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Abstract. In this paper linear elliptic boundary value problems of second order with non-
smooth data (L°°-coefficients, sets with Lipschitz boundary, regular sets, non-homogeneous mixed
boundary conditions) are considered. It will be shown that such boundary value problems generate

isomorphisms between certain Sobolev—Campanato spaces of functions and functionals, respectively.

1. Introduction

In this paper we consider linear elliptic operators L : W, *(QUT) — W~12(QUT)
defined as

(1.1) (Lu,w) := / (AVu -V + duw) dX", w e Wy (QuUT),
Q

and regularity properties of solutions u € WO1 ’2(9 UT) to the corresponding linear
elliptic boundary value problem

(1.2) (Lu,w) = (F,w), we W, ?(QuT),

for functionals F € W=52(QUT). In (1.1) and (1.2) © is a bounded open subset
of R, and I is a relatively open subset of the boundary 02 such that QUT is regular
in the sense of GROGER [11]. Furthermore, Wy ?(QUT) and W~12(Q UT) denote
the Sobolev spaces of functions u € W12(Q) having trace zero on 9\ T and its
dual space, respectively. Hence, our variational formulation (1.2) includes natural
and Dirichlet boundary conditions on the boundary parts I' and 9§ \ T, respectively.
The coefficients A and d are bounded measurable maps defined on €2, where A is real
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symmetric (n X n)-matrix valued, and d is scalar valued. Finally, we assume that there
exists a real constant € > 0 such that for all £ € R™ and almost all x € € there hold

5§d(x)§§ and 6|£|2§A($)f'f§é|f|2-

Under the above assumptions there exists a constant p = p(e, G) > 2 such that L maps
W,y (QUT) isomorphically onto W~12(QUT) for all 2 < p < p (see GROGER [11]).
Unfortunately, for n > 3 this result in general does not yield the Holder continuity of
the solution u to the mixed boundary value problem Lu = F € W=1P(QUT).

In this paper we will consider appropriate function spaces for the case n > 3.
RECKE [15] and GRIEPENTROG, RECKE [9] have shown the existence of a parame-
ter n — 2 < w < n depending only on € and G such that for all 0 < w < @ and all
functionals F € W~12«(QUT) the solution u € Wy*(UT) of the mixed boundary
value problem Lu = F' belongs to the Sobolev—Campanato space

Wy ?“(QUT) = {u € Wy*(QUT) : Vu € £2%(Q;R™)},
if F' belongs to the space W12« (QUT) of all functionals F € W—12(QUT) with

(1.3) (F,w) := / (f - Vw4 gw)d\", we W, (QuT),
Q

where

(1.4) fe g (RY), gef3(Q).

Note, that in the case n —2 < w < w for F € W~129(QUT) the Holder continuity
of the solution u € Wy >*(Q2UT) to the boundary value problem (1.2) follows via
embedding theorems. The main goal of the present paper is to overcome the following
shortcoming of the above approach:

In order to prove, that an arbitrarily given functional F € W=12(Q UT) is an
element of W~12%(QUT), up to now it was necessary to repeat the whole regularity
theory to get a representation of F' in the form (1.3) and (1.4) via the variational
formulation (1.1) and (1.2) of the elliptic problem Lu = F..

Generalizing the results of RAKOTOSON [13, 14] (for the case I' = @) in the present
paper we are able to give a more direct characterization of the space W12« (QUT)
which has the major advantage of being independent of a concrete representation (1.3)
and (1.4). Nevertheless the arguments are closely related to the methods developed
in RECKE [15] and GRIEPENTROG, RECKE [9]. Our paper is organized as follows:

In Section 2 we collect preliminary results related to regular sets Q UT' C R™ and
Sobolev-Campanato spaces Wy > (QUT).

Section 3 is devoted to the introduction of new Campanato spaces Y 12« (QUT)
of functionals (see also RAKOTOSON [13, 14]), and among other things we prove the
continuous embedding W12« (QUT) — Y~ 12«(QUT) for all 0 < w < n.

In Section 4 we prove our main result (Theorem 4.12) for solutions to the variational
problem (1.1) and (1.2). In fact, we will show the isomorphism property of the linear
elliptic operator L between W, '**(QUT) and Y ~12«(QUT), hence, the coincidence
of the spaces W=12“(QUT) and Y ~12%(QUT) for all 0 < w < w.

A more comprehensive treatment of the topic can be found in the doctoral thesis of
the author (see GRIEPENTROG [10]).
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2. Preliminary results concerning Campanato spaces

Throughout the paper we will assume n > 3. The symbol | - | is used for the absolute
value, and for the Euclidean norm in R". By ¢; we denote the j-th unit vector in R"
and furthermore, for r = (z1,...,2,) € R" we write & = (2q,...,2,_1) € R*~ L

For x € R™ and r > 0 we denote by B(z,r) := {{£ € R* : |£ — 2| < r} and
Ei(z,r):={{ eR": |£ —x| <1 & —x, <0} the open ball and the open halfball,
respectively. In the case x = 0, r = 1 we shortly write B and Ej.

As usual, for subsets G of R” we write G°, G and OG for the interior, the closure
and the (topological) boundary of G, respectively.

By A" we will denote the n-dimensional Lebesgue measure on the og-algebra of
Lebesgue-measurable subsets of R”. Let 2 be a bounded open subset of R®. We
write L™ (Q) and L (2;R™), for the sets of bounded measurable maps from € into R
and R™, respectively. Analogously, for 1 < p < co we write LP(2) and LP(Q; R™) for
the Lebesgue spaces of p-integrable functions from 2 into R and R"™, respectively.

2.1. Campanato spaces and Sobolev—Campanato spaces
For 1 < p < 00,0 <w < n—+p we denote by £7¥(Q) the Campanato space, i.e. the

space of all u € LP(2) such that

(2.1) [u]];lp'“’(ﬂ) = sup 7"_“/ [u — ugpe [P dA™ < oo.
e Joge

In (2.1) we used the notation

1
2.2 Qlz,r] :=QN B(zx,r), uqr ::7/ udA"™.
22 el (07 t0len) = 500 ) Joga

The space £ (2) is a Banach space with the norm

1/p
(2.3) lullere@y == { Il g + ooy} -

Analogously, by £7¢(Q; R™) we denote the space of all f € LP(Q, R™) with components
in £7¢(Q), and the norm in £7*(Q;R") is defined similarly to (2.3). Finally, for the
sake of simplicity, for w < 0 we will use the notation £7“(Q) := LP(Q).

The usual Sobolev space W1?(Q) will be equipped with the norm

1/p
fullwraen o= { [l gy + V01 }
For 0 < w < n + p we denote by WP« (Q) the Sobolev-Campanato space, i.e. the

space of all u € WP(Q) such that Vu € £P(;R"). The space W1P«(Q) is a
Banach space with the norm

/p
el @y = { Il o) + IVl ooy | -
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The following well-known (cf., e.g., TROIANIELLO [17]) property of Campanato
spaces will be used repeatedly in our paper: If ry > 0 is fixed and if the supremum
in (2.1) is taken over 0 < r < rg, only, then the corresponding ro-depending norm,
defined analogously to (2.3), is equivalent to the original norm in £7*(Q)). Moreover,
we will use the following theorem (cf. KUFNER, JOHN, FUCIK [12], GIAQUINTA [7] or
TROIANIELLO [17]) that describes embedding properties of Campanato spaces.

Theorem 2.1. Let 1 <p; <ps <0 and 0 <w; <n+p1, 0 <wsy < n+ ps such
that (w1 —n)/p1 < (wa —n)/p2. Then we have £P2%2(Q) — LPL1(Q).

A bijective map ® between two subsets of R” such that ® and ®~! are Lipschitz
continuous is called Lipschitz transformation; L > 0 is said to be a Lipschitz constant
of a Lipschitz transformation ® if it is one for both ® and ®~1.

In order to formulate further properties of Campanato spaces (equivalence to Morrey
and Holder spaces, multiplier, embedding and transformation properties) we have to
suppose certain minimal regularity of the boundary 92. Hence, let us introduce the
following usual terminology (using notation (2.2)):

Definition 2.2. Let a > 0. An open set 2 C R" is said to have property (a) if for
all sufficiently small r > 0 we have A"(Q[z,r]) > ar™ for all z € Q.

The results, summarized in the following theorem, are classical (cf. CAMPANATO
[1, 2, 3, 4], GiusTI [8]).

Theorem 2.3. Let 1 < p < oo and suppose that Q@ C R™ has property (a). Then
the following holds:
(i) Let 0 <w < n and u € LP(?). Then u € £P¥(Q) if and only if

(2.4) Hu||’£p,w(m = sup oY /Q[z . [ulP dA™ < o0,
>0 ’
and the so called Morrey norm defined by (2.4) is an equivalent norm on £P“ ().

(ii) Let 0 < w < n. Then for allu € £7¥(Q) and v € L>®() the product uv belongs
to £P“(Q), again, and there exists a constant ¢ > 0 such that

luv]|grwy < cllullgre@) [Vl for all u € £ (), v € L(Q).

(iii) Let n < w < n+p. Then £P%(Q) is isomorphic to the Héolder space C% (L)
with o = (w — n)/p.

(iv) Let ¥ be a Lipschitz transformation from an open neighborhood of Q into R"
and 0 < w < n+p. Then there exists a constant ¢ > 0 such that for the transformation
Uu:=uoW:Q— R of a function u : ¥(Q) — R we have

Vsl grw ) < cllulleremp@)yy  for allu e £99(U(Q)),
||\IJ*UHW1p,w(Q) S Cc ||U||Wl,p,w(\p(ﬂ)) fO’I’ all u € Wl’p’w(\l/(Q)).
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2.2. Campanato spaces on Lipschitz hypersurfaces

For the introduction of Campanato spaces on hypersurfaces in R™ we give the following
definition of Lipschitz hypersurfaces in R™ and sets with Lipschitz boundary:

Definition 2.4. (i) A subset M of R™ is called Lipschitz hypersurface in R™ if for
each o € M there exist an open neighborhood U of xy and a Lipschitz transformation
® from U onto B such that ®(zg) =0and UNM = {z € U : 9,,(z) = 0}.

(ii) A bounded subset Q of R™ is called set with Lipschitz boundary (see GIUSTI [8])
if for each zg € 0 there exist an open neighborhood U of xg and a Lipschitz trans-
formation ® from U onto B such that ®(z¢) =0 and ®(U N Q) = E;.

Remark 2.5. Every set with Lipschitz boundary is an open subset of R™ having
property (a). Moreover, the following holds: If Q@ C R™ is a bounded open set and
T = R"\ Q its exterior, then € is a set with Lipschitz boundary if and only if O is a
Lipschitz hypersurface in R™ with 09 = 97.

Let Q C R™ be a set with Lipschitz boundary and M a relatively open subset of 02.
By Moo we denote the (n — 1)-dimensional Lebesgue measure on the c-algebra of
Lebesgue-measurable subsets of 992. Note, that on the o-algebra of Lebesgue mea-
surable subsets of 00 it is equal to the (suitably normalized) (n — 1)-dimensional
Hausdorff measure (cf. SIMON [16] and EVANS, GARIEPY [6]).

For 1 < p < oo we write LP (M) and L>°(M) for the Lebesgue spaces of p-integrable
functions and bounded measurable maps from M into R, respectively.

For 1 <p<o0,0<w<n—1+p we denote by £7“(M) the Campanato space, i.e.
the space of all w € LP(M) such that

xeM
>0

(2.5) [u]’ép,w(M) = sup 7"_“/ o [u — wpre,n [P dAog < oc.
Mz,r

In (2.5) we used the notation

1
2.6 Mlz,r| :=MnNB(x,r), Upz, ::7/ udApq.
(2.6) [z, 7] (@,7), UMz roa (1) Sy 4000

The space £7“(M) is a Banach space with the norm

1/p
(2.7) lullenescary = { el ary + [0 ar }

For the sake of simplicity, for w < 0 we will use the notation £7% (M) := LP(M).

If ro > 0 is fixed and if the supremum in (2.5) is taken over 0 < r < rg, only, then
the corresponding ro-depending norm, defined analogously to (2.7), is equivalent to
the original norm in £7(M). Moreover, we have (see GRIEPENTROG [10])

Theorem 2.6. Let 1 <p; <ps<ocoand0<w; <n—14p;,0<wys <n—1+ps
such that (wy —n+1)/p1 < (wa —n+1)/pa. Then £P2:%2(M) — L£Pr<1(M).
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For the formulation of further properties of Campanato spaces on Lipschitz hypersur-
faces (equivalence to Morrey and Holder spaces, multiplier and embedding properties)
we want to suppose property (a) of the boundary part M of 9. Having in mind
notation (2.6), we introduce the following terminology:

Definition 2.7. Let @ > 0 and Q C R™ be a set with Lipschitz boundary. A
relatively open subset M of 0f2 is said to have property (a) if for all sufficiently small
r > 0 we have \pq(M|[z,7]) > ar™~! for all x € M.

Remark 2.8. For every set ) C R™ with Lipschitz boundary 92 has property (a).

As mentioned above, we want to summarize results comparable to Theorem 2.3 but
now for Campanato spaces on Lipschitz hypersurfaces (see GRIEPENTROG [10]):

Theorem 2.9. Let 1 < p < oo and  be a set with Lipschitz boundary. If the
relatively open subset M of 02 has property (a), then the following is true:
(i) Let 0 <w <n—1 and uw € LP(M). Then u € L7 (M) if and only if

(2.8) Hu||§-:p,w(M) = sup 7“7“’/ [ul? dAon < oo,
zeM

i Mz,r]

and the so called Morrey norm defined by (2.8) is an equivalent norm in £P“(M).
(ii) Let 0 <w <m—1. Then for all u € £7¥(M) and v € L=(M) the product uv
belongs to £LP¥ (M), again, and there exists a constant ¢ > 0 such that

|uv|| gpwary < cllullgrwary (V] Loy for allu € £P¥(M), v € L=(M).

(i) Let n — 1 < w < nm— 1+ p. Then £P%(M) is isomorphic to the Holder space
CY%(M) with a = (w—n+1)/p.

2.3. Regular sets

Let us define the following sets for x € R™ and r > 0:

8]

2 {SER7LZ|§—$|<T,€TL—J;“:O},
{gERnI|£—Z‘|<7", fn_$n<0}7
:{SGRnZ|£7‘T|<T, gnfxngo},
{

€ By(z,r):& —ax1 >0o0r &, —x, <0}

T,r
z,r

(z,7):
(z,7)
(z,7):
(z,7):

Es(x,r

Here and later on in the case x = 0 and r = 1 we shortly write By, F1, F> and
E3, respectively. For the treatment of mixed boundary value problems we will use
the following terminology of regular sets G C R™ which is equivalent to the original
concept introduced by GROGER [11]. Additionally, we collect some frequently used
properties of regular sets (cf. GRIEPENTROG, RECKE [9]).
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Definition 2.10. A bounded subset G of R" is called regular, if for each zg € 0G
there exist an open neighborhood U of zy in R™ and a Lipschitz transformation ®
from U onto B such that ®(x) =0 and (U NG) € {F1, Es, E3}.

Remark 2.11. Every set with Lipschitz boundary is a regular set. Vice versa, the
interior of a regular set is a set with Lipschitz boundary. Moreover, the closure of a
regular set is regular, too.

Lemma 2.12. If G C R" is a reqular set and ¥ a Lipschitz transformation from
an open neighborhood of G onto another open subset of R™, then W(QG) is regular.

Lemma 2.13. For every reqular subset G of R™ there exists an atlas of charts
(®1,U1),...,(®,,,Uy) of the following type: There exist points xi,...,x, € G,
open neighborhoods Uy, ... Uy, of x1,...,2y in R™, and Lipschitz transformations
Dy,..., D, from Uy,..., Uy, into R™, respectively, such that

(2.9) occlJu, UTce, écOU
j=1

jeI i€l
withfoz{je{l,...,m}:xjGGO},I:{je{l,...,m}:xjeﬁ(}’} and
(2.10) ®j(x;) =0, @;(U;)=B, @;(U;NG)e|{B,E, E, Es}

forall j € {1,...,m}. The subfamily {(®;,U;):j € I} is an atlas of OG.

2.4. Sobolev—Campanato spaces on regular sets

Throughout this section we will assume, that G C R™ is a regular set, U C R" is a
relatively open subset of G' and, finally, that V' C R” is a relatively open subset of U.
Before considering Sobolev—Campanato spaces on regular sets we want to present
embedding and trace properties of Sobolev—Campanato spaces W12 (Q) on sets with
Lipschitz boundary (see GIUSTI [8], GRIEPENTROG, RECKE [9]):

Theorem 2.14. Let  C R™ be a bounded open set with Lipschitz boundary and M
be a relatively open subset of 0Q). Then, for 0 < w < n the following is true:
(i) Wh2(Q) is continuously embedded into L*™ ("=2)(Q).
(i) WH2«(Q) is continuously embedded into £“T2(Q).
(iii) The trace operator vy maps W2(Q) continuously into L*=1/(=2)(f),
(iv) The trace operator yar maps W12« (Q) continuously into £>*+1(M).

In the sequel we will work with the following notation, which is usual in the theory
of mixed boundary value problems (cf., e.g., TROIANIELLO [17], GROGER [11]). By
W, 2(U) we denote the closure in W12(U°) of the set

(2.11) Ce(U) == {u|pe : uw € CF(R™), supp(u) N (U \U) = &}.
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Furthermore, for 0 < w < mn + 2 we consider closed subspaces of the Sobolev—
Campanato spaces defined as

Wy 2“(U) = Wy 2 (U) n W< (U°)
and equipped with the norm of W12« (U°). For the sake of completeness we write

down the following principles concerning extension, transformation, and restriction of
Sobolev space functions (see GRIEPENTROG, RECKE [9] and GRIEPENTROG [10]):

Lemma 2.15. The zero extension map Ry on Wol’Q(V) defined as

Ruu = {u A" -almost everywhere on V°, we WOLQ(V)’

0 A"-almost everywhere on U°\ V°,

is a bounded linear operator from Wy > (V') into Wy *(U). Moreover, we have

||RUU||W01'2(U) = ||u||W01‘2(V) Jor all u € Wol’z(v)

Lemma 2.16. If ¥ is a Lipschitz transformation of an open neighborhood of G
onto another open subset of R™, then u belongs to W01’2(\I/(U)) if and only if W,u is
1,2
an element of Wy~ (U), and

V. Ry@yu = Ry¥.u for all u € Wy 2(U(U)).

Let z € B, r > 0, and k € {1,2}. Furthermore, let P : B — F5 be the projection
defined as Pz := (%, —|z,|) € E3 for ¢ = (Z,2,) € B. Finally, using the notation
D(z,r) := B(x,r)UB(Px,r), for u : BND(z,r) — R we define the odd part T} (z, r)u :
Ey[Pz,r] — R and the even part Ta(x,r)u : Ey[Px,r] — R of 2u by

(Ti(w,r)u)(y) = u(y) + (~1)*u(d, ~yn), y € Er[Pz,7].

respectively. Then, we have 2u = T3 (z,r)u + To(z, r)u and

Lemma 2.17. For x € B, r > 0, and k € {1,2} the operator Ty(z,r) maps
Wy 2(BN D(x,r)) continuously into Wy *(Ey[Px,7]), and

TixRpu = Rg, Tk(x,r)u for allu € Wol’Q(B N D(z,r)).

Let k € {1,2}. For u : E; — R we define the antireflection Ryu : B — R and the
reflection Rou : B — R onto the unit ball B by

u(x) for z € Ey,

(Ryu)(x) := {(_Uku(@, —x,) forxz e B\ E,

respectively. Then, we have the following statement
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Lemma 2.18. For 0 < w < n and k € {1,2} the operator Ry maps Wy '>* (Ej,)
continuously into Wy '>*(B). Moreover, Ry maps W% (Ey) continuously into
W2 (B), and

[Ryullfirewm) < 2M[ullfze gy < 2[Riullfewg for adlue Wy (E),
[Roullfyr2w(py < 2M[ullfyr2wp,) < 2| Roullfyrowg) for alue WH2<(Ey).

In the sequel we also need the generalization of the above reflection operations to
vector and matrix valued functions. For f : E; — R™ we define the antireflection
Ry1f : B — R™ and the reflection Ry f : B — R" by

(le)j = lej fOI"j S {1, e, — 1}, and (le)n = Ran,
(Raf); = Raf; forje{l,...,n—1}, and (Raf)n := Rifn.

Let 0 < € <1 be a real constant. By &(n) and &(e,n) we denote the spaces of all
real symmetric (n x n)-matrices and all real positive definite (n x n)-matrices having
the spectrum in the interval [e,1/e], respectively. For A : F; — &(n) we define the
reflection Ry A : B — &(n) by

(RQA)ei = RQ(AQZ) fori € {17 o, n = 1}, and (RgA)Qn = Rl(AQn)
Notice, that for A : E; — &(g,n) we have Ry A : B — &(e,n).

3. Campanato spaces of functionals

Throughout this section we assume, that G C R™ is a regular set, U C R" is a relatively
open subset of G and, finally, that V' C R" is a relatively open subset of U.

3.1. Definition

Let W~12(U) be the dual space to W,*(U) and ( , )y the dual pairing between these
spaces. We define the norm of an element F' € W~%2(U) by

|Fllw—s2y = sup { (o] : w € W (U), ol <1}

To localize a functional F € W~12(U) we do the following: We define the mapping
F s Fly from W=Y2(U) into W~=12(V) as the adjoint operator to the extension map
Ry : Wy (V) = Wy (U), that means,

(Fly,w)y := (F, Ryw)y, w e Wy*(V).
Obviously, the property of the extension operator Ry (see Lemma 2.15) yields
IF I w12y < [ Fllw—sa, for all F € WL2(0).
Moreover, we have the following norm identity

||F||W71,2(U) = zseu[R HF|U[‘T’T]HW*1’2(U[:E,T]) forall F € W_l’Q(U).

>0
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Now, we construct Campanato spaces of functionals as subspaces of W~12(U) by
the following modification of the W~=12(U)-norm (cf. RAKOTOSON [13, 14]).

Definition 3.1. Let 0 < w < n be a real constant. A functional F' from W~12(U)
should belong to the Campanato space Y ~12%(U), if and only if the supremum

W 2
(31) ||F||§’*1’2’W(U) = :LS;‘ILE) r ||F|U[m,r]HW71,2(U[17T])

>0

has a finite value. In that case we define the norm of F € Y =12 (U) by (3.1).

Remark 3.2. If 7o > 0 is a given radius and if we take the supremum in the
definition (3.1) for 0 < r < rg, only, then the corresponding ro-dependent norm,
defined analogously to (3.1), is an equivalent norm on Y ~1:2¢(U).

Remark 3.3. Note that r™ < rf ™ “r 7 if0<w <o <n,179>00<r <r.
This yields the continuous embedding Y =127 (U) — Y ~1:2%(U).

Remark 3.4. The spaces Y ~12:%(U) are Banach spaces for 0 < w < n: To prove the
completeness of the normed linear space Y =12« (U) let {F, }oen be a Cauchy sequence
in Y129 (U). Because of the embedding of Y ~12«(U) in W~12(U) the sequence
{F,}aen is a Cauchy sequence in W~12(U). Hence, it converges in W~12(U) to a
functional F € W—12(U). If we fix § > 0, we can choose ag(§) € N such that

|Fatp — Fally-120@w) <6 forall a,f € N with a > ag(9).
For all z € U° and r > 0 we get
—w 2 Cw 2
r H(F - Fa)|U[m7r]HW—w(U[z,r}) <2r ||(F = Farp)lugen ||W*1=2(U[a:,r]) +20%.

Letting 8 — oo and taking the supremum for all z € U° and r > 0 we arrive at the
sought-for result:

|F — Fa||§,,1,2,W(U) <26% for all a € N with a > ag(0).

3.2. Invariance principles

We are going to consider several bounded linear operations on the above defined Cam-
panato spaces of functionals.
Let x € C§°(R") and 0 < w < n. Now, for F € W—12(U) we define by

(XF,w)y := (F,wx)y, we€ WOI’Q(U),
a functional yF' € W~12(U). There exists a real constant ¢ = c(x) > 0 such that
IXEllw-12) < cl|F|lw-12@ny forall F € W™H2(U).

Lemma 3.5. Let x € C5°(R") and 0 < w < n. Then, F +— xF is a bounded linear
map from Y ~52(U) into Y129 (U).
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Proof. If F € Y~12%(U), then by definition we get for all x € U°, r > 0

H(XF”U[M]HW*M(U[.T,T]) HXF‘UM]HW L2(Ue,r]) = < c||Fluge, HW 1.2(U[z,r])?

where ¢ = ¢(x) > 0 is a real constant. This proves the desired result. O

Lemma 3.6. If0 < w < n, then F — Fly defines a bounded linear map from
Y~1L29(U) into Y ~12«(V).

Proof. Let FF € Y~12¥(U). Then, for all z € V°, r > 0 by definition we have

HF‘V[%T]||W*1=2(V[x,r]) < ||F|U[Iv7']HW*LZ(U[:E,T])’
which proves the desired result. O

Another useful tool for our regularity considerations is the extension principle for
functionals by reflection and antireflection, respectively. Let z € B and r > 0. Having
in mind the continuity of the operators

Ti(z,7) : Wy (BN D(z, 7)) = Wy (Ep[Px, 7)),

and especially the continuity of Ty : Wy *(B) — Wy '?(E}) for k € {1,2} (Lemma 2.17)
we construct the mapping Fy, +— Ry Fy from W—12(E}) into W—12(B) as the adjoint
operator of T}, : W01’2(B) — W&’Z(Ek), that means,

(R, Fy,w)p := (Fy, Tsw)g,, w € Wy>(B).
Because of the properties of the operators Ty (see Lemma 2.18) it follows

IRk Fillw-12(8) < V2 |Fillw-12(8,) forall F € WH2(Ey).
Lemma 3.7. Let k € {1,2} and 0 <w < n. Then, Fy, — Ry F}, is a bounded linear
map from Y ~129(Ey) into Y ~12¢(B).

Proof. Let k € {1,2} be an index and F} an element of Y12« (E}). Then, we get
for all z € B, r > 0 and w € Wy"*(B[z,7]) the relation

{(RkF)| Blay) W) Lo | = [(BrFr, Rpw)g| = |(Fr, ThRpw) g, |
= |(F, Rg, Ti(z, ") RpAp (2, 0) B, |
= [(Fxl gparts Tr(@, 7)) RBAD (2,0) W) By [Par,r] |

by the properties of Ti(x, ), Tk (see Lemma 2.17) and the extension operators. Hence,
(B Fo) 1llw 125y < V21 Fellw-128, 0P

which proves the desired result. O

Next we will see, how the invariance of Sobolev spaces with respect to Lipschitz
transformations carries over to our new scale of Campanato spaces of functionals.
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Let ¥ be a Lipschitz transformation from an open neighborhood of G onto another
open subset of R™. Then, ¥(G) C R" is a regular set, too (see Lemma 2.12). Now, we
are able to define the mapping F' + U*F from W~12(U) into W—12(¥(U)) as the
adjoint operator of W, : Wy *(¥U(U)) — W, *(U), that means,

(U FLw) gy = (F, Ty, we Wy (U(U)).

By the transformation invariance for Sobolev spaces (Theorem 2.3 and Lemma 2.16)
there exists a positive constant ¢ = ¢(¥) > 0 such that

”\II*FHW*L%\IJ(U)) <c HF||W*1~2(U) for all F' € Wﬁl’Q(U).

Lemma 3.8. Let U be a Lipschitz transformation from an open neighborhood of G
onto another open subset of R™ and 0 < w < n. Then, F' — U*F defines a bounded
linear map from Y =129 (U) into Y~ 129 (Y (U)).

Proof. Let L > 1 be a Lipschitz constant for the transformation ¥ and V' = ¥ (U).
We choose 1y > 0 such that for all y € V° 0 < r < rg we have the inclusion

U (B(y,r)) € B(x, Lr) for x = T¥"1(y).
Forallye Ve, 0<r <rgand w € W&’Z(V[y,r]) we get the relation
(Y F) vy, w)viyr| = [(W°F, Ryw)v| = [(F, V. Ryw)y|
= ’<F7 RU\I]*w>U’ = ’<F|U[I,Lr]7RU[z,Lr]\I]*w>U[x,LT]|-

Here we have used the properties of the extension operators with respect to the trans-
formation ¥ (Theorem 2.3 and Lemma 2.16) and the above inclusion, respectively.
Hence, there exists a constant ¢ = ¢(¥) > 0 such that

<ec

||(‘I’*F)|V[y7r]HW—lﬂ(V[y,r]) = HF|U[90:LT]||W*1=2(U[a:,Lr])7

which proves the result. O

3.3. Examples

Next, we consider examples of functionals from Y =12 (G), which are interesting for
a broad class of applications.

Theorem 3.9. Let M be a relatively open subset of OG having property (a). Then,
for all 0 < w < n the map

(f,9.h) = F(f,g,h),
defined by

(F(f.g.h), w)e = /G (f - Voo + gw) dA" + /M Tyt (w) Do, w € WEA(G),
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s a bounded linear operator from
SQ’W(GO;Rn) % £2n/(n+2),wn/(n+2)(G0) % £2(n71)/n,w(n71)/n(M) into Yfl,Q,w(G)'

Proof. Let {(®1,U;),...,(Pm,Un)} be an atlas of G satisfying (2.9) and (2.10).
Furthermore, let L > 1 be a common Lipschitz constant for all transformations. Then,
there exists a radius 7o > 0 such that for all € G° the open ball B(z,r) is included
in one of the neighborhoods Uy, ...,U,,. We consider the decomposition of the set
J ={1,...,m} into the index sets

Iy={jeJ:U;cCcG’} and I={jeJ:U;NIG #2}.
(i) Obviously, we get F(f,0,0) € W~12(G) by the estimate
[(F(£,0,0),w)c| < | fllr2(@omn) [Vl L2(gemny  for all w € Wy *(G).
Moreover, for all z € G°, 7 > 0 and w € Wy"*(G[z, r]) the following holds
[(F(f,0,0)|c2.0) w)ater] < I1fllz2(ceerimn IVl L2(Go 2 mn)-
Hence, we get
(3.2) HF(fa0»0)|G[m,r]HWA,Q(G[W]) < | fllz2(Gofa,r)irn)-
(i) Because of W, *(G) < L2/ ("=2)(G°) it follows F(0,g,0) € W~12(G) by
[(F(0,9,0),w)c| < [|gllL2n/mr2)(goy Wl L2n/m-2)(goy  for all w € Wy (G).
Moreover, for all z € G°, 0 < r < ro and w € Wy"*(G[z, 7]) we have the relation

[(F(0,9,0)|G1e.)s W) Glex | < 19l L2n/ra Gofwm) 1wl p2n/o-2)(Gofer)-

Case B(z,r9) C U; for a certain index j € Ip: Then, for all 0 < r < ry we have
B(z,r) C G° and for all w € Wy "*(G[z, 7)) it follows

||w||L2"/(”*2)(G°[z,r]) <a ||Vw||L2(GO[ZL’,T];R"’)7

where ¢; > 0 is a positive constant depending only on n.
Case B(xz,r9) C U; for a certain index j € I: Introducing the notation

z=0;(x) e By and V(r)= (I);l(B(Z,LT)),
we get for all 0 < r < 1o/ L2 the inclusions
®,(Glz,r]) C Ealz,Lr] and Glz,r] CGNV(r).
Hence, for all 0 < r < ro/L? and w € Wy"*(G[z,7]) the following holds

wj = (Rgay (mw) o (I>]71 € W01’2(E2 [z, Lr])
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with the estimate
||w||L2“/(”*2>(G°[z,r]) < e ||wj||L2"/("*2)(E1 [2,Lr])
< a3 IVwjllre ez prme) < Vol Lz o),

where c¢3,c3,¢4 > 0 depend only on n and L. Summing up we get the existence
of a constant ¢5 = c5(n,L) > 0, such that for all z € G°, 0 < r < ro/L? and
w € Wy (Glz, r]) we have

[(F(0,9,0)| 6o W)Gox| < €5 |9l p2n/oe2 (Gofem) VWl L2(Go 2017
hence,
(33) ||F(nga 0)|G[I77]HW—112(G[w,r]) <cs HgHL2"/("+2)(G°[a:,r])'

(iii) Due to the regularity of the set G C R™ and Remark 2.8 both M and dG have
property (a). Because of the equivalence between Morrey and Campanato norm for
parameters 0 < o < n—1 (see Theorem 2.9) we can extend h € £2(n=1/mw=1)/n(yr)
by zero to a function which belongs to £2(»=1/mwr=1/n(5G). Hence, it suffices to
consider only the case M = 9G. The continuity of the trace operator ~y,; from WO1 ’Q(G)
into L2(»=1/("=2) (A1) yields F(0,0,h) € W~12(G):

|<F‘(0707 h), ’LU>G| < Hh”LZ(nfl)/n(M) H’yM(w)||L2(n71)/(n—2)(M) for all w € WOLQ(G)
Moreover, for all z € G°, 0 < r < ro and w € Wy"*(G[z, 7]) we have the relation

[(F(0,0,h)| o) Watwm]| < Il Lae=1/m (arge ) 1720 (W) p20-10 /=2 (ar [ 1)) -

To prove further estimates it is sufficient to consider x € G° and 0 < r < 1y such that
Mz, ] is nonempty. For such points € G° there exists an index j € I with the
property B(z,79) C U;. Using again the notation

z=®;(x) € By and V(r)= <I>]71(B(Z,Lr)),
we get for all 0 < r < ro/L? with M[z,r] # @ the inclusions
®;(Glz,r]) C Eslz,Lr] and Glz,r] CGNV(r).
For all 0 < r < ro/L? with M[z,7] # @ and all w € Wy*(G[z,7]) we have
w; = (Rary(mw) o ;' € Wi ?(Ey[z, Lr))

and the relation

lvas (W) L20-1070-2) a1y < €6 (| VBale, L1 ()| 2n 137002 (2, 0

< er Vw28, 2 ey < cs [Vl L2(Go )

where cg, c7,cg > 0 depend only on n and L. Hence, we have proved the estimate

[(F(0,0,h)| o) wata| < s bl p2m-1/m ajzm VW L2 (G0 orlmm)
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for all z € G°, 0 < r < ro/L? and w € W *(G[z,r]), in other words,
(3.4) 1700, 0, et w12 (g < 8 IRll2e=0/mura,)-

Using Theorem 2.3 and Theorem 2.9 from (3.2), (3.3) and (3.4) the result follows. [

Remark 3.10. To underline the relevance of the preceding theorem we want to
clarify the connections to usual Lebesgue and Campanato spaces.
(i) Note, that for p = 2n/(n —w) and 0 < w < n we have the continuous embedding

LP(G®) < £2%(G°).
(ii) Furthermore, for p =2n/(n —w +2) and 0 < w < n + 2 we can state
Lp(Go) N £2n/(n+2),wn/(n+2)(Go)’ 22,w—2(Go) SN £2n/(n+2),wn/(n+2)(Go).
(iii) Additionally, for p =2(n —1)/(n — w) and 0 < w < n the following holds
Lp(M) N £2(n71)/n,w(n71)/n(M)’ £2,w71 (M) N £2(n71)/n,w(n71)/n (M)
(iv) Let 0 < w < n. We define the subspace W12 (G) of Y~ 12%(G) as
W=b29(G) = {F(f,9,0) e W12(G) : f € £2%(G%R"), g € £2°72(G°)},
and the norm of an element F' € W~12¢(G) as the infimum over all sums

I1f
Then, W—12¢(@3) is continuously embedded into Y ~1:2%(G).

e2w(gorn) + |9l ezw-2(Ge), f €L (G%RY), g € £297%(G°), F =F(f,g,0).

4. Regularity theory

Let G C R™ be a regular set and 0 < ¢ < 1. Remembering the notation &(e,n) for
the space of real positive definite (n x n)-matrices having the spectrum in the interval
[e,1/e], the Lax-Milgram Lemma yields that for all coefficients (A, d) which belong
to L°(G°;&(e,n) x &(e, 1)) the operator Lg (A, d) defined as

(L (A, dyu,w)g = / (AVu - Vw + duw) AN,  u,w € Wy (Q),
G

is an isomorphism from Wy*(G) onto W~12(G). Hence, the mixed boundary value
problem Lg(A,d)u = F has a uniquely defined solution u € VVO1 ’Q(G) for every func-
tional I € W~12(G). In RECKE [15] and GRIEPENTROG, RECKE [9] was proved the
following regularity theorem:

Theorem 4.1. Under the above assumptions there exists a constant fi(e, G) > n—2
such that for all 0 < p < T(e,G) the operator Lg(A,d) is an isomorphism from
Wy (G onto W—L2H(@).
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Applying Theorem 3.9 the image of W01’2’w(G) under the operator L (A, d) is contin-
uously embedded into W12« (G) — Y~12¢(@3) for all 0 < w < n. In this section we
will prove the existence of a constant @w(e, G) > n—2 such that for all 0 < w < @W(e, G)
the operator Lg (A, d) has the isomorphism property from Wy'>*(G) onto Y ~12¢(G).
Hence, we will get the desired coincidence of the spaces W~12%(G) and Y12« (G)
for all 0 < w < W(e, G) as conjectured by RAKOTOSON [13, 14], where the result was
shown for the case G = G°, n — 2 < w < w(e, G).

4.1. Admissible sets

We will formulate and prove our regularity results using the concept of admissibility
of regular sets which is essentially due to RECKE [15].

Definition 4.2. Let G C R” be a regular set. A regular subset Gy of G is called
admissible with respect to G, if and only if for every 0 < ¢ < 1 there exists w > n — 2
such that for all 0 < w < @ one can find a positive constant ¢; = ¢1(n,e,w, G, Gy) > 0
such that for all coefficients (A4,d) € L>®(G°;&(e,n) x &(g,1)) and F € Y~ 12¢(G)
the solution u € Wy*(G) of Lg(A,d)u = F satisfies Vulgs € £2¢(G§;R") and,
additionally,

IVullezeiazan < e1 {IFlly-120a) + ez b -

If the set GG is admissible with respect to itself, then we will call it admissible. In that
case we denote by @W(e, G) the supremum of all real numbers n — 2 < @ < n, such that
for all 0 < w < @ there exists a positive constant ¢y = ca(n,e,w, @) > 0, such that for
all functionals F' € Y~12%(G) and coefficients (A, d) € L>(G°;&(e,n) x &(g, 1)) the
solution u € Wy *(G) of Lg(A,d)u = F satisfies Vu € £2(G°; R™) and, furthermore,

[Vul| g2 (Gorny < €2 {HF”Y—L?M(G) + ||UHW01’2(G)} :

The aim of this section is to prove that every regular set G C R" is admissible,
which is in fact the desired regularity result announced in our introduction. To do so,
first of all we show certain properties of admissible sets.

Lemma 4.3. Let G C R" be a regular set and {Uy,...,Un}, {Vi,...,Vin} open
coverings of G such that for all j € {1,...,m} V; C U; and V; NG is admissible with
respect to U; N G. Then G is admissible.

Proof. Let 0 < ¢ < 1 and consider (4,d) € L>®(G°;S&(e,n) x &(g, lg) For every
j € {1,...,m} we construct bounded linear operators L;(A,d) : W, *(U; N G) —
W-12(U; N G) by

(Lj (A, d)v,w)u;ng = / (AVv - Vw + dow) dA*,  v,w € Wy (U; N G).
U;NG

Because of the admissibility of V; NG with respect to U; NG there exists a parameter
n —2 < w < n such that for all 0 < w < @ one can find a constant ¢; > 0 depending
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onn,e,w,G and {Uy,...,Un}, {Vi,...,V;n} such that for every index j € {1,...,m},
every I; € Y129 (U; NG) and all coefficients (A, d) € L>(G°; S(e,n) x &(g, 1)) the
gradient Vu,|y,nge of the solution u; € Wy 2(U; NG) to Li(A,d)uj = F; belongs to
£2%(V; N G°;R™) and, furthermore,

@) IVl ynaean) < e {1 Iy -sseyne + sl 2ne ) -
If {x1,---sXm} C C§°(R™) is a partition of unity subordinate to {Vi,...,V,,} then

6=  foin dist(supp(x;), 0V;) > 0.

Let F € Y~129(G) be a functional and u € W, *(G) the solution of Lg(A,d)u = F.
Now, we define for all j € {1,...,m} the functions

u; = (ux;)|v,nee € Wy 2 (U; N G)

and the functionals Fo; € W—12(U; N G) by

(Foj,w)u,ng = / (uAVx; - Vw — AVu - Vyx; -w)d\", we Wy A(U; N G),
U;nG

respectively. Hence, for all w € VVO1 ’Q(Uj N G) we get the identity

(Lj(A,d) uj, w)yu,nc = (La(A,d)u, Ra(wx;))a + (Foj, w)v,nc
= (F, Rg(wx;))c + (Foj, w)u,nG-

Therefore, u; € VVO1 ’Q(Uj N G) is the solution of the variational problem

(4.2) (Lj(A, d)uj, wyv,ne = (G F)|vne + Fojy wu,ng,  w € W()L2(Uj nG).

Because of the embedding Wy?(G) — £22(G°) for u = min{w, 2} the following holds
uAVy; € £2*(G°%R") and — AVu-Vy; € £2F72(G°).

Hence, by Theorem 3.9 we get Fo; € Y~124(U; N G) and there exists a constant
¢ > 0 depending on €, 4, G and the above partition of unity such that

HFOj”Y*l,Z#(U]ﬂG) < c2 ||UHW01’2(G) for all j € {1,...,m}.
On the other hand, (x;F)|u,n¢ belongs to Y ~12#(U; N G), too, and we have
H(XjF)‘UijHY‘LZ“(LG-HG) <c3 HF||Y_1,2,M(G> forall j € {1,...,m},

where c3 > 0 is a positive constant depending on p and the above partition of unity.
Applying relation (4.1) to the functionals

Fy = (x;F)|v,ne + Foj € Y V24U N G),
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we get the estimate

||V’U,jH£2,u(anGo;]Rn) S C1 {’|(XjF)|UjﬂG + E)]’HY—I,Q,;L(U]{}G) + ||uj||W01'2(UjﬁG)} :

Hence, there exists a constant ¢4 = c4(c1, c2,¢3) > 0 such that for all j € {1,...,m}

IVl e2nvyngemey < ea {IFlv-120(6) + lulwp 2 } -

Summing up the results we get
m m
u = ZUXJ = Z RGU] S W(}’ZM(G),
j=1 j=1

and, moreover,

HUHWOI"Z’“(G) <6 {HF”Y—L?M(G) + HUHWOI’Z(G)} J

where ¢5 = c¢5(cq,m, ) > 0 is a positive constant. Because of the continuity of the
embedding Wy **(G) < £2#+2(G°) there exists a constant cg = cg(cs, 1, G) > 0 with

lullezsaiaey < €6 {IFlly=r2000) + lulwaz) } -

Now, we can complete the proof by a recursive argumentation. Because of the
continuous embedding Wy >*(G) «— £2#+2(G°) for = min{w, 4} we have

UAVX] € £27#(G0;Rn) and — Avu . VX] c SQ,H*Q(GO).

Repeating the above arguments, we get u € VVO1 2H (@) and the corresponding norm
estimate. After a finite number of analogous steps, we arrive at the desired result
for 4 = w, in other words, u € W&’Q’W(G) and there exists a positive constant c¢; =
c7(n,w,G) > 0 such that

lullwz 2y < er {IFlly-12006) + Nulwp 2 }
which proves the admissibility of G. 0
Lemma 4.4. Let Gy C G C R™ be two regular sets and ¥ be a Lipschitz transforma-

tion from an open neighborhood of G onto another open subset of R™. If Hy = ¥(Gy)
is admissible with respect to H = U(QG), then Gy is admissible with respect to G.

Proof. Let 0 < e <1 and L > 1 be a Lipschitz constant of the transformation W.
Furthermore, we consider coefficients (A, d) € L>®(G°; S(e,n) x &(g, 1)).

Because of the properties of the Jacobian matrix DU and the Jacobian J¥~1, re-
spectively, for the transformed coefficients

(Ag,dy) == (DY)(U A (DY) - JU—H U td- JU)
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we have the relation (Ag,dy) € L™ (H%;6(L™"%e,n) x 6(L™""2%¢,1)).
We construct the bounded linear operator Ly (Ag,dy) : Wy >(H) — W~12(H) by

(L (Ag,dg) v, w)g == / (AgVv - Vw + dgow)d\®,  v,w € Wy (H).
H

Because of the transformation invariance of Y ~1%% (@) (Lemma 3.8) the admissibility
of Hy with respect to H yields the existence of a parameter n — 2 < @ < n such that
for all 0 < w < w one can find a constant ¢; > 0 depending on n,e,w,¥,G and H
only such that for all (A,d) € L®(G°;&(e,n) x &(g,1)) and every F € Y ~12%(G)
the gradient Vv|gg of the solution v € Wy (H) to Ly (Ag,dg)v = U*F belongs to
£29(H§;R™) and, furthermore,

(4.3) Vol g2 (g mny < 1 {||\I/*F||y_1,2,w(H) + HU”W&’Q(H)} :

Let u € WOM(G) be the uniquely determined solution to L(A,d)u = F. Then, by
the chain rule and the transformation formula for all w € VVO1 2(H) we get the identity

(L (A, dg) Y u,w)g = (LA, d)u, Vw)g = (F, U, w)g = (V*F,w)g.
Hence, v = U u € Wy *(H) is the solution to Ly (A, dy)v = ¥*F. By (4.3) and
Lemma 3.8 we get the existence of a positive constant co = co(c1, U, G) > 0 such that

IV (0 )| ene gz < 2 {IFllyv-12006) + 105 Ml -

Finally, the transformation invariance of I/VO1 2 (@) yields the existence of a constant

C3 = 63(02, \117 G) > (0 such that

[Vul| g2 (cgrn) < €3 {HF”Y*L?M(G) + ||UHW01’2(G)}a

which proves the admissibility of Gy with respect to G. d

4.2. Local estimates on concentric balls

For the proof of admissibility of the standard sets B, F1, Fs and E3 we want to utilize
local estimates for the gradient of the solution to elliptic problems on concentric balls
and halfballs, respectively. We start with the so called Campanato inequality (see DE
GIORGI [5], CAMPANATO [4] or TROIANIELLO [17]).

Lemma 4.5. Let 0 < € < 1. Then there exist positive constants n —2 < w < n
and ¢ = c(n,e,w) > 0, such that for all z € R", 0 < o < r < 1, coef-
ficients A € L>®(B(z,7);&(e,n)), functionals F € W=12(B(x,7)) and functions
u € WH2(B(x,7)) satisfying

/ AVu - Vwd\" = (F,w) g,y foralwe Wy 2(B(z,r)),
B(z,r)
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the following estimate holds
oN\®
[ | R |

Remark 4.6. For every number 0 < ¢ < 1 we define the supremum @(e) of all
parameters n—2 < w < n, for which Lemma 4.5 holds true. Obviously, that supremum
depends on n and € only, and the map ¢ — @(e) is non-decreasing.

Lemma 4.7. For every 0 < R < 1 the ball B(0, R) is admissible with respect to B.

Proof. Let 0 < e <1,0< R<land n—2 < ®@ < w(e) be given. Now, we define
the decreasing sequence {7y }ren by

R<ry:=R+2*1-R)<1, keN.
We fix a radius 0 < rg < 4 " min{R,1 — R} and consider z € B(0,7r1), 0 < r < rp,
coefficients (A, d) € L>=(B;&(e,n) x &(¢,1)) and functionals F € W~12(B).

Let u € Wy?(B) be the uniquely determined solution to Lg(A,d)u = F. If we
define the functional F; € W=12(B(z,r)) by

(Fa, W) Bz,r) = —/B( )duw A\, we Wi2(B(z, ),

then u|p(z,y € WH2(B(z,r)) satisfies the identity
/ AVY - Vwd\" = (Fy+ F|p(ery W) B for all w € Wy (B(z,r)).
B(z,r)

Hence, Lemma 4.5 yields the existence of a constant ¢; = ¢1(n,e,w, R) > 0, such that
for all 0 < o < r < rp, coefficients (A,d) € L>(B;&(e,n) x &(g,1)) and functionals
F € Y~12%(B) for the gradient Vu the following holds

Q w
IVellZe(pe,0mm) < @ {(r) IValZa s,y + ||Fd+F|B<w>”3v1‘2<B<w,r>>}

o\¥ 2 1 2 2
=% {(r) IVulies e + 2 1l e + |F|B(w>||W-1>2<B<w,r>>}'
Let us define for all 0 < p < @ the quantity
it F) = )+ I

and let 0 < w < w be a fixed. Because of the embedding W1?(B) — £2#(B) for
p = min{w, 2}, there exists a constant ca = ca2(n, e, ) > 0 such that

[ull§e.(py < €2 hpu(u, F).
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Now, the last two estimates yield the existence of a constant c¢3 = c3(n, e, p, @, R) > 0,
such that for all 0 < o < r < rp we have

0 w
IVullZ2 (B0 mn) < €3 {(T) IVulZe(Borymn + ' wuly, F)} :

Having in mind 0 < g = min{w, 2} < @, we can apply an elementary lemma (see, for
instance, GIAQUINTA [7]) to get

AN
IVule pie. 2y < 04 { (2) IVule(pieryan) + &l F) |

for all 0 < o <r <rp, where ¢4 = ¢c4(n,e, u,w, R) > 0 is a positive constant. Now, by
specifying r = rp, we arrive at Vu|p(,r,) € £21(B(0,71); R™). Moreover, there exists
a constant ¢5 = ¢5(n, e, u,w, R) > 0 such that

(IVu

2
£2:4(B(0,r1);R™) S Cs KJH (’LL, F)

We want to complete the proof by a recursive argumentation. Because of the con-
tinuous embedding WH2+#=2(B(0,r1)) < £>#*(B(0,r1)) for 4 = min{w,4} one can
find a positive constant cg = cg(n, e, u,w, R) > 0 such that

[l 22 B0,y < €6 Fplu, F).

Then, we repeat the above arguments to get u|p(,r,) € W124(B(0,73)) and the
corresponding norm estimate. Because of

R<rpy<1 and rp<rg—rry forall k={0,1,...,n},

after at most n analogous steps we arrive at the desired result for u = w, in other
words, there exists a constant ¢; = ¢7(n,e,w,w, R) > 0 such that
2
HVU||£2M(B(0,R);R") < erku(u, F),

which proves the admissibility of B(0, R) with respect to B. O

Lemma 4.8. For every 0 < R < 1 and k € {1,2} the set Ex(0,R) is admissible
with respect to Ej.

Proof. Let 0 < e < 1,0 < R< land n—2 < @ < w(e) be fixed. Because
of Lemma 4.7 and the reflection invariance of the coefficients and functionals (see
Lemma 3.7) for all 0 < w < @ one can find a constant ¢; = ¢;(n,e,w, R) > 0, such
that for all coefficients (A,d) € L™ (E1;6(g,n) x &(¢,1)) and F € Y~ 129(Ey) the
gradient Vv|p(o,r) of the solution v € W, 2(B) to the problem Lg(RyA, Rod) v = Ry F
belongs to £2*(B(0, R); R™) and, furthermore,

(4.4) Vvl g2 (B0,R)Rm) < 1 {HRkF”Y—L?v“(B) + ||U||W01’2(B)} :

On the other hand, the solution u € W, (Ey) to Lz, (A,d)u = F for all w € W, *(B)
satisfies the identity

<LB(R2A,R2d) Rku,w>3 = <LEk (A,d) U,Tkw>Ek = <F, Tkw>Ek = <RkF,w>B.
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Hence, v = Ryu € W, *(B) is the solution of Lz(RyA, Rod)v = Ry F, and by (4.4)
we get the estimate

IV(Reu)l[ 2 (B0, Ryrm) < €1 {||RkF||Y*1’2=w(B) + HRku”WOl'z(B)} :

Finally, the continuity of the extension operator Ry on Y 12« (E}) yields a constant
¢y = ca(n,e,w, R) > 0, such that

IVl o2y o, mymn) < c2 {I1F Iy =120y + Il s, |

in other words, Ej(0, R) is admissible with respect to Ej. O

4.3. Global estimates and isomorphism theorem

We proof the global regularity result for the standard sets B, F;, E> and Fs.

Lemma 4.9. The open unit ball B is an admissible set.

Proof. First of all, we choose an atlas {(®1,U1), ..., (®m,Un)} of the ball B with
the properties (2.9) and (2.10). Then, there exist radii 0 < §; < d2 < 1 such that the
families {Vi,...,Vin}, {Wh,...,W,,} are open coverings of B if we define

Vi = 1(B(0,61)) and W;:=®;'(B(0,8)), je{l,...,m}

By Lemma 4.8 the set F1 (0, d;) is admissible with respect to E7(0, d2). Furthermore,
by Lemma 4.7 the ball B(0,01) is admissible with respect to B(0,d2). Therefore,
Lemma 4.4 yields the admissibility of V; N B with respect to W; N B for every index
je{l,...,m}. Applying Lemma 4.3, finally, it follows the admissibility of B. O

Lemma 4.10. The sets Fy, Es and E3 are admissible.

Proof. Case k € {1,2}: Let 0 < e <1 and n—2 < @ < w(e, B) be fixed. Because
of Lemma 4.9 and the reflection invariance of the coefficients and functionals (see
Lemma 3.7) for all 0 < w < @ we find a positive constant ¢; = ¢;(n, e, w) > 0, such that
for all coefficients (A, d) € L= (E1;&(g,n) x &(g,1)) and functionals F € Y~ 12%(E})
the gradient Vv of the solution v € W;*(B) to the problem Lp(RyA, Ryd)v = Ry F
belongs to £ (B;R") and, furthermore,

(4.5) IVullenemmny < e1 {IBFly 1203+ [0ly220m) |-

Since the solution u € Wy *(Ey) to Ly, (A,d)u = F for all w € Wy*(B) satisfies
<LB(R2A, Rgd) Rku, w)B = <LEk (A, d) u, Tkw>Ek = <F, Tkw>Ek = <RkF, w>B,

by (4.5) we get an estimate for v = Ryu € W, *(B):

IV (Ri)ll o2 (mmm) < e1 {IRFlly 120 () + [ Bty | -
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Finally, the continuity of the extension operator Ry on Y ~1:2%(E}) yields a positive
constant cg = ca(n,e,w) > 0, such that

IVullezs ey < €2 {IFlly 1205 + lullyp2m, b

which proves the admissibility of .
Case k = 3: There exists a Lipschitz transformation from R™ onto R™ which maps
E5 onto E3. Lemma 4.4 and the admissibility of Fy yields the admissibility of F5. O

Theorem 4.11. FEvery reqular set G C R™ is admissible.

Proof. We take an atlas {(®1,U1), ..., (®m,Un)} of G satisfying (2.9) and (2.10).
Then there exists a radius 0 < § < 1 such that the family {Vi,...,V,,} is an open
covering of G if we set V; := @;1(3(0,5)) for j € {1,...,m}.

By Lemma 4.10 the set Fj(0,0) is admissible for every index k € {1,2,3}. Further-
more, by Lemma 4.9 the ball B(0, §) is an admissible set. Therefore, Lemma 4.4 yields
the admissibility of V; NG for all j € {1,...,m}. Applying Lemma 4.3, finally, we get
the admissibility of G. d

Hence, we are able to prove the main result:

Theorem 4.12. Let G C R” be a reqular set and 0 < € < 1. Then there exists
a real constant n — 2 < w(e,G) < n such that for all 0 < w < @W(e,G) and all
coefficients (A,d) € L (G°; S(e,n) x S(e, 1)) the elliptic operator Lg(A,d) is a linear
isomorphism from Wy>“(G) onto Y =12 (G).

Proof. Applying Theorem 4.11, for every 0 < w < (e, ) one can find a constant
1 = c(n,e,w,G) > 0, such that for all (4,d) € L*(G°;S(e,n) x &(e,1)) and
functionals F' € Y~12%(Q) the uniquely determined solution u = Lg(A4,d)™'F to the
problem Lg(A,d)u = F belongs to Wy'>*“(G), and, furthermore

ey < €1 {IF 12000 + lullwpag |-

By the isomorphism property of Lg(A,d) between Wy (G) and W~12(G) and the
continuous embedding Y 12« (G) — W~1%(G) it follows

||L(;(A, d)ilF”WOl’z'“’(G) < cy ||F||y71,2,w(G) for all F € Yﬁl’z’w(G),

where ¢y = co(c1,n,¢,w,G) > 0 is a positive constant.

Because of embedding theorems for Sobolev—Campanato spaces and Theorem 3.9 the
elliptic operator L¢(A, d) is a bounded linear operator from Wy'** (@) into Y~ 12 (@)
for every 0 < w < w(e, @), which proves the desired regularity result. O

Remark 4.13. We want to emphasize that forn —2 <w <n, a = (w—n+2)/2
the space W,*(G) is continuously embedded into the Hélder space C%%(G).

By Theorem 3.9 the image of W, > (G) under La(A,d) is continuously embedded
into W12¢(G) — Y~129(@G) for all 0 < w < n. Hence, Theorem 4.12 yields
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Corollary 4.14. Let G C R™ be a regular set and 0 < € < 1. Then for every
parameter 0 < w < W(e, G) the spaces W—12¢(G) and Y ~12%(G) coincide.

Remark 4.15. The result of Theorem 4.12 can be generalized to the case of linear
elliptic systems with diagonal structure and general lower order terms. Then the linear
elliptic operator is still a Fredholm operator of index zero from the corresponding
vector valued version of the Sobolev—Campanato space into a Campanato space of
functionals (see GRIEPENTROG, RECKE [9] and GRIEPENTROG [10]).
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