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Abstract. In this paper linear elliptic boundary value problems of second order with non-

smooth data (L∞-coefficients, sets with Lipschitz boundary, regular sets, non-homogeneous mixed

boundary conditions) are considered. It will be shown that such boundary value problems generate

isomorphisms between certain Sobolev–Campanato spaces of functions and functionals, respectively.

1. Introduction

In this paper we consider linear elliptic operators L : W 1,2
0 (Ω ∪ Γ) → W−1,2(Ω ∪ Γ)

defined as

(1.1) 〈Lu,w〉 :=

∫
Ω

(A∇u · ∇w + duw) dλn, w ∈W 1,2
0 (Ω ∪ Γ),

and regularity properties of solutions u ∈ W 1,2
0 (Ω ∪ Γ) to the corresponding linear

elliptic boundary value problem

(1.2) 〈Lu,w〉 = 〈F,w〉, w ∈W 1,2
0 (Ω ∪ Γ),

for functionals F ∈ W−1,2(Ω ∪ Γ). In (1.1) and (1.2) Ω is a bounded open subset
of Rn, and Γ is a relatively open subset of the boundary ∂Ω such that Ω∪Γ is regular
in the sense of Gröger [11]. Furthermore, W 1,2

0 (Ω ∪ Γ) and W−1,2(Ω ∪ Γ) denote
the Sobolev spaces of functions u ∈ W 1,2(Ω) having trace zero on ∂Ω \ Γ and its
dual space, respectively. Hence, our variational formulation (1.2) includes natural
and Dirichlet boundary conditions on the boundary parts Γ and ∂Ω \ Γ, respectively.
The coefficients A and d are bounded measurable maps defined on Ω, where A is real
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symmetric (n×n)-matrix valued, and d is scalar valued. Finally, we assume that there
exists a real constant ε > 0 such that for all ξ ∈ Rn and almost all x ∈ Ω there hold

ε ≤ d(x) ≤ 1

ε
and ε |ξ|2 ≤ A(x)ξ · ξ ≤ 1

ε
|ξ|2.

Under the above assumptions there exists a constant p = p(ε,G) > 2 such that L maps
W 1,p

0 (Ω ∪ Γ) isomorphically onto W−1,p(Ω ∪ Γ) for all 2 ≤ p < p (see Gröger [11]).
Unfortunately, for n ≥ 3 this result in general does not yield the Hölder continuity of
the solution u to the mixed boundary value problem Lu = F ∈W−1,p(Ω ∪ Γ).

In this paper we will consider appropriate function spaces for the case n ≥ 3.
Recke [15] and Griepentrog, Recke [9] have shown the existence of a parame-
ter n − 2 < ω < n depending only on ε and G such that for all 0 ≤ ω < ω and all
functionals F ∈W−1,2,ω(Ω ∪ Γ) the solution u ∈W 1,2

0 (Ω ∪ Γ) of the mixed boundary
value problem Lu = F belongs to the Sobolev–Campanato space

W 1,2,ω
0 (Ω ∪ Γ) =

{
u ∈W 1,2

0 (Ω ∪ Γ) : ∇u ∈ L2,ω(Ω;Rn)
}
,

if F belongs to the space W−1,2,ω(Ω ∪ Γ) of all functionals F ∈W−1,2(Ω ∪ Γ) with

(1.3) 〈F,w〉 :=

∫
Ω

(f · ∇w + gw) dλn, w ∈W 1,2
0 (Ω ∪ Γ),

where

(1.4) f ∈ L2,ω(Ω;Rn), g ∈ L2,ω−2(Ω).

Note, that in the case n − 2 < ω < ω for F ∈ W−1,2,ω(Ω ∪ Γ) the Hölder continuity
of the solution u ∈ W 1,2,ω

0 (Ω ∪ Γ) to the boundary value problem (1.2) follows via
embedding theorems. The main goal of the present paper is to overcome the following
shortcoming of the above approach:

In order to prove, that an arbitrarily given functional F ∈ W−1,2(Ω ∪ Γ) is an
element of W−1,2,ω(Ω ∪ Γ), up to now it was necessary to repeat the whole regularity
theory to get a representation of F in the form (1.3) and (1.4) via the variational
formulation (1.1) and (1.2) of the elliptic problem Lu = F .

Generalizing the results of Rakotoson [13, 14] (for the case Γ = ∅) in the present
paper we are able to give a more direct characterization of the space W−1,2,ω(Ω ∪ Γ)
which has the major advantage of being independent of a concrete representation (1.3)
and (1.4). Nevertheless the arguments are closely related to the methods developed
in Recke [15] and Griepentrog, Recke [9]. Our paper is organized as follows:

In Section 2 we collect preliminary results related to regular sets Ω ∪ Γ ⊂ Rn and
Sobolev–Campanato spaces W 1,2,ω

0 (Ω ∪ Γ).
Section 3 is devoted to the introduction of new Campanato spaces Y −1,2,ω(Ω ∪ Γ)

of functionals (see also Rakotoson [13, 14]), and among other things we prove the
continuous embedding W−1,2,ω(Ω ∪ Γ) ↪→ Y −1,2,ω(Ω ∪ Γ) for all 0 ≤ ω < n.

In Section 4 we prove our main result (Theorem 4.12) for solutions to the variational
problem (1.1) and (1.2). In fact, we will show the isomorphism property of the linear
elliptic operator L between W 1,2,ω

0 (Ω∪ Γ) and Y −1,2,ω(Ω∪ Γ), hence, the coincidence
of the spaces W−1,2,ω(Ω ∪ Γ) and Y −1,2,ω(Ω ∪ Γ) for all 0 ≤ ω < ω.

A more comprehensive treatment of the topic can be found in the doctoral thesis of
the author (see Griepentrog [10]).
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2. Preliminary results concerning Campanato spaces

Throughout the paper we will assume n ≥ 3. The symbol | · | is used for the absolute
value, and for the Euclidean norm in Rn. By ej we denote the j-th unit vector in Rn
and furthermore, for x = (x1, . . . , xn) ∈ Rn we write x̂ = (x1, . . . , xn−1) ∈ Rn−1.

For x ∈ Rn and r > 0 we denote by B(x, r) := {ξ ∈ Rn : |ξ − x| < r} and
E1(x, r) := {ξ ∈ Rn : |ξ − x| < r, ξn − xn < 0} the open ball and the open halfball,
respectively. In the case x = 0, r = 1 we shortly write B and E1.

As usual, for subsets G of Rn we write G◦, G and ∂G for the interior, the closure
and the (topological) boundary of G, respectively.

By λn we will denote the n-dimensional Lebesgue measure on the σ-algebra of
Lebesgue-measurable subsets of Rn. Let Ω be a bounded open subset of Rn. We
write L∞(Ω) and L∞(Ω;Rn), for the sets of bounded measurable maps from Ω into R
and Rn, respectively. Analogously, for 1 ≤ p < ∞ we write Lp(Ω) and Lp(Ω;Rn) for
the Lebesgue spaces of p-integrable functions from Ω into R and Rn, respectively.

2.1. Campanato spaces and Sobolev–Campanato spaces

For 1 ≤ p < ∞, 0 ≤ ω < n + p we denote by Lp,ω(Ω) the Campanato space, i.e. the
space of all u ∈ Lp(Ω) such that

(2.1) [u]pLp,ω(Ω) := sup
x∈Ω
r>0

r−ω
∫

Ω[x,r]

|u− uΩ[x,r]|p dλn <∞.

In (2.1) we used the notation

(2.2) Ω[x, r] := Ω ∩B(x, r), uΩ[x,r] :=
1

λn(Ω[x, r])

∫
Ω[x,r]

udλn.

The space Lp,ω(Ω) is a Banach space with the norm

(2.3) ‖u‖Lp,ω(Ω) :=
{
‖u‖pLp(Ω) + [u]pLp,ω(Ω)

}1/p

.

Analogously, by Lp,ω(Ω;Rn) we denote the space of all f ∈ Lp(Ω,Rn) with components
in Lp,ω(Ω), and the norm in Lp,ω(Ω;Rn) is defined similarly to (2.3). Finally, for the
sake of simplicity, for ω ≤ 0 we will use the notation Lp,ω(Ω) := Lp(Ω).

The usual Sobolev space W 1,p(Ω) will be equipped with the norm

‖u‖W 1,p(Ω) :=
{
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω;Rn)

}1/p

.

For 0 ≤ ω < n + p we denote by W 1,p,ω(Ω) the Sobolev–Campanato space, i.e. the
space of all u ∈ W 1,p(Ω) such that ∇u ∈ Lp,ω(Ω;Rn). The space W 1,p,ω(Ω) is a
Banach space with the norm

‖u‖W 1,p,ω(Ω) :=
{
‖u‖pLp(Ω) + ‖∇u‖pLp,ω(Ω;Rn)

}1/p

.
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The following well-known (cf., e.g., Troianiello [17]) property of Campanato
spaces will be used repeatedly in our paper: If r0 > 0 is fixed and if the supremum
in (2.1) is taken over 0 < r ≤ r0, only, then the corresponding r0-depending norm,
defined analogously to (2.3), is equivalent to the original norm in Lp,ω(Ω). Moreover,
we will use the following theorem (cf. Kufner, John, Fučik [12], Giaquinta [7] or
Troianiello [17]) that describes embedding properties of Campanato spaces.

Theorem 2.1. Let 1 ≤ p1 ≤ p2 < ∞ and 0 ≤ ω1 < n + p1, 0 ≤ ω2 < n + p2 such
that (ω1 − n)/p1 ≤ (ω2 − n)/p2. Then we have Lp2,ω2(Ω) ↪→ Lp1,ω1(Ω).

A bijective map Φ between two subsets of Rn such that Φ and Φ−1 are Lipschitz
continuous is called Lipschitz transformation; L > 0 is said to be a Lipschitz constant
of a Lipschitz transformation Φ if it is one for both Φ and Φ−1.

In order to formulate further properties of Campanato spaces (equivalence to Morrey
and Hölder spaces, multiplier, embedding and transformation properties) we have to
suppose certain minimal regularity of the boundary ∂Ω. Hence, let us introduce the
following usual terminology (using notation (2.2)):

Definition 2.2. Let a > 0. An open set Ω ⊂ Rn is said to have property (a) if for
all sufficiently small r > 0 we have λn(Ω[x, r]) ≥ arn for all x ∈ Ω.

The results, summarized in the following theorem, are classical (cf. Campanato
[1, 2, 3, 4], Giusti [8]).

Theorem 2.3. Let 1 ≤ p < ∞ and suppose that Ω ⊂ Rn has property (a). Then
the following holds:

(i) Let 0 ≤ ω < n and u ∈ Lp(Ω). Then u ∈ Lp,ω(Ω) if and only if

(2.4) ‖u‖pLp,ω(Ω) := sup
x∈Ω
r>0

r−ω
∫

Ω[x,r]

|u|p dλn <∞,

and the so called Morrey norm defined by (2.4) is an equivalent norm on Lp,ω(Ω).

(ii) Let 0 ≤ ω < n. Then for all u ∈ Lp,ω(Ω) and v ∈ L∞(Ω) the product uv belongs
to Lp,ω(Ω), again, and there exists a constant c > 0 such that

‖uv‖Lp,ω(Ω) ≤ c ‖u‖Lp,ω(Ω) ‖v‖L∞(Ω) for all u ∈ Lp,ω(Ω), v ∈ L∞(Ω).

(iii) Let n < ω < n + p. Then Lp,ω(Ω) is isomorphic to the Hölder space C0,α(Ω)
with α = (ω − n)/p.

(iv) Let Ψ be a Lipschitz transformation from an open neighborhood of Ω into Rn
and 0 ≤ ω < n+p. Then there exists a constant c > 0 such that for the transformation
Ψ∗u := u ◦Ψ : Ω→ R of a function u : Ψ(Ω)→ R we have

‖Ψ∗u‖Lp,ω(Ω) ≤ c ‖u‖Lp,ω(Ψ(Ω)) for all u ∈ Lp,ω(Ψ(Ω)),

‖Ψ∗u‖W 1,p,ω(Ω) ≤ c ‖u‖W 1,p,ω(Ψ(Ω)) for all u ∈W 1,p,ω(Ψ(Ω)).
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2.2. Campanato spaces on Lipschitz hypersurfaces

For the introduction of Campanato spaces on hypersurfaces in Rn we give the following
definition of Lipschitz hypersurfaces in Rn and sets with Lipschitz boundary:

Definition 2.4. (i) A subset M of Rn is called Lipschitz hypersurface in Rn if for
each x0 ∈M there exist an open neighborhood U of x0 and a Lipschitz transformation
Φ from U onto B such that Φ(x0) = 0 and U ∩M = {x ∈ U : Φn(x) = 0}.

(ii) A bounded subset Ω of Rn is called set with Lipschitz boundary (see Giusti [8])
if for each x0 ∈ ∂Ω there exist an open neighborhood U of x0 and a Lipschitz trans-
formation Φ from U onto B such that Φ(x0) = 0 and Φ(U ∩ Ω) = E1.

Remark 2.5. Every set with Lipschitz boundary is an open subset of Rn having
property (a). Moreover, the following holds: If Ω ⊂ Rn is a bounded open set and
Υ = Rn \Ω its exterior, then Ω is a set with Lipschitz boundary if and only if ∂Ω is a
Lipschitz hypersurface in Rn with ∂Ω = ∂Υ.

Let Ω ⊂ Rn be a set with Lipschitz boundary and M a relatively open subset of ∂Ω.
By λ∂Ω we denote the (n − 1)-dimensional Lebesgue measure on the σ-algebra of
Lebesgue-measurable subsets of ∂Ω. Note, that on the σ-algebra of Lebesgue mea-
surable subsets of ∂Ω it is equal to the (suitably normalized) (n − 1)-dimensional
Hausdorff measure (cf. Simon [16] and Evans, Gariepy [6]).

For 1 ≤ p <∞ we write Lp(M) and L∞(M) for the Lebesgue spaces of p-integrable
functions and bounded measurable maps from M into R, respectively.

For 1 ≤ p <∞, 0 ≤ ω < n− 1 + p we denote by Lp,ω(M) the Campanato space, i.e.
the space of all u ∈ Lp(M) such that

(2.5) [u]pLp,ω(M) := sup
x∈M
r>0

r−ω
∫
M [x,r]

|u− uM [x,r]|p dλ∂Ω <∞.

In (2.5) we used the notation

(2.6) M [x, r] := M ∩B(x, r), uM [x,r] :=
1

λ∂Ω(M [x, r])

∫
M [x,r]

udλ∂Ω.

The space Lp,ω(M) is a Banach space with the norm

(2.7) ‖u‖Lp,ω(M) :=
{
‖u‖pLp(M) + [u]pLp,ω(M)

}1/p

.

For the sake of simplicity, for ω ≤ 0 we will use the notation Lp,ω(M) := Lp(M).
If r0 > 0 is fixed and if the supremum in (2.5) is taken over 0 < r ≤ r0, only, then

the corresponding r0-depending norm, defined analogously to (2.7), is equivalent to
the original norm in Lp,ω(M). Moreover, we have (see Griepentrog [10])

Theorem 2.6. Let 1 ≤ p1 ≤ p2 <∞ and 0 ≤ ω1 < n− 1 + p1, 0 ≤ ω2 < n− 1 + p2

such that (ω1 − n+ 1)/p1 ≤ (ω2 − n+ 1)/p2. Then Lp2,ω2(M) ↪→ Lp1,ω1(M).
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For the formulation of further properties of Campanato spaces on Lipschitz hypersur-
faces (equivalence to Morrey and Hölder spaces, multiplier and embedding properties)
we want to suppose property (a) of the boundary part M of ∂Ω. Having in mind
notation (2.6), we introduce the following terminology:

Definition 2.7. Let a > 0 and Ω ⊂ Rn be a set with Lipschitz boundary. A
relatively open subset M of ∂Ω is said to have property (a) if for all sufficiently small
r > 0 we have λ∂Ω(M [x, r]) ≥ arn−1 for all x ∈M .

Remark 2.8. For every set Ω ⊂ Rn with Lipschitz boundary ∂Ω has property (a).

As mentioned above, we want to summarize results comparable to Theorem 2.3 but
now for Campanato spaces on Lipschitz hypersurfaces (see Griepentrog [10]):

Theorem 2.9. Let 1 ≤ p < ∞ and Ω be a set with Lipschitz boundary. If the
relatively open subset M of ∂Ω has property (a), then the following is true:

(i) Let 0 ≤ ω < n− 1 and u ∈ Lp(M). Then u ∈ Lp,ω(M) if and only if

(2.8) ‖u‖pLp,ω(M) := sup
x∈M
r>0

r−ω
∫
M [x,r]

|u|p dλ∂Ω <∞,

and the so called Morrey norm defined by (2.8) is an equivalent norm in Lp,ω(M).

(ii) Let 0 ≤ ω < n − 1. Then for all u ∈ Lp,ω(M) and v ∈ L∞(M) the product uv
belongs to Lp,ω(M), again, and there exists a constant c > 0 such that

‖uv‖Lp,ω(M) ≤ c ‖u‖Lp,ω(M) ‖v‖L∞(M) for all u ∈ Lp,ω(M), v ∈ L∞(M).

(iii) Let n − 1 < ω < n − 1 + p. Then Lp,ω(M) is isomorphic to the Hölder space
C0,α(M) with α = (ω − n+ 1)/p.

2.3. Regular sets

Let us define the following sets for x ∈ Rn and r > 0:

B2(x, r) := {ξ ∈ Rn : |ξ − x| < r, ξn − xn = 0},

E1(x, r) := {ξ ∈ Rn : |ξ − x| < r, ξn − xn < 0},

E2(x, r) := {ξ ∈ Rn : |ξ − x| < r, ξn − xn ≤ 0},

E3(x, r) := {ξ ∈ E2(x, r) : ξ1 − x1 > 0 or ξn − xn < 0}.

Here and later on in the case x = 0 and r = 1 we shortly write B2, E1, E2 and
E3, respectively. For the treatment of mixed boundary value problems we will use
the following terminology of regular sets G ⊂ Rn which is equivalent to the original
concept introduced by Gröger [11]. Additionally, we collect some frequently used
properties of regular sets (cf. Griepentrog, Recke [9]).
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Definition 2.10. A bounded subset G of Rn is called regular, if for each x0 ∈ ∂G
there exist an open neighborhood U of x0 in Rn and a Lipschitz transformation Φ
from U onto B such that Φ(x0) = 0 and Φ(U ∩G) ∈ {E1, E2, E3}.

Remark 2.11. Every set with Lipschitz boundary is a regular set. Vice versa, the
interior of a regular set is a set with Lipschitz boundary. Moreover, the closure of a
regular set is regular, too.

Lemma 2.12. If G ⊂ Rn is a regular set and Ψ a Lipschitz transformation from
an open neighborhood of G onto another open subset of Rn, then Ψ(G) is regular.

Lemma 2.13. For every regular subset G of Rn there exists an atlas of charts
(Φ1, U1), . . . , (Φm, Um) of the following type: There exist points x1, . . . , xm ∈ G,
open neighborhoods U1, . . . , Um of x1, . . . , xm in Rn, and Lipschitz transformations
Φ1, . . . ,Φm from U1, . . . , Um into Rn, respectively, such that

(2.9) ∂G ⊂
⋃
j∈I

Uj ,
⋃
j∈I0

Uj ⊂ G◦, G ⊂
m⋃
j=1

Uj ,

with I0 =
{
j ∈ {1, . . . ,m} : xj ∈ G◦

}
, I =

{
j ∈ {1, . . . ,m} : xj ∈ ∂G

}
and

(2.10) Φj(xj) = 0, Φj(Uj) = B, Φj(Uj ∩G) ∈ {B,E1, E2, E3}

for all j ∈ {1, . . . ,m}. The subfamily
{

(Φj , Uj) : j ∈ I
}

is an atlas of ∂G.

2.4. Sobolev–Campanato spaces on regular sets

Throughout this section we will assume, that G ⊂ Rn is a regular set, U ⊂ Rn is a
relatively open subset of G and, finally, that V ⊂ Rn is a relatively open subset of U .
Before considering Sobolev–Campanato spaces on regular sets we want to present
embedding and trace properties of Sobolev–Campanato spaces W 1,2,ω(Ω) on sets with
Lipschitz boundary (see Giusti [8], Griepentrog, Recke [9]):

Theorem 2.14. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and M
be a relatively open subset of ∂Ω. Then, for 0 ≤ ω < n the following is true:

(i) W 1,2(Ω) is continuously embedded into L2n/(n−2)(Ω).

(ii) W 1,2,ω(Ω) is continuously embedded into L2,ω+2(Ω).

(iii) The trace operator γM maps W 1,2(Ω) continuously into L2(n−1)/(n−2)(M).

(iv) The trace operator γM maps W 1,2,ω(Ω) continuously into L2,ω+1(M).

In the sequel we will work with the following notation, which is usual in the theory
of mixed boundary value problems (cf., e.g., Troianiello [17], Gröger [11]). By
W 1,2

0 (U) we denote the closure in W 1,2(U◦) of the set

(2.11) C∞0 (U) :=
{
u|U◦ : u ∈ C∞0 (Rn), supp(u) ∩ (U \ U) = ∅

}
.
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Furthermore, for 0 ≤ ω < n + 2 we consider closed subspaces of the Sobolev–
Campanato spaces defined as

W 1,2,ω
0 (U) := W 1,2

0 (U) ∩W 1,2,ω(U◦)

and equipped with the norm of W 1,2,ω(U◦). For the sake of completeness we write
down the following principles concerning extension, transformation, and restriction of
Sobolev space functions (see Griepentrog, Recke [9] and Griepentrog [10]):

Lemma 2.15. The zero extension map RU on W 1,2
0 (V ) defined as

RUu :=

{
u λn-almost everywhere on V ◦,

0 λn-almost everywhere on U◦ \ V ◦,
u ∈W 1,2

0 (V ),

is a bounded linear operator from W 1,2
0 (V ) into W 1,2

0 (U). Moreover, we have

‖RUu‖W 1,2
0 (U) = ‖u‖W 1,2

0 (V ) for all u ∈W 1,2
0 (V ).

Lemma 2.16. If Ψ is a Lipschitz transformation of an open neighborhood of G
onto another open subset of Rn, then u belongs to W 1,2

0 (Ψ(U)) if and only if Ψ∗u is
an element of W 1,2

0 (U), and

Ψ∗RΨ(U)u = RUΨ∗u for all u ∈W 1,2
0 (Ψ(U)).

Let x ∈ B, r > 0, and k ∈ {1, 2}. Furthermore, let P : B → E2 be the projection
defined as Px := (x̂,−|xn|) ∈ E2 for x = (x̂, xn) ∈ B. Finally, using the notation
D(x, r) := B(x, r)∪B(Px, r), for u : B∩D(x, r)→ R we define the odd part T1(x, r)u :
E1[Px, r]→ R and the even part T2(x, r)u : E1[Px, r]→ R of 2u by

(Tk(x, r)u)(y) := u(y) + (−1)ku(ŷ,−yn), y ∈ E1[Px, r].

respectively. Then, we have 2u = T1(x, r)u+ T2(x, r)u and

Lemma 2.17. For x ∈ B, r > 0, and k ∈ {1, 2} the operator Tk(x, r) maps
W 1,2

0 (B ∩D(x, r)) continuously into W 1,2
0 (Ek[Px, r]), and

TkRBu = REkTk(x, r)u for all u ∈W 1,2
0 (B ∩D(x, r)).

Let k ∈ {1, 2}. For u : E1 → R we define the antireflection R1u : B → R and the
reflection R2u : B → R onto the unit ball B by

(Rku)(x) :=

{
u(x) for x ∈ E1,

(−1)ku(x̂,−xn) for x ∈ B \ E1,

respectively. Then, we have the following statement
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Lemma 2.18. For 0 ≤ ω < n and k ∈ {1, 2} the operator Rk maps W 1,2,ω
0 (Ek)

continuously into W 1,2,ω
0 (B). Moreover, R2 maps W 1,2,ω(E1) continuously into

W 1,2,ω(B), and

‖R1u‖2W 1,2,ω(B) ≤ 2 ‖u‖2W 1,2,ω(E1) ≤ 2 ‖R1u‖2W 1,2,ω(B) for all u ∈W 1,2,ω
0 (E1),

‖R2u‖2W 1,2,ω(B) ≤ 2 ‖u‖2W 1,2,ω(E1) ≤ 2 ‖R2u‖2W 1,2,ω(B) for all u ∈W 1,2,ω(E1).

In the sequel we also need the generalization of the above reflection operations to
vector and matrix valued functions. For f : E1 → Rn we define the antireflection
R1f : B → Rn and the reflection R2f : B → Rn by

(R1f)j := R1fj for j ∈ {1, . . . , n− 1}, and (R1f)n := R2fn,

(R2f)j := R2fj for j ∈ {1, . . . , n− 1}, and (R2f)n := R1fn.

Let 0 < ε ≤ 1 be a real constant. By S(n) and S(ε, n) we denote the spaces of all
real symmetric (n× n)-matrices and all real positive definite (n× n)-matrices having
the spectrum in the interval [ ε, 1/ε ], respectively. For A : E1 → S(n) we define the
reflection R2A : B → S(n) by

(R2A)ei := R2(Aei) for i ∈ {1, . . . , n− 1}, and (R2A)en := R1(Aen).

Notice, that for A : E1 → S(ε, n) we have R2A : B → S(ε, n).

3. Campanato spaces of functionals

Throughout this section we assume, that G ⊂ Rn is a regular set, U ⊂ Rn is a relatively
open subset of G and, finally, that V ⊂ Rn is a relatively open subset of U .

3.1. Definition

Let W−1,2(U) be the dual space to W 1,2
0 (U) and 〈 , 〉U the dual pairing between these

spaces. We define the norm of an element F ∈W−1,2(U) by

‖F‖W−1,2(U) := sup
{
|〈F,w〉U | : w ∈W 1,2

0 (U), ‖w‖W 1,2
0 (U) ≤ 1

}
.

To localize a functional F ∈ W−1,2(U) we do the following: We define the mapping
F 7→ F |V from W−1,2(U) into W−1,2(V ) as the adjoint operator to the extension map
RU : W 1,2

0 (V )→W 1,2
0 (U), that means,

〈F |V , w〉V := 〈F,RUw〉U , w ∈W 1,2
0 (V ).

Obviously, the property of the extension operator RU (see Lemma 2.15) yields

‖F |V ‖W−1,2(V ) ≤ ‖F‖W−1,2(U) for all F ∈W−1,2(U).

Moreover, we have the following norm identity

‖F‖W−1,2(U) = sup
x∈U◦
r>0

∥∥F |U [x,r]

∥∥
W−1,2(U [x,r])

for all F ∈W−1,2(U).
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Now, we construct Campanato spaces of functionals as subspaces of W−1,2(U) by
the following modification of the W−1,2(U)-norm (cf. Rakotoson [13, 14]).

Definition 3.1. Let 0 ≤ ω < n be a real constant. A functional F from W−1,2(U)
should belong to the Campanato space Y −1,2,ω(U), if and only if the supremum

(3.1) ‖F‖2Y −1,2,ω(U) := sup
x∈U◦
r>0

r−ω
∥∥F |U [x,r]

∥∥2

W−1,2(U [x,r])

has a finite value. In that case we define the norm of F ∈ Y −1,2,ω(U) by (3.1).

Remark 3.2. If r0 > 0 is a given radius and if we take the supremum in the
definition (3.1) for 0 < r ≤ r0, only, then the corresponding r0-dependent norm,
defined analogously to (3.1), is an equivalent norm on Y −1,2,ω(U).

Remark 3.3. Note that r−ω ≤ rσ−ω0 r−σ if 0 ≤ ω ≤ σ < n, r0 > 0, 0 < r ≤ r0.
This yields the continuous embedding Y −1,2,σ(U) ↪→ Y −1,2,ω(U).

Remark 3.4. The spaces Y −1,2,ω(U) are Banach spaces for 0 ≤ ω < n: To prove the
completeness of the normed linear space Y −1,2,ω(U) let {Fα}α∈N be a Cauchy sequence
in Y −1,2,ω(U). Because of the embedding of Y −1,2,ω(U) in W−1,2(U) the sequence
{Fα}α∈N is a Cauchy sequence in W−1,2(U). Hence, it converges in W−1,2(U) to a
functional F ∈W−1,2(U). If we fix δ > 0, we can choose α0(δ) ∈ N such that

‖Fα+β − Fα‖Y −1,2,ω(U) ≤ δ for all α, β ∈ N with α ≥ α0(δ).

For all x ∈ U◦ and r > 0 we get

r−ω
∥∥(F − Fα)|U [x,r]

∥∥2

W−1,2(U [x,r])
≤ 2r−ω

∥∥(F − Fα+β)|U [x,r]

∥∥2

W−1,2(U [x,r])
+ 2δ2.

Letting β → ∞ and taking the supremum for all x ∈ U◦ and r > 0 we arrive at the
sought-for result:

‖F − Fα‖2Y −1,2,ω(U) ≤ 2δ2 for all α ∈ N with α ≥ α0(δ).

3.2. Invariance principles

We are going to consider several bounded linear operations on the above defined Cam-
panato spaces of functionals.

Let χ ∈ C∞0 (Rn) and 0 ≤ ω < n. Now, for F ∈W−1,2(U) we define by

〈χF,w〉U := 〈F,wχ〉U , w ∈W 1,2
0 (U),

a functional χF ∈W−1,2(U). There exists a real constant c = c(χ) > 0 such that

‖χF‖W−1,2(U) ≤ c ‖F‖W−1,2(U) for all F ∈W−1,2(U).

Lemma 3.5. Let χ ∈ C∞0 (Rn) and 0 ≤ ω < n. Then, F 7→ χF is a bounded linear
map from Y −1,2,ω(U) into Y −1,2,ω(U).
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Proof. If F ∈ Y −1,2,ω(U), then by definition we get for all x ∈ U◦, r > 0∥∥(χF )|U [x,r]

∥∥
W−1,2(U [x,r])

=
∥∥χF |U [x,r]

∥∥
W−1,2(U [x,r])

≤ c
∥∥F |U [x,r]

∥∥
W−1,2(U [x,r])

,

where c = c(χ) > 0 is a real constant. This proves the desired result. �

Lemma 3.6. If 0 ≤ ω < n, then F 7→ F |V defines a bounded linear map from
Y −1,2,ω(U) into Y −1,2,ω(V ).

Proof. Let F ∈ Y −1,2,ω(U). Then, for all x ∈ V ◦, r > 0 by definition we have∥∥F |V [x,r]

∥∥
W−1,2(V [x,r])

≤
∥∥F |U [x,r]

∥∥
W−1,2(U [x,r])

,

which proves the desired result. �

Another useful tool for our regularity considerations is the extension principle for
functionals by reflection and antireflection, respectively. Let x ∈ B and r > 0. Having
in mind the continuity of the operators

Tk(x, r) : W 1,2
0 (B ∩D(x, r))→W 1,2

0 (Ek[Px, r]),

and especially the continuity of Tk : W 1,2
0 (B)→W 1,2

0 (Ek) for k ∈ {1, 2} (Lemma 2.17)
we construct the mapping Fk 7→ RkFk from W−1,2(Ek) into W−1,2(B) as the adjoint
operator of Tk : W 1,2

0 (B)→W 1,2
0 (Ek), that means,

〈RkFk, w〉B := 〈Fk, Tkw〉Ek , w ∈W 1,2
0 (B).

Because of the properties of the operators Tk (see Lemma 2.18) it follows

‖RkFk‖W−1,2(B) ≤
√

2 ‖Fk‖W−1,2(Ek) for all Fk ∈W−1,2(Ek).

Lemma 3.7. Let k ∈ {1, 2} and 0 ≤ ω < n. Then, Fk 7→ RkFk is a bounded linear
map from Y −1,2,ω(Ek) into Y −1,2,ω(B).

Proof. Let k ∈ {1, 2} be an index and Fk an element of Y −1,2,ω(Ek). Then, we get
for all x ∈ B, r > 0 and w ∈W 1,2

0 (B[x, r]) the relation∣∣〈(RkFk)|B[x,r], w〉B[x,r]

∣∣ =
∣∣〈RkFk, RBw〉B∣∣ =

∣∣〈Fk, TkRBw〉Ek ∣∣
=
∣∣〈Fk, REkTk(x, r)RB∩D(x,r)w〉Ek

∣∣
=
∣∣〈Fk|Ek[Px,r], Tk(x, r)RB∩D(x,r)w〉Ek[Px,r]

∣∣
by the properties of Tk(x, r), Tk (see Lemma 2.17) and the extension operators. Hence,∥∥(RkFk)|B[x,r]

∥∥
W−1,2(B[x,r])

≤
√

2 ‖Fk‖W−1,2(Ek[Px,r]),

which proves the desired result. �

Next we will see, how the invariance of Sobolev spaces with respect to Lipschitz
transformations carries over to our new scale of Campanato spaces of functionals.
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Let Ψ be a Lipschitz transformation from an open neighborhood of G onto another
open subset of Rn. Then, Ψ(G) ⊂ Rn is a regular set, too (see Lemma 2.12). Now, we
are able to define the mapping F 7→ Ψ∗F from W−1,2(U) into W−1,2(Ψ(U)) as the
adjoint operator of Ψ∗ : W 1,2

0 (Ψ(U))→W 1,2
0 (U), that means,

〈Ψ∗F,w〉Ψ(U) := 〈F,Ψ∗w〉U , w ∈W 1,2
0 (Ψ(U)).

By the transformation invariance for Sobolev spaces (Theorem 2.3 and Lemma 2.16)
there exists a positive constant c = c(Ψ) > 0 such that

‖Ψ∗F‖W−1,2(Ψ(U)) ≤ c ‖F‖W−1,2(U) for all F ∈W−1,2(U).

Lemma 3.8. Let Ψ be a Lipschitz transformation from an open neighborhood of G
onto another open subset of Rn and 0 ≤ ω < n. Then, F 7→ Ψ∗F defines a bounded
linear map from Y −1,2,ω(U) into Y −1,2,ω(Ψ(U)).

Proof. Let L ≥ 1 be a Lipschitz constant for the transformation Ψ and V = Ψ(U).
We choose r0 > 0 such that for all y ∈ V ◦, 0 < r ≤ r0 we have the inclusion

Ψ−1(B(y, r)) ⊂ B(x, Lr) for x = Ψ−1(y).

For all y ∈ V ◦, 0 < r ≤ r0 and w ∈W 1,2
0 (V [y, r]) we get the relation∣∣〈(Ψ∗F )|V [y,r], w〉V [y,r]

∣∣ =
∣∣〈Ψ∗F,RV w〉V ∣∣ =

∣∣〈F,Ψ∗RV w〉U ∣∣
=
∣∣〈F,RUΨ∗w〉U

∣∣ =
∣∣〈F |U [x,Lr], RU [x,Lr]Ψ∗w〉U [x,Lr]

∣∣.
Here we have used the properties of the extension operators with respect to the trans-
formation Ψ (Theorem 2.3 and Lemma 2.16) and the above inclusion, respectively.
Hence, there exists a constant c = c(Ψ) > 0 such that∥∥(Ψ∗F )|V [y,r]

∥∥
W−1,2(V [y,r])

≤ c
∥∥F |U [x,Lr]

∥∥
W−1,2(U [x,Lr])

,

which proves the result. �

3.3. Examples

Next, we consider examples of functionals from Y −1,2,ω(G), which are interesting for
a broad class of applications.

Theorem 3.9. Let M be a relatively open subset of ∂G having property (a). Then,
for all 0 ≤ ω < n the map

(f, g, h) 7→ F (f, g, h),

defined by

〈F (f, g, h), w〉G :=

∫
G

(f · ∇w + gw) dλn +

∫
M

hγM (w) dλ∂G, w ∈W 1,2
0 (G),
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is a bounded linear operator from

L2,ω(G◦;Rn)× L2n/(n+2), ωn/(n+2)(G◦)× L2(n−1)/n, ω(n−1)/n(M) into Y −1,2,ω(G).

Proof. Let {(Φ1, U1), . . . , (Φm, Um)} be an atlas of G satisfying (2.9) and (2.10).
Furthermore, let L ≥ 1 be a common Lipschitz constant for all transformations. Then,
there exists a radius r0 > 0 such that for all x ∈ G◦ the open ball B(x, r0) is included
in one of the neighborhoods U1, . . . , Um. We consider the decomposition of the set
J = {1, . . . ,m} into the index sets

I0 =
{
j ∈ J : Uj ⊂⊂ G◦

}
and I =

{
j ∈ J : Uj ∩ ∂G 6= ∅

}
.

(i) Obviously, we get F (f, 0, 0) ∈W−1,2(G) by the estimate

|〈F (f, 0, 0), w〉G| ≤ ‖f‖L2(G◦;Rn) ‖∇w‖L2(G◦;Rn) for all w ∈W 1,2
0 (G).

Moreover, for all x ∈ G◦, r > 0 and w ∈W 1,2
0 (G[x, r]) the following holds∣∣〈F (f, 0, 0)|G[x,r], w〉G[x,r]

∣∣ ≤ ‖f‖L2(G◦[x,r];Rn) ‖∇w‖L2(G◦[x,r];Rn).

Hence, we get

(3.2)
∥∥F (f, 0, 0)|G[x,r]

∥∥
W−1,2(G[x,r])

≤ ‖f‖L2(G◦[x,r];Rn).

(ii) Because of W 1,2
0 (G) ↪→ L2n/(n−2)(G◦) it follows F (0, g, 0) ∈W−1,2(G) by

|〈F (0, g, 0), w〉G| ≤ ‖g‖L2n/(n+2)(G◦) ‖w‖L2n/(n−2)(G◦) for all w ∈W 1,2
0 (G).

Moreover, for all x ∈ G◦, 0 < r ≤ r0 and w ∈W 1,2
0 (G[x, r]) we have the relation∣∣〈F (0, g, 0)|G[x,r], w〉G[x,r]

∣∣ ≤ ‖g‖L2n/(n+2)(G◦[x,r]) ‖w‖L2n/(n−2)(G◦[x,r]).

Case B(x, r0) ⊂ Uj for a certain index j ∈ I0: Then, for all 0 < r ≤ r0 we have

B(x, r) ⊂ G◦ and for all w ∈W 1,2
0 (G[x, r]) it follows

‖w‖L2n/(n−2)(G◦[x,r]) ≤ c1 ‖∇w‖L2(G◦[x,r];Rn),

where c1 > 0 is a positive constant depending only on n.
Case B(x, r0) ⊂ Uj for a certain index j ∈ I: Introducing the notation

z = Φj(x) ∈ E1 and V (r) = Φ−1
j (B(z, Lr)),

we get for all 0 < r ≤ r0/L
2 the inclusions

Φj(G[x, r]) ⊂ E2[z, Lr] and G[x, r] ⊂ G ∩ V (r).

Hence, for all 0 < r ≤ r0/L
2 and w ∈W 1,2

0 (G[x, r]) the following holds

wj = (RG∩V (r)w) ◦ Φ−1
j ∈W

1,2
0 (E2[z, Lr])
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with the estimate

‖w‖L2n/(n−2)(G◦[x,r]) ≤ c2 ‖wj‖L2n/(n−2)(E1[z,Lr])

≤ c3 ‖∇wj‖L2(E1[z,Lr];Rn) ≤ c4 ‖∇w‖L2(G◦[x,r];Rn),

where c2, c3, c4 > 0 depend only on n and L. Summing up we get the existence
of a constant c5 = c5(n,L) > 0, such that for all x ∈ G◦, 0 < r ≤ r0/L

2 and
w ∈W 1,2

0 (G[x, r]) we have∣∣〈F (0, g, 0)|G[x,r], w〉G[x,r]

∣∣ ≤ c5 ‖g‖L2n/(n+2)(G◦[x,r]) ‖∇w‖L2(G◦[x,r];Rn),

hence,

(3.3)
∥∥F (0, g, 0)|G[x,r]

∥∥
W−1,2(G[x,r])

≤ c5 ‖g‖L2n/(n+2)(G◦[x,r]).

(iii) Due to the regularity of the set G ⊂ Rn and Remark 2.8 both M and ∂G have
property (a). Because of the equivalence between Morrey and Campanato norm for
parameters 0 ≤ σ < n−1 (see Theorem 2.9) we can extend h ∈ L2(n−1)/n, ω(n−1)/n(M)
by zero to a function which belongs to L2(n−1)/n, ω(n−1)/n(∂G). Hence, it suffices to
consider only the case M = ∂G. The continuity of the trace operator γM from W 1,2

0 (G)
into L2(n−1)/(n−2)(M) yields F (0, 0, h) ∈W−1,2(G):

|〈F (0, 0, h), w〉G| ≤ ‖h‖L2(n−1)/n(M) ‖γM (w)‖L2(n−1)/(n−2)(M) for all w ∈W 1,2
0 (G).

Moreover, for all x ∈ G◦, 0 < r ≤ r0 and w ∈W 1,2
0 (G[x, r]) we have the relation∣∣〈F (0, 0, h)|G[x,r], w〉G[x,r]

∣∣ ≤ ‖h‖L2(n−1)/n(M [x,r])‖γM (w)‖L2(n−1)/(n−2)(M [x,r]).

To prove further estimates it is sufficient to consider x ∈ G◦ and 0 < r ≤ r0 such that
M [x, r] is nonempty. For such points x ∈ G◦ there exists an index j ∈ I with the
property B(x, r0) ⊂ Uj . Using again the notation

z = Φj(x) ∈ E1 and V (r) = Φ−1
j (B(z, Lr)),

we get for all 0 < r ≤ r0/L
2 with M [x, r] 6= ∅ the inclusions

Φj(G[x, r]) ⊂ E2[z, Lr] and G[x, r] ⊂ G ∩ V (r).

For all 0 < r ≤ r0/L
2 with M [x, r] 6= ∅ and all w ∈W 1,2

0 (G[x, r]) we have

wj = (RG∩V (r)w) ◦ Φ−1
j ∈W

1,2
0 (E2[z, Lr])

and the relation

‖γM (w)‖L2(n−1)/(n−2)(M [x,r]) ≤ c6
∥∥γB2[z,Lr](wj)

∥∥
L2(n−1)/(n−2)(B2[z,Lr])

≤ c7 ‖∇wj‖L2(E1[z,Lr];Rn) ≤ c8 ‖∇w‖L2(G◦[x,r]),

where c6, c7, c8 > 0 depend only on n and L. Hence, we have proved the estimate∣∣〈F (0, 0, h)|G[x,r], w〉G[x,r]

∣∣ ≤ c8 ‖h‖L2(n−1)/n(M [x,r]) ‖∇w‖L2(G◦[x,r];Rn)
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for all x ∈ G◦, 0 < r ≤ r0/L
2 and w ∈W 1,2

0 (G[x, r]), in other words,

(3.4)
∥∥F (0, 0, h)|G[x,r]

∥∥
W−1,2(G[x,r])

≤ c8 ‖h‖L2(n−1)/n(M [x,r]).

Using Theorem 2.3 and Theorem 2.9 from (3.2), (3.3) and (3.4) the result follows. �

Remark 3.10. To underline the relevance of the preceding theorem we want to
clarify the connections to usual Lebesgue and Campanato spaces.

(i) Note, that for p = 2n/(n−ω) and 0 ≤ ω < n we have the continuous embedding

Lp(G◦) ↪→ L2,ω(G◦).

(ii) Furthermore, for p = 2n/(n− ω + 2) and 0 ≤ ω < n+ 2 we can state

Lp(G◦) ↪→ L2n/(n+2),ωn/(n+2)(G◦), L2,ω−2(G◦) ↪→ L2n/(n+2),ωn/(n+2)(G◦).

(iii) Additionally, for p = 2(n− 1)/(n− ω) and 0 ≤ ω < n the following holds

Lp(M) ↪→ L2(n−1)/n,ω(n−1)/n(M), L2,ω−1(M) ↪→ L2(n−1)/n,ω(n−1)/n(M).

(iv) Let 0 ≤ ω < n. We define the subspace W−1,2,ω(G) of Y −1,2,ω(G) as

W−1,2,ω(G) :=
{
F (f, g, 0) ∈W−1,2(G) : f ∈ L2,ω(G◦;Rn), g ∈ L2,ω−2(G◦)

}
,

and the norm of an element F ∈W−1,2,ω(G) as the infimum over all sums

‖f‖L2,ω(G◦;Rn) + ‖g‖L2,ω−2(G◦), f ∈ L2,ω(G◦;Rn), g ∈ L2,ω−2(G◦), F = F (f, g, 0).

Then, W−1,2,ω(G) is continuously embedded into Y −1,2,ω(G).

4. Regularity theory

Let G ⊂ Rn be a regular set and 0 < ε ≤ 1. Remembering the notation S(ε, n) for
the space of real positive definite (n×n)-matrices having the spectrum in the interval
[ ε, 1/ε ], the Lax-Milgram Lemma yields that for all coefficients (A, d) which belong
to L∞(G◦;S(ε, n)×S(ε, 1)) the operator LG(A, d) defined as

〈LG(A, d)u,w〉G :=

∫
G

(A∇u · ∇w + duw) dλn, u, w ∈W 1,2
0 (G),

is an isomorphism from W 1,2
0 (G) onto W−1,2(G). Hence, the mixed boundary value

problem LG(A, d)u = F has a uniquely defined solution u ∈ W 1,2
0 (G) for every func-

tional F ∈ W−1,2(G). In Recke [15] and Griepentrog, Recke [9] was proved the
following regularity theorem:

Theorem 4.1. Under the above assumptions there exists a constant µ(ε,G) > n−2
such that for all 0 ≤ µ < µ(ε,G) the operator LG(A, d) is an isomorphism from
W 1,2,µ

0 (G) onto W−1,2,µ(G).



34 Math. Nachr. 243 (2002)

Applying Theorem 3.9 the image of W 1,2,ω
0 (G) under the operator LG(A, d) is contin-

uously embedded into W−1,2,ω(G) ↪→ Y −1,2,ω(G) for all 0 ≤ ω < n. In this section we
will prove the existence of a constant ω(ε,G) > n−2 such that for all 0 ≤ ω < ω(ε,G)
the operator LG(A, d) has the isomorphism property from W 1,2,ω

0 (G) onto Y −1,2,ω(G).
Hence, we will get the desired coincidence of the spaces W−1,2,ω(G) and Y −1,2,ω(G)
for all 0 ≤ ω < ω(ε,G) as conjectured by Rakotoson [13, 14], where the result was
shown for the case G = G◦, n− 2 < ω < ω(ε,G).

4.1. Admissible sets

We will formulate and prove our regularity results using the concept of admissibility
of regular sets which is essentially due to Recke [15].

Definition 4.2. Let G ⊂ Rn be a regular set. A regular subset G0 of G is called
admissible with respect to G, if and only if for every 0 < ε ≤ 1 there exists ω > n− 2
such that for all 0 ≤ ω < ω one can find a positive constant c1 = c1(n, ε, ω,G,G0) > 0
such that for all coefficients (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) and F ∈ Y −1,2,ω(G)
the solution u ∈ W 1,2

0 (G) of LG(A, d)u = F satisfies ∇u|G◦0 ∈ L2,ω(G◦0;Rn) and,
additionally,

‖∇u‖L2,ω(G◦0 ;Rn) ≤ c1
{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

If the set G is admissible with respect to itself, then we will call it admissible. In that
case we denote by ω(ε,G) the supremum of all real numbers n− 2 < ω < n, such that
for all 0 ≤ ω < ω there exists a positive constant c2 = c2(n, ε, ω,G) > 0, such that for
all functionals F ∈ Y −1,2,ω(G) and coefficients (A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)) the
solution u ∈W 1,2

0 (G) of LG(A, d)u = F satisfies ∇u ∈ L2,ω(G◦;Rn) and, furthermore,

‖∇u‖L2,ω(G◦;Rn) ≤ c2
{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

The aim of this section is to prove that every regular set G ⊂ Rn is admissible,
which is in fact the desired regularity result announced in our introduction. To do so,
first of all we show certain properties of admissible sets.

Lemma 4.3. Let G ⊂ Rn be a regular set and {U1, . . . , Um}, {V1, . . . , Vm} open
coverings of G such that for all j ∈ {1, . . . ,m} Vj ⊂ Uj and Vj ∩G is admissible with
respect to Uj ∩G. Then G is admissible.

Proof. Let 0 < ε ≤ 1 and consider (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)). For every
j ∈ {1, . . . ,m} we construct bounded linear operators Lj(A, d) : W 1,2

0 (Uj ∩ G) →
W−1,2(Uj ∩G) by

〈Lj(A, d) v, w〉Uj∩G :=

∫
Uj∩G

(A∇v · ∇w + dvw) dλn, v, w ∈W 1,2
0 (Uj ∩G).

Because of the admissibility of Vj∩G with respect to Uj∩G there exists a parameter
n− 2 < ω < n such that for all 0 ≤ ω < ω one can find a constant c1 > 0 depending
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on n, ε, ω,G and {U1, . . . , Um}, {V1, . . . , Vm} such that for every index j ∈ {1, . . . ,m},
every Fj ∈ Y −1,2,ω(Uj ∩G) and all coefficients (A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)) the

gradient ∇uj |Vj∩G◦ of the solution uj ∈ W 1,2
0 (Uj ∩G) to Lj(A, d)uj = Fj belongs to

L2,ω(Vj ∩G◦;Rn) and, furthermore,

(4.1) ‖∇uj‖L2,ω(Vj∩G◦;Rn) ≤ c1
{
‖Fj‖Y −1,2,ω(Uj∩G) + ‖uj‖W 1,2

0 (Uj∩G)

}
.

If {χ1, . . . , χm} ⊂ C∞0 (Rn) is a partition of unity subordinate to {V1, . . . , Vm} then

δ = min
1≤j≤m

dist(supp(χj), ∂Vj) > 0.

Let F ∈ Y −1,2,ω(G) be a functional and u ∈W 1,2
0 (G) the solution of LG(A, d)u = F .

Now, we define for all j ∈ {1, . . . ,m} the functions

uj = (uχj)|Uj∩G◦ ∈W
1,2
0 (Uj ∩G)

and the functionals F0j ∈W−1,2(Uj ∩G) by

〈F0j , w〉Uj∩G :=

∫
Uj∩G

(
uA∇χj · ∇w −A∇u · ∇χj · w

)
dλn, w ∈W 1,2

0 (Uj ∩G),

respectively. Hence, for all w ∈W 1,2
0 (Uj ∩G) we get the identity

〈Lj(A, d)uj , w〉Uj∩G = 〈LG(A, d)u,RG(wχj)〉G + 〈F0j , w〉Uj∩G
= 〈F,RG(wχj)〉G + 〈F0j , w〉Uj∩G.

Therefore, uj ∈W 1,2
0 (Uj ∩G) is the solution of the variational problem

(4.2) 〈Lj(A, d)uj , w〉Uj∩G = 〈(χjF )|Uj∩G + F0j , w〉Uj∩G, w ∈W 1,2
0 (Uj ∩G).

Because of the embedding W 1,2
0 (G) ↪→ L2,2(G◦) for µ = min{ω, 2} the following holds

uA∇χj ∈ L2,µ(G◦;Rn) and −A∇u · ∇χj ∈ L2,µ−2(G◦).

Hence, by Theorem 3.9 we get F0j ∈ Y −1,2,µ(Uj ∩ G) and there exists a constant
c2 > 0 depending on ε, µ,G and the above partition of unity such that

‖F0j‖Y −1,2,µ(Uj∩G) ≤ c2 ‖u‖W 1,2
0 (G) for all j ∈ {1, . . . ,m}.

On the other hand, (χjF )|Uj∩G belongs to Y −1,2,µ(Uj ∩G), too, and we have∥∥(χjF )|Uj∩G
∥∥
Y −1,2,µ(Uj∩G)

≤ c3 ‖F‖Y −1,2,µ(G) for all j ∈ {1, . . . ,m},

where c3 > 0 is a positive constant depending on µ and the above partition of unity.
Applying relation (4.1) to the functionals

Fj = (χjF )|Uj∩G + F0j ∈ Y −1,2,µ(Uj ∩G),
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we get the estimate

‖∇uj‖L2,µ(Vj∩G◦;Rn) ≤ c1
{∥∥(χjF )|Uj∩G + F0j

∥∥
Y −1,2,µ(Uj∩G)

+ ‖uj‖W 1,2
0 (Uj∩G)

}
.

Hence, there exists a constant c4 = c4(c1, c2, c3) > 0 such that for all j ∈ {1, . . . ,m}

‖∇uj‖L2,µ(Vj∩G◦;Rn) ≤ c4
{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
.

Summing up the results we get

u =

m∑
j=1

uχj =

m∑
j=1

RGuj ∈W 1,2,µ
0 (G),

and, moreover,

‖u‖W 1,2,µ
0 (G) ≤ c5

{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
,

where c5 = c5(c4,m, δ) > 0 is a positive constant. Because of the continuity of the
embedding W 1,2,µ

0 (G) ↪→ L2,µ+2(G◦) there exists a constant c6 = c6(c5, µ,G) > 0 with

‖u‖L2,µ+2(G◦) ≤ c6
{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
.

Now, we can complete the proof by a recursive argumentation. Because of the
continuous embedding W 1,2,µ

0 (G) ↪→ L2,µ+2(G◦) for µ = min{ω, 4} we have

uA∇χj ∈ L2,µ(G◦;Rn) and −A∇u · ∇χj ∈ L2,µ−2(G◦).

Repeating the above arguments, we get u ∈ W 1,2,µ
0 (G) and the corresponding norm

estimate. After a finite number of analogous steps, we arrive at the desired result
for µ = ω, in other words, u ∈ W 1,2,ω

0 (G) and there exists a positive constant c7 =
c7(n, ω,G) > 0 such that

‖u‖W 1,2,ω
0 (G) ≤ c7

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
,

which proves the admissibility of G. �

Lemma 4.4. Let G0 ⊂ G ⊂ Rn be two regular sets and Ψ be a Lipschitz transforma-
tion from an open neighborhood of G onto another open subset of Rn. If H0 = Ψ(G0)
is admissible with respect to H = Ψ(G), then G0 is admissible with respect to G.

Proof. Let 0 < ε ≤ 1 and L ≥ 1 be a Lipschitz constant of the transformation Ψ.
Furthermore, we consider coefficients (A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)).

Because of the properties of the Jacobian matrix DΨ and the Jacobian JΨ−1, re-
spectively, for the transformed coefficients

(AH , dH) :=
(
(DΨ)(Ψ−1

∗ A)(DΨ)∗ · JΨ−1,Ψ−1
∗ d · JΨ−1

)
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we have the relation (AH , dH) ∈ L∞
(
H◦;S(L−n−2ε, n)×S(L−n−2ε, 1)

)
.

We construct the bounded linear operator LH(AH , dH) : W 1,2
0 (H)→W−1,2(H) by

〈LH(AH , dH) v, w〉H :=

∫
H

(AH∇v · ∇w + dHvw) dλn, v, w ∈W 1,2
0 (H).

Because of the transformation invariance of Y −1,2,ω(G) (Lemma 3.8) the admissibility
of H0 with respect to H yields the existence of a parameter n− 2 < ω < n such that
for all 0 ≤ ω < ω one can find a constant c1 > 0 depending on n, ε, ω,Ψ, G and H
only such that for all (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) and every F ∈ Y −1,2,ω(G)
the gradient ∇v|H◦0 of the solution v ∈ W 1,2

0 (H) to LH(AH , dH) v = Ψ∗F belongs to
L2,ω(H◦0 ;Rn) and, furthermore,

(4.3) ‖∇v‖L2,ω(H◦0 ;Rn) ≤ c1
{
‖Ψ∗F‖Y −1,2,ω(H) + ‖v‖W 1,2

0 (H)

}
.

Let u ∈ W 1,2
0 (G) be the uniquely determined solution to L(A, d)u = F . Then, by

the chain rule and the transformation formula for all w ∈W 1,2
0 (H) we get the identity

〈LH(AH , dH) Ψ−1
∗ u,w〉H = 〈L(A, d)u,Ψ∗w〉G = 〈F,Ψ∗w〉G = 〈Ψ∗F,w〉H .

Hence, v = Ψ−1
∗ u ∈ W 1,2

0 (H) is the solution to LH(AH , dH) v = Ψ∗F . By (4.3) and
Lemma 3.8 we get the existence of a positive constant c2 = c2(c1,Ψ, G) > 0 such that

‖∇(Ψ−1
∗ u)‖L2,ω(H◦0 ;Rn) ≤ c2

{
‖F‖Y −1,2,ω(G) + ‖Ψ−1

∗ u‖W 1,2
0 (H)

}
.

Finally, the transformation invariance of W 1,2,ω
0 (G) yields the existence of a constant

c3 = c3(c2,Ψ, G) > 0 such that

‖∇u‖L2,ω(G◦0 ;Rn) ≤ c3
{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
,

which proves the admissibility of G0 with respect to G. �

4.2. Local estimates on concentric balls

For the proof of admissibility of the standard sets B, E1, E2 and E3 we want to utilize
local estimates for the gradient of the solution to elliptic problems on concentric balls
and halfballs, respectively. We start with the so called Campanato inequality (see De
Giorgi [5], Campanato [4] or Troianiello [17]).

Lemma 4.5. Let 0 < ε ≤ 1. Then there exist positive constants n − 2 < ω < n
and c = c(n, ε, ω) > 0, such that for all x ∈ Rn, 0 < % ≤ r < 1, coef-
ficients A ∈ L∞(B(x, r);S(ε, n)), functionals F ∈ W−1,2(B(x, r)) and functions
u ∈W 1,2(B(x, r)) satisfying∫

B(x,r)

A∇u · ∇w dλn = 〈F,w〉B(x,r) for all w ∈W 1,2
0 (B(x, r)),
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the following estimate holds

‖∇u‖2L2(B(x,%);Rn) ≤ c
{(%

r

)ω
‖∇u‖2L2(B(x,r);Rn) + ‖F‖2W−1,2(B(x,r))

}
.

Remark 4.6. For every number 0 < ε ≤ 1 we define the supremum ω(ε) of all
parameters n−2 < ω < n, for which Lemma 4.5 holds true. Obviously, that supremum
depends on n and ε only, and the map ε 7→ ω(ε) is non-decreasing.

Lemma 4.7. For every 0 < R < 1 the ball B(0, R) is admissible with respect to B.

Proof. Let 0 < ε ≤ 1, 0 < R < 1 and n − 2 < ω < ω(ε) be given. Now, we define
the decreasing sequence {rk}k∈N by

R < rk := R+ 2−k(1−R) ≤ 1, k ∈ N.

We fix a radius 0 < rB ≤ 4−n min{R, 1 − R} and consider x ∈ B(0, r1), 0 < r ≤ rB ,
coefficients (A, d) ∈ L∞(B;S(ε, n)×S(ε, 1)) and functionals F ∈W−1,2(B).

Let u ∈ W 1,2
0 (B) be the uniquely determined solution to LB(A, d)u = F . If we

define the functional Fd ∈W−1,2(B(x, r)) by

〈Fd, w〉B(x,r) := −
∫
B(x,r)

duw dλn, w ∈W 1,2
0 (B(x, r)),

then u|B(x,r) ∈W 1,2(B(x, r)) satisfies the identity∫
B(x,r)

A∇u · ∇w dλn = 〈Fd + F |B(x,r), w〉B(x,r) for all w ∈W 1,2
0 (B(x, r)).

Hence, Lemma 4.5 yields the existence of a constant c1 = c1(n, ε, ω,R) > 0, such that
for all 0 < % ≤ r ≤ rB , coefficients (A, d) ∈ L∞(B;S(ε, n) ×S(ε, 1)) and functionals
F ∈ Y −1,2,ω(B) for the gradient ∇u the following holds

‖∇u‖2L2(B(x,%);Rn) ≤ c1
{(%

r

)ω
‖∇u‖2L2(B(x,r);Rn) + ‖Fd + F |B(x,r)‖2W−1,2(B(x,r))

}
≤ 2c1

{(%
r

)ω
‖∇u‖2L2(B(x,r);Rn) +

1

ε2
‖u‖2L2(B(x,r)) + ‖F |B(x,r)‖2W−1,2(B(x,r))

}
.

Let us define for all 0 ≤ µ < ω the quantity

κµ(u, F ) := ‖u‖2
W 1,2

0 (B)
+ ‖F‖2Y −1,2,µ(B),

and let 0 ≤ ω < ω be a fixed. Because of the embedding W 1,2(B) ↪→ L2,µ(B) for
µ = min{ω, 2}, there exists a constant c2 = c2(n, ε, µ) > 0 such that

‖u‖2L2,µ(B) ≤ c2 κµ(u, F ).
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Now, the last two estimates yield the existence of a constant c3 = c3(n, ε, µ, ω,R) > 0,
such that for all 0 < % ≤ r ≤ rB we have

‖∇u‖2L2(B(x,%);Rn) ≤ c3
{(%

r

)ω
‖∇u‖2L2(B(x,r);Rn) + rµκµ(u, F )

}
.

Having in mind 0 ≤ µ = min{ω, 2} < ω, we can apply an elementary lemma (see, for
instance, Giaquinta [7]) to get

‖∇u‖2L2(B(x,%);Rn) ≤ c4
{(%

r

)µ
‖∇u‖2L2(B(x,r);Rn) + %µκµ(u, F )

}
for all 0 < % ≤ r ≤ rB , where c4 = c4(n, ε, µ, ω,R) > 0 is a positive constant. Now, by
specifying r = rB , we arrive at ∇u|B(0,r1) ∈ L2,µ(B(0, r1);Rn). Moreover, there exists
a constant c5 = c5(n, ε, µ, ω,R) > 0 such that

‖∇u‖2L2,µ(B(0,r1);Rn) ≤ c5 κµ(u, F ).

We want to complete the proof by a recursive argumentation. Because of the con-
tinuous embedding W 1,2,µ−2(B(0, r1)) ↪→ L2,µ(B(0, r1)) for µ = min{ω, 4} one can
find a positive constant c6 = c6(n, ε, µ, ω,R) > 0 such that

‖u‖2L2,µ(B(0,r1)) ≤ c6 κµ(u, F ).

Then, we repeat the above arguments to get u|B(0,r2) ∈ W 1,2,µ(B(0, r2)) and the
corresponding norm estimate. Because of

R < rk ≤ 1 and rB < rk − rk+1 for all k = {0, 1, . . . , n},

after at most n analogous steps we arrive at the desired result for µ = ω, in other
words, there exists a constant c7 = c7(n, ε, ω, ω,R) > 0 such that

‖∇u‖2L2,ω(B(0,R);Rn) ≤ c7 κω(u, F ),

which proves the admissibility of B(0, R) with respect to B. �

Lemma 4.8. For every 0 < R < 1 and k ∈ {1, 2} the set Ek(0, R) is admissible
with respect to Ek.

Proof. Let 0 < ε ≤ 1, 0 < R < 1 and n − 2 < ω < ω(ε) be fixed. Because
of Lemma 4.7 and the reflection invariance of the coefficients and functionals (see
Lemma 3.7) for all 0 ≤ ω < ω one can find a constant c1 = c1(n, ε, ω,R) > 0, such
that for all coefficients (A, d) ∈ L∞(E1;S(ε, n) × S(ε, 1)) and F ∈ Y −1,2,ω(Ek) the
gradient∇v|B(0,R) of the solution v ∈W 1,2

0 (B) to the problem LB(R2A,R2d) v = RkF
belongs to L2,ω(B(0, R);Rn) and, furthermore,

(4.4) ‖∇v‖L2,ω(B(0,R);Rn) ≤ c1
{
‖RkF‖Y −1,2,ω(B) + ‖v‖W 1,2

0 (B)

}
.

On the other hand, the solution u ∈W 1,2
0 (Ek) to LEk(A, d)u = F for all w ∈W 1,2

0 (B)
satisfies the identity

〈LB(R2A,R2d)Rku,w〉B = 〈LEk(A, d)u, Tkw〉Ek = 〈F, Tkw〉Ek = 〈RkF,w〉B .
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Hence, v = Rku ∈ W 1,2
0 (B) is the solution of LB(R2A,R2d) v = RkF , and by (4.4)

we get the estimate

‖∇(Rku)‖L2,ω(B(0,R);Rn) ≤ c1
{
‖RkF‖Y −1,2,ω(B) + ‖Rku‖W 1,2

0 (B)

}
.

Finally, the continuity of the extension operator Rk on Y −1,2,ω(Ek) yields a constant
c2 = c2(n, ε, ω,R) > 0, such that

‖∇u‖L2,ω(Ek(0,R);Rn) ≤ c2
{
‖F‖Y −1,2,ω(Ek) + ‖u‖W 1,2

0 (Ek)

}
,

in other words, Ek(0, R) is admissible with respect to Ek. �

4.3. Global estimates and isomorphism theorem

We proof the global regularity result for the standard sets B, E1, E2 and E3.

Lemma 4.9. The open unit ball B is an admissible set.

Proof. First of all, we choose an atlas {(Φ1, U1), . . . , (Φm, Um)} of the ball B with
the properties (2.9) and (2.10). Then, there exist radii 0 < δ1 < δ2 < 1 such that the
families {V1, . . . , Vm}, {W1, . . . ,Wm} are open coverings of B if we define

Vj := Φ−1
j (B(0, δ1)) and Wj := Φ−1

j (B(0, δ2)), j ∈ {1, . . . ,m}.

By Lemma 4.8 the set E1(0, δ1) is admissible with respect to E1(0, δ2). Furthermore,
by Lemma 4.7 the ball B(0, δ1) is admissible with respect to B(0, δ2). Therefore,
Lemma 4.4 yields the admissibility of Vj ∩ B with respect to Wj ∩ B for every index
j ∈ {1, . . . ,m}. Applying Lemma 4.3, finally, it follows the admissibility of B. �

Lemma 4.10. The sets E1, E2 and E3 are admissible.

Proof. Case k ∈ {1, 2}: Let 0 < ε ≤ 1 and n − 2 < ω < ω(ε,B) be fixed. Because
of Lemma 4.9 and the reflection invariance of the coefficients and functionals (see
Lemma 3.7) for all 0 ≤ ω < ω we find a positive constant c1 = c1(n, ε, ω) > 0, such that
for all coefficients (A, d) ∈ L∞(E1;S(ε, n)×S(ε, 1)) and functionals F ∈ Y −1,2,ω(Ek)
the gradient ∇v of the solution v ∈ W 1,2

0 (B) to the problem LB(R2A,R2d) v = RkF
belongs to L2,ω(B;Rn) and, furthermore,

(4.5) ‖∇v‖L2,ω(B;Rn) ≤ c1
{
‖RkF‖Y −1,2,ω(B) + ‖v‖W 1,2

0 (B)

}
.

Since the solution u ∈W 1,2
0 (Ek) to LEk(A, d)u = F for all w ∈W 1,2

0 (B) satisfies

〈LB(R2A,R2d)Rku,w〉B = 〈LEk(A, d)u, Tkw〉Ek = 〈F, Tkw〉Ek = 〈RkF,w〉B ,

by (4.5) we get an estimate for v = Rku ∈W 1,2
0 (B):

‖∇(Rku)‖L2,ω(B;Rn) ≤ c1
{
‖RkF‖Y −1,2,ω(B) + ‖Rku‖W 1,2

0 (B)

}
.
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Finally, the continuity of the extension operator Rk on Y −1,2,ω(Ek) yields a positive
constant c2 = c2(n, ε, ω) > 0, such that

‖∇u‖L2,ω(Ek;Rn) ≤ c2
{
‖F‖Y −1,2,ω(Ek) + ‖u‖W 1,2

0 (Ek)

}
,

which proves the admissibility of Ek.
Case k = 3: There exists a Lipschitz transformation from Rn onto Rn which maps

E2 onto E3. Lemma 4.4 and the admissibility of E2 yields the admissibility of E3. �

Theorem 4.11. Every regular set G ⊂ Rn is admissible.

Proof. We take an atlas {(Φ1, U1), . . . , (Φm, Um)} of G satisfying (2.9) and (2.10).
Then there exists a radius 0 < δ < 1 such that the family {V1, . . . , Vm} is an open
covering of G if we set Vj := Φ−1

j (B(0, δ)) for j ∈ {1, . . . ,m}.
By Lemma 4.10 the set Ek(0, δ) is admissible for every index k ∈ {1, 2, 3}. Further-

more, by Lemma 4.9 the ball B(0, δ) is an admissible set. Therefore, Lemma 4.4 yields
the admissibility of Vj ∩G for all j ∈ {1, . . . ,m}. Applying Lemma 4.3, finally, we get
the admissibility of G. �

Hence, we are able to prove the main result:

Theorem 4.12. Let G ⊂ Rn be a regular set and 0 < ε ≤ 1. Then there exists
a real constant n − 2 < ω(ε,G) < n such that for all 0 ≤ ω < ω(ε,G) and all
coefficients (A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)) the elliptic operator LG(A, d) is a linear
isomorphism from W 1,2,ω

0 (G) onto Y −1,2,ω(G).

Proof. Applying Theorem 4.11, for every 0 ≤ ω < ω(ε,G) one can find a constant
c1 = c1(n, ε, ω,G) > 0, such that for all (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) and
functionals F ∈ Y −1,2,ω(G) the uniquely determined solution u = LG(A, d)−1F to the
problem LG(A, d)u = F belongs to W 1,2,ω

0 (G), and, furthermore

‖u‖W 1,2,ω
0 (G) ≤ c1

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

By the isomorphism property of LG(A, d) between W 1,2
0 (G) and W−1,2(G) and the

continuous embedding Y −1,2,ω(G) ↪→W−1,2(G) it follows

‖LG(A, d)−1F‖W 1,2,ω
0 (G) ≤ c2 ‖F‖Y −1,2,ω(G) for all F ∈ Y −1,2,ω(G),

where c2 = c2(c1, n, ε, ω,G) > 0 is a positive constant.
Because of embedding theorems for Sobolev–Campanato spaces and Theorem 3.9 the

elliptic operator LG(A, d) is a bounded linear operator from W 1,2,ω
0 (G) into Y −1,2,ω(G)

for every 0 ≤ ω < ω(ε,G), which proves the desired regularity result. �

Remark 4.13. We want to emphasize that for n − 2 < ω < n, α = (ω − n + 2)/2
the space W 1,2,ω

0 (G) is continuously embedded into the Hölder space C0,α(G).

By Theorem 3.9 the image of W 1,2,ω
0 (G) under LG(A, d) is continuously embedded

into W−1,2,ω(G) ↪→ Y −1,2,ω(G) for all 0 ≤ ω < n. Hence, Theorem 4.12 yields
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Corollary 4.14. Let G ⊂ Rn be a regular set and 0 < ε ≤ 1. Then for every
parameter 0 ≤ ω < ω(ε,G) the spaces W−1,2,ω(G) and Y −1,2,ω(G) coincide.

Remark 4.15. The result of Theorem 4.12 can be generalized to the case of linear
elliptic systems with diagonal structure and general lower order terms. Then the linear
elliptic operator is still a Fredholm operator of index zero from the corresponding
vector valued version of the Sobolev–Campanato space into a Campanato space of
functionals (see Griepentrog, Recke [9] and Griepentrog [10]).
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