 and 1.9.3], that W−1,q ∩ Lp is
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dense in
(
W−1,q, Lp

)
θ,s and in

[
W−1,q, Lp

]
θ. (Because this is not necessarily true for the

real interpolation index (θ,∞), cf. [29, Rem. 1.6.2] one has to exclude this index in the
assertion.) Further, the norm

max
{
‖ψ‖Lp , ‖ψ‖W−1,q

}
(6.3)

on W−1,q ∩ Lp is stronger than the induced norm from any of the interpolation spaces,
cf. [29, Ch. 1.3.3 and 1.9.3].

Let now p0 ≥ max{2, p} be chosen, such that Lp0 continuously embeds into Lp and into
W−1,q. Then one has dom(Ap0) ⊂ dom(Ap|W−1,q ∩Lp) and the images under the embed-
ding mappings Lp0 ↪→ W−1,q and Lp0 ↪→ Lp are dense in both spaces. By Theorem 4.5
dom(Ap) is dense in Lp0 and, consequently, dense in W−1,q ∩ Lp in the norm (6.3).

Remark 6.2. According to duality theorems from interpolation theory, cf. Triebel [29,
Ch. 1.11], there is(

W−1,q, Lp
)
θ,s =

((
W 1,q′

0 , Lp
′)
θ,s′
)∗ and

[
W−1,q, Lp

]
θ =

([
W 1,q′

0 , Lp
′]
θ

)∗
for s ∈ ]1,∞[, where 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1, and 1/s+ 1/s′ = 1.

7 Applications to parabolic equations

The property of −UAp to be an infinitesimal generator of an analytic semigroup on Lp

paves the way for treating the corresponding parabolic equations on Lp, cf. Amann [3],
Lunardi [23], Pazy [25]. With respect to the results obtained by Arendt, ter
Elst [4] the basic finding in our context is the Hölder continuity of solutions to the
parabolic equation in space and time, which ultimatily rests on Proposition 2.11.

Lemma 7.1. Suppose p > d/2 and p ≥ 2 and let α ∈ ]0, 1] be the Hölder exponent from
Proposition 2.11. There are numbers Θ ∈ ]0, 1[ and 0 < α̃ < α such that

dom
(
(UAp + 1)Θ

)
↪→ C α̃. (7.1)

Any function u ∈ C1(S;Lp) ∩ C
(
S; dom(UAp)

)
, where S = [T0, T ] is an interval of the

real axis, is Hölder continuous in space and time, more precisely u ∈ C1−Θ(S;C α̃) ↪→
Cβ(S × Ω).

Proof. Let Θ ∈ ]0, 1[. If θ < Θ, then the embeddings

dom
(
(UAp + 1)Θ

)
↪→
(
dom(UAp + 1), Lp

)
1−Θ,∞ ↪→

(
dom(UAp + 1), Lp

)
1−θ,1

are continuous, cf. Triebel [29, Ch. 1.15.2 and 1.3.3]. The chain of continuous embed-
dings may be continued by applying Proposition 2.11 and [29, Ch. 1.10.3](

dom(UAp + 1), Lp
)

1−θ,1 ↪→
(
dom(Ap), L

p
)

1−θ,1 ↪→
(
Cα, Lp

)
1−θ,1 ↪→

[
Cα, Lp

]
1−θ .

Thus, it remains to show that[
Cα, Lp

]
1−θ =

[
Lp, Cα

]
θ ↪→ C α̃ for some α̃ > 0. (7.2)
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By means of localization, transformation and reflection principles, cf. Griepentrog [13,
Ch. 1.1], one can construct a simultaneous extension operator for

Cα −→ Cα(Rd) and Lp −→ Lp(Rd),

cf. Troianiello [31, Ch. 1.2.2, Th. 1.2]. Hence, it is sufficient to prove[
Lp(Rd), Cα(Rd)

]
θ ↪→ C α̃(Rd),

cf. e.g. [29, Ch. 1.2.4] instead of (7.2). According to Triebel [30], Stein [28, Ch. VI.2.2]
the space Cα(Rd) is identical with the Besov space Bα

∞,∞(Rd). Further, the interpolation
space with Lp is identical with a Lizorkin–Triebel space and continuously embeds into a
Hölder space. More precisely,

[
Lp(Rd), Bα

∞,∞(Rd)
]
θ

def
= F θα

p/(1−θ),2/(1−θ)(Rd) ↪→ C α̃(Rd) if α̃
def
= θα− (1− θ) d

p
> 0,

cf. [30] and [29, Ch. 2.8.1], respectively. By choosing θ and Θ sufficiently close to 1 on
always finds a strictly positive α̃.

Let now u be from C1(S;Lp)∩C
(
S; dom(UAp)

)
and let s, t be different numbers from

the interval S. We have by the first statement of this lemma

‖u(s)− u(t)‖Cα̃
|s− t|1−Θ

≤ ‖Id‖B(dom((UAp+1)Θ);Cα̃)

∥∥(UAp + 1)Θ(u(s)− u(t))
∥∥
Lp

|s− t|1−Θ
.

There is a constant γ such that this inequality may be prolonged, cf. Pazy [25, Ch. 2,
Th. 6.10], as follows

‖u(s)− u(t)‖Cα̃
|s− t|1−Θ

≤ γ
∥∥(UAp + 1)(u(s)− u(t))

∥∥Θ
Lp

(
‖u(s)− u(t)‖Lp
|s− t|

)1−Θ

.

Due to the supposition on u, the expression on the right hand side is uniformly bounded
for all s, t ∈ S, s 6= t.

7.a Linear parabolic equations

Let us consider an initial-boundary value problem

∂u

∂t
− U div a gradu = f, u(0) = u0, and boundary conditions.

If we regard this equation in Lp, then −U div a grad gets the precise meaning of the op-
erator UAp, cf. Section 5, and the fully elaborated existence, uniqueness and regularity
theory for parabolic equations related to the infinitesimal generator of an analytic semi-
group applies, cf. Amann [3], Lunardi [23], Pazy [25]. We formulate the new and
essential facts for operators with mixed boundary conditions.
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Theorem 7.2. Suppose p > d/2, p ≥ 2, T > 0 and let u0 be from Lp. If f is a Hölder
continuous mapping from [0, T ] into Lp, then for any T0 ∈ ]0, T [ the solution of

∂u

∂t
+ UApu = f, u(0) = u0 (7.3)

is Hölder continuous on the set [T0, T ] × Ω. If in addition the initial value u0 is from
dom(UAp) = dom(Ap), then the solution is Hölder continuous on [0, T ]× Ω.

Proof. The proof results from Lemma 7.1 and classical regularity results, cf. Pazy [25,
Ch. 4.3].

Remark 7.3. In the case u0 = 0 the Hölder continuity of solutions of (7.3) on [0, T ]×Ω
has been obtained in Griepentrog [13, Ch. 2.3] under weaker assumptions on the right
hand side f in a completely different way.

If U ≡ 1, then the suppositions on the right hand side f may be considerably relaxed.

Theorem 7.4. Let W be a nonnnegative L∞ function, and let S = [0, T ], T > 0 be an
interval. Then for any q ∈ ]1,∞[ the operator Ap + W satisfies q-regularity, i.e. the
operator ∂

∂t
+ Ap +W provides a topological isomorphism between

Lq
(
S; dom(Ap)

)
∩
{
v ∈ W 1,q(S;Lp) : v(0) = 0

}
and Lq(S;Lp).

If p > d/2, p ≥ 2, u0 ∈ dom(Ap), and f ∈ L∞(S;Lp), then the solution u of the initial
value problem

∂u

∂t
+ (Ap +W )u = f, u(0) = u0 (7.4)

is Hölder continuous on S × Ω.

Proof. The first statement follows from the positivity of the operator A2 + W , Theo-
rem 4.12 and a result of Lamberton, cf. [21].

Let α be the Hölder exponent from Proposition 2.11. By the trace method in interpo-
lation theory, cf. Ashyralyev, Sobolevskii [5, Ch. 1.3] or Triebel [29, Ch. 1.8.2],
follows for any q ∈ ]1,∞[ the existence of a continuous embedding

Lq
(
S; dom(Ap)

)
∩W 1,q(S;Lp) ↪→ C

(
S;
(
dom(Ap), L

p
)

1/q,q

)
↪→ C

(
S;
(
Cα, Lp

)
1/q,q

)
.

We choose q great enough such that
(
Cα, Lp

)
1/q,q continuously embeds into a space Cβ

with some β > 0, and η small enough such that
(
Cβ, Lp

)
η,r still embeds into a space Cγ

for some γ > 0; both is possible by Lemma 7.1. Defining Θ = η + (1− η)/q, we have by
the reiteration theorem for real interpolation(

Cα, Lp
)

Θ,r =
((
Cα, Lp

)
1/q,q, L

p
)
η,r

and by the suppositions on q and η the continuity of the embedding((
Cα, Lp

)
1/q,q, L

p
)
η,r ↪→

(
Cβ, Lp

)
η,r ↪→ Cγ,
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cf. [29, Ch. 1.10.3]. Using the corresponding interpolation inequality, one can estimate
with some δ > 0 for any s, t ∈ S, s 6= t:

‖u(s)− u(t)‖(Cα,Lp)Θ,r

|s− t|Θ−1/q
≤ δ
‖u(s)− u(t)‖ηLp
|s− t|Θ−1/q

‖u(s)− u(t)‖1−η
(Cα,Lp)1/q,q

≤ δ

∥∥∫ t
s
u′(τ) dτ

∥∥η
Lp

|s− t|Θ−1/q

(
2 sup
τ∈S
‖u(τ)‖(Cα,Lp)1/q,q

)1−η

≤ δ

(∫ t
s
‖u′(τ)‖qLp dτ

)
η/q |s− t|η/q′

|s− t|Θ−1/q

(
2 sup
τ∈S
‖u(τ)‖(Cα,Lp)1/q,q

)1−η

By the definition of Θ we have n/q′ = Θ− 1/q, what proves the boundedness of the right
hand side, independently from s, t ∈ S, s 6= t.

7.b Semilinear parabolic equations

Theorem 7.5. Let F : [0, T ] × C −→ C be a function which is Hölder continuous in
the first argument and locally Lipschitz continuous in the second. (For t ∈ [0, T ] we
identify the function F(t, ·) with the induced Nemytskii operator on L∞.) We assume the
existence of a uniform Hölder exponent for every bounded set of z ∈ C, and that there
are local Lipschitz constants uniform over [0, T ]. Suppose p > d/2 and p ≥ 2 and let
Θ ∈ ]0, 1[ be such that dom

(
(Ap + 1)Θ

)
↪→ C α̃ for some α̃ > 0. (Such numbers Θ and α̃

exist according to Lemma 7.1.) Then the equation

∂u

∂t
+ UApu = F(t, u), u(0) = u0 ∈ dom

(
(Ap + 1)Θ

)
(7.5)

has a unique local solution

u ∈ C
(
[0, T1[;Lp

)
∩ C1

(
]0, T1[;Lp

)
∩ C

(
]0, T1[; dom(Ap)

)
,

which, by Lemma 7.1, is Hölder continuous on any set [T0, T2]×Ω, when 0 < T0 < T2 < T1.

Proof. The local existence, uniqueness and asserted regularity follow from standard re-
sults, cf. Pazy [25, Ch. 6.3, Th. 3.1 and Ch. 4.3, Th. 3.5], provided one can prove that

[0, T ]× dom
(
(Ap + 1)Θ

)
3 (t, ψ) 7−→ F(t, ψ) ∈ L∞ ↪→ Lp

is Hölder continuous in the first variable and Lipschitzian in the second. But this follows
immediately from our supposition dom

(
(Ap + 1)Θ

)
↪→ C α̃ and the suppositions on F.

Remark 7.6. Much more could be said about fine properties of solutions to (7.3), (7.4)
and (7.5) in dependence of the initial values u0 and F(0, u0), respectively, for particulars
we refer to Lunardi [23]. We do not expatiate this here because in our highly nonsmooth
constellation it is impossible in general to determine dom(Ap) or dom

(
(Ap+1)Θ

)
explicitly,

or to say how regular F(0, u0) is.
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As mentioned in the introduction, we are interested primarily in reaction-diffusion equa-
tions, especially in semiconductor equations. This requires a solution theory for coupled
evolution equations, where, among others, the following two problems, cf. Pazy [25,
Ch. 5.6], arise:

Problem 7.7. Under what conditions on two L∞ functions a and ã with stricly positive
lower bounds the domains of the corresponding operators Ap and Ãp coincide? Do, at
least the domains of fractional powers of Ap and Ãp coincide?

Problem 7.8. Let t 7−→ at be a function from [0, T ] into L∞ and let Ap,t be the oper-
ator corresponding to at, according to Definition 2.6. What can be said about Hölder
continuity, in an appropriate sense, of the function t 7−→ Ap,t?
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