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Abstract. Interpolation theorems are proved for Sobolev spaces of functions on nonsmooth

domains with vanishing trace on a part of the boundary.

1. Introduction

During the last years the negatively indexed Sobolev spaces W−1,p proved to be an ad-
equate class for the study of reaction–diffusion equations in nonsmooth situations, see
e.g. [14], [6] or [5], as occuring in the mathematical modeling of semiconductor devices
and their manufacturing processes. This is due to the fact that in the W−1,p spaces
one can cope with jumping coefficients of the differential operators and mixed bound-
ary conditions under weak assumptions on the spatial domain Ω and the Neumann
part Γ of its boundary. The concept of regular sets Ω∪Γ, see Gröger [11], turned out
to be a powerful tool in the definition of function spaces which are appropriate for the
treatment of mixed boundary value problems related to reaction–diffusion equations.
This is due to regularity results for the corresponding second order elliptic operators,
see [11], [9], [13], [8]. In dealing with evolution equations (but not only in this con-
text) it is desirable to have interpolation results between the function space serving
as the domain of the corresponding elliptic operator and the range space, see e.g. [1],
[2] and [16] and the references cited there. In the case of smooth boundary operators
these things are well elaborated, see [20], [18], [15], but for mixed boundary condi-
tions nothing seems to be established. It is the aim of this paper to investigate the
interpolation between spaces of Bessel potentials Hs,p including boundary behaviour.
The sets Ω ⊂ Rd under consideration are locally defined via Lipschitz diffeomorphisms
to so called standard sets, which allow to transform only spaces with derivative order
from the interval s ∈ [−1, 1] and integrability exponent 1 < p < ∞. Thus, one can
only expect results for this subclass.
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2. Notations, Definitions, Preliminaries

2.1. Spatial domain

In the sequel Ω will always be a bounded domain in Rd and Γ a part of its boundary
∂Ω. The open unit ball in Rd we denote by B and the halfball {y ∈ B : y1 < 0}
by B−. For the equatorial plate {y ∈ B : y1 = 0} we use the symbol Γ0 and for its
half {y ∈ Γ0 : y2 > 0} the symbol Γ+

0 . Throughout this paper we make the following
assumption:

Assumption 2.1. For every point x ∈ ∂Ω there exist two open sets U, V ⊂ Rd and
a bi–Lipschitz transformation Φ from U onto V such that x ∈ U , and Φ(U ∩ (Ω ∪ Γ))
coincides with one of the two model sets B and B− ∪ Γ0.

For some of our results we shall replace Assumption 2.1 by the following slightly
more restrictive

Assumption 2.2. For every point x ∈ ∂Ω there exist two open sets U, V ⊂ Rd and
a bi–Lipschitz transformation Φ from U onto V with a. e. constant absolute value of
the functional determinant such that x ∈ U , and Φ(U ∩ (Ω∪Γ)) coincides with one of
the two model sets B and B− ∪ Γ0.

Remark 2.3. The class of sets mentioned in Assumption 2.1 is in fact the class
of regular sets in the sense of Gröger, see [11], [12], [7]. The subclass of regular
sets characterized by Assumption 2.2 still contains all Lipschitz domains, see [21,
Ch. 1.2, Thm. 2.5], and it is broad enough to cover the domains arising from the
applications we have in mind, see §1. For certain technical reasons we do not employ
the model sets from Gröger’s concept in this work, namely

E1 = B−, E2 = B− ∪ Γ0, E3 = B− ∪ Γ+
0 .

In fact, the two concepts of model sets are equivalent, as follows from our first theorem
(for a proof see [10]).

Theorem 2.4. There are bi–Lipschitzian transformations Ψd and Ψ+
d from Rd onto

itself, such that Ψd maps the open unit ball B onto the open unit halfball B− and Ψ+
d

maps the set B− ∪ Γ+
0 onto B− ∪ Γ0. Additionally, the mappings Ψd and Ψ+

d may be
taken such that their functional determinant is constant.

2.2. Function spaces

Throughout the remaining part of the paper 1 < p < ∞ denotes any number and p′

its conjugate defined by 1/p+ 1/p′ = 1.

Definition 2.5. (See e.g. [20, Ch. 2.3.3, Ch. 4.2.1] or [19].) For s ≥ 0 we denote by
Hs,p(Ω) the space of complex valued functions which are restrictions to Ω of functions
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from the space

Hs,p(Rd) def
=
{
ψ ∈ Lp(Rd) :

∥∥F−1
(
(1 + | · |2d)s/2 Fψ

)∥∥
Lp(Rd)

<∞
}
,

where F denotes the Fourier transform and | · |d the Euclidean norm in Rd. The norm
in Hs,p(Ω) is given by the expression

‖ψ‖Hs,p(Ω)
def
= inf

{
‖ϕ‖Hs,p(Rd) : ϕ ∈ Hs,p(Rd), ϕ|Ω = ψ

}
.

Remark 2.6. The space H1,p(Ω) coincides with the usual Sobolev space

W 1,p(Ω)
def
=

{
u ∈ Lp(Ω) :

∂u

∂xl
∈ Lp(Ω), l ∈ {1, . . . , d}

}
,

see [20, Ch. 4.2.1]. Any domain satisfying Assumption 2.1 is an extension domain for
Lp(Ω) as well as for W 1,p(Ω), see Remark 2.3 and [4, Ch. 3.4, Thm. 3.10]. If Ω is an
extension domain simultaneously for both, Lp(Ω) and W 1,p(Ω), then for s ∈ [0, 1] we
could have defined Hs,p(Ω) also as the complex interpolation space [Lp(Ω),W 1,p(Ω)]s.
This follows from the Retraction–Coretraction Theorem, see [20, Ch. 1.2.4], where the
restriction operator to Ω acts as retraction and the extension operator to Rd acts as
the coretraction operator.

First we notice that the spaces Hs,p(Ω) allow bi–Lipschitz transformations from one
domain to another one.

Theorem 2.7. Let Ω1 and Ω2 be two open subsets of Rd. If Φ is a bi–Lipschitz
transformation from Ω1 onto Ω2, then, for every s ∈ [0, 1], the mapping

u 7−→ u ◦ Φ−1, u ∈ Hs,p(Ω1),

is a topological isomorphism from Hs,p(Ω1) onto Hs,p(Ω2).

Proof. For s = 0 the claim directly follows from the change of variables formula
under Lipschitz transformations, see [3, Ch. 3.3.3, Thm.2]. The case s = 1 is proved
in [17, Ch. 2.3.3.1, Lem. 3.2]. The remaining cases are obtained via interpolation, see
Remark 2.6. �

Definition 2.8. For s ∈ [0, 1] we define Hs,p
Γ (Ω) as the closure in Hs,p(Ω) of the set

C∞c (Ω ∪ Γ)
def
=
{
u|Ω : u ∈ C∞c (Rd), supp(u) ∩ (∂Ω \ Γ) = ∅

}
and H−s,pΓ (Ω) as the dual of Hs,p′

Γ (Ω). If Γ is empty and s ∈ [−1, 1], then we write
Hs,p

0 (Ω) instead of Hs,p
Γ (Ω). If Ω is the unit ball B, then we abbreviate Hs,p(B) by

Hs,p, Hs,p
0 (B) by Hs,p

0 , and Lp(B) by Lp.

Remark 2.9. From Assumption 2.1 follows that Γ is relatively open in ∂Ω. Re-
ferring to mixed boundary value problems we can identify Γ with the Neumann and
∂Ω \ Γ with the Dirichlet part of the boundary ∂Ω.
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Theorem 2.10. For i ∈ {1, 2} let Ωi ⊂ Rd be a bounded domain and Γi a part of its
boundary such that Assumption 2.1 is satisfied. Moreover, let Φ : Ω1 ∪Γ1 −→ Ω2 ∪Γ2

be a bi–Lipschitz transformation. Then, for every s ∈ [0, 1], the mapping

u 7−→ u ◦ Φ−1, u ∈ Hs,p
Γ1

(Ω1),

is a topological isomorphism from Hs,p
Γ1

(Ω1) onto Hs,p
Γ2

(Ω2).

Proof. If v ∈ Hs,p
Γ2

(Ω2), then there exists a sequence {vj}j∈N ⊂ C∞c (Rd) with

supp(vj) ∩ (∂Ω2 \ Γ2) = ∅ and lim
j→∞
‖v − vj |Ω2

‖Hs,p(Ω2) = 0.

Theorem 2.7 implies

(2.1) v ◦ Φ, vj ◦ Φ ∈ Hs,p(Ω1) and lim
j→∞
‖v ◦ Φ− vj ◦ Φ‖Hs,p(Ω1) = 0.

Moreover,

supp(vj ◦ Φ) ∩ (∂Ω1 \ Γ1) = Φ−1
(

supp(vj) ∩ (∂Ω2 \ Γ2)
)

= ∅.

Because ∂Ω1 \Γ1 and supp(vj ◦Φ) are compact sets, there must be a positive distance
between them, and we denote

δj :=
1

4
dist

(
∂Ω1 \ Γ1, supp(vj ◦ Φ)

)
.

Now, vj ◦ Φ can be extended to a function uj ∈ W 1,p(Rd). Applying the convolution
with suitable mollifiers to uj we construct functions wij ∈ C∞c (Rd) fulfilling

supp(wij) ∩ (∂Ω1 \ Γ1) = ∅ for all i, j ∈ N, i > 1/δj

and

(2.2) lim
i→∞
‖vj ◦ Φ− wij |Ω1

‖W 1,p(Ω1) = 0,

see [17, Ch. 2.2.2.1, Thm. 2.1]. Relation (2.2) implies that

lim
i→∞
‖vj ◦ Φ− wij |Ω1‖Hs,p(Ω1) = 0.

Therefore, we have vj ◦ Φ ∈ Hs,p
Γ1

(Ω1) for all j ∈ N. Because Hs,p
Γ1

(Ω1) is a closed
subspace of Hs,p(Ω1), (2.1) yields v ◦ Φ ∈ Hs,p

Γ1
(Ω1).

Analogously, it follows that u ◦ Φ−1 ∈ Hs,p
Γ2

(Ω2), if u ∈ Hs,p
Γ1

(Ω1). �

Remark 2.11. Let Ω ⊂ Rd be a bounded domain and Γ a part of its boundary
such that Assumption 2.1 is satisfied. By localization and bi–Lipschitz transformation
according to Assumption 2.1 one verifies that Hs,p

0 (Ω) = Hs,p
Γ (Ω) = Hs,p(Ω), if 0 ≤

s ≤ 1/p, because this is true for the special case (Ω,Γ) = (B,∅) (unit ball with pure
Dirichlet boundary) [20, Ch. 4.3.2, Thm. 1].
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2.3. Retractions and coretractions

The interpolation between the spaces Hs1,p
Γ (Ω) and Hs2,p

Γ (Ω) can be obtained from the
special case (Ω,Γ) = (B,∅) (unit ball with pure Dirichlet boundary). The idea, which
enables such a reduction is to define an adequate retraction–coretraction to an n–fold
Cartesian product of spaces on the unit ball with homogeneous Dirichlet boundary
conditions.

Definition 2.12. We define the continuous operators

P : Lp
′
−→ Lp

′
(B−) and Q : Lp

′
(B−) −→ Lp

′

setting

(Pv)(y)
def
=

1

2
(v(y) + v(σy)), y ∈ B−,

and

(Qv)(y)
def
= v(y−), y ∈ B;

here and in the sequel σy
def
= (−y1, y2, . . . , yd) and y−

def
= (−|y1|, y2, . . . , yd) for y =

(y1, . . . , yd).

Note that P maps H1,p′
(
resp. H1,p′

0

)
continuously into H1,p′(B−)

(
resp. H1,p′

Γ0
(B−)

)
and that Q maps H1,p′(B−)

(
resp. H1,p′

Γ0
(B−)

)
continuously into H1,p′

(
resp. H1,p′

0

)
.

As a consequence, for every s ∈ [0, 1], P maps Hs,p′ continuously into Hs,p′(B−) and
Q maps Hs,p′(B−) continuously into Hs,p′ .

Definition 2.13. For Ω and Γ we fix an open covering U1, . . . , Un of Ω and
bi–Lipschitz transformations

Φk : Uk ∩ (Ω ∪ Γ) −→ B− ∪ Γ0 if k ∈ {1, . . . , j},
Φk : Uk ∩ (Ω ∪ Γ) −→ B if k ∈ {j + 1, . . . , n}.

This is possible due to Assumption 2.1. We define linear continuous mappings

Tk : Lp
′
(B−) −→ Lp

′
(Uk ∩ Ω) if k ∈ {1, . . . , j},

Tk : Lp
′ −→ Lp

′
(Uk ∩ Ω) if k ∈ {j + 1, . . . , n},

by

(Tkv)(x)
def
= v(Φk(x)), x ∈ Ω ∩ Uk.

By Theorem 2.7 the operator Tk maps H1,p′(B−)
(
resp. H1,p′

)
continuously and

isomorphically onto H1,p′(Uk ∩Ω). As a consequence, for every s ∈ [0, 1], the operator
Tk maps Hs,p′(B−)

(
resp. Hs,p′

)
continuously and isomorphically onto Hs,p′(Uk ∩Ω).

By Theorem 2.10 the image of Hs,p′

Γ0
(B−)

(
resp. Hs,p′

0

)
under Tk is Hs,p′

Uk∩Γ(Uk ∩ Ω).
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Definition 2.14. We fix a C∞-partition of unity η1, . . . , ηn subordinate to the open
covering U1, . . . , Un of Ω and define the mappings

(2.3a) R :
[
H−1,p

0

]n −→ H−1,p
Γ (Ω) and S : H−1,p

Γ (Ω) −→
[
H−1,p

0

]n
by

(2.3b) 〈Rg, u〉 def
=

j∑
k=1

〈
gk, QT

−1
k (ηku)

〉
+

n∑
k=j+1

〈
gk, T

−1
k (ηku)

〉
,

g = (g1, . . . , gn) ∈
[
H−1,p

0

]n
, u ∈ H1,p′

Γ (Ω),

and

(2.3c) 〈Sf, v〉 def
=

〈
f,

j∑
k=1

TkPvk +

n∑
k=j+1

Tkvk

〉
,

f ∈ H−1,p
Γ (Ω), v = (v1, . . . , vn) ∈

[
H1,p′

0

]n
.

In (2.3b) ηku is to be regarded as an element of H1,p′

Uk∩Γ(Uk ∩Ω). The functions TkPvk

and Tkvk in (2.3c) are to be interpreted in a natural way as elements of H1,p′

Γ (Ω)
(extension by zero).

Lemma 2.15. The mappings R and S defined above have the following properties:

(1) RS is the identity mapping of H−1,p
Γ (Ω).

(2) For each s ∈ [0, 1] the operator R maps
[
H−s,p0

]n
onto H−s,pΓ (Ω).

(3) For each s ∈ [0, 1] the operator S maps H−s,pΓ (Ω) into
[
H−s,p0

]n
.

Proof. The assertions follow immediately from the definitions of the operators R
and S and the properties of the operators P , Q and Tk mentioned above. �

Lemma 2.16. Let Assumption 2.2 be satisfied and let R and S be defined as before
but this time by means of bi–Lipschitz transformations Φk with a.e. constant absolute
value of the functional determinant. Then the operator R maps

[
H1,p

0

]n
onto H1,p

Γ (Ω),

and the operator S maps H1,p
Γ (Ω) into

[
H1,p

0

]n
.
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Proof. 1. If g ∈
[
H1,p

0

]n
, then

〈Rg, u〉

=

∫
B

{ j∑
k=1

gk(y)(ηku)
(
Φ−1
k (y−)

)
+

n∑
k=j+1

gk(y)(ηku)
(
Φ−1
k (y)

)}
dy

=

k∑
j=1

∫
B−

(
gk(y) + gk(σy)

)
(ηku)

(
Φ−1
k (y)

)
dy +

n∑
k=j+1

∫
B

gk(y)(ηku)
(
Φ−1
k (y)

)
dy

=

k∑
j=1

∫
Uk∩Ω

2(Pgk)(Φk(x))(ηku)(x)dk dx+

n∑
k=j+1

∫
Uk∩Ω

gk(Φk(x))(ηku)(x)dk dx

=

∫
Ω

{ k∑
j=1

2dkηk(x)(TkPgk)(x) +

n∑
k=j+1

dkηk(x)(Tkgk)(x)

}
u(x) dx.

Here dk denotes the constant absolute value of the functional determinant of the
transformation Φk and ηkTkPgk (resp. ηkTkgk) is to be regarded as a function on Ω
vanishing outside Uk ∩ Ω. Thus, the functional Rg is represented by the function

j∑
k=1

2dkηkTkPgk +

n∑
k=j+1

dkηkTkgk ∈ H1,p
Γ (Ω).

2. If f ∈ H1,p
Γ (Ω), then

〈Sf, v〉

=
1

2

j∑
k=1

∫
Uk∩Ω

f(x)
(
vk(Φk(x)) + vk(σΦk(x))

)
dx+

n∑
k=j+1

∫
Uk∩Ω

f(x)vk(Φk(x)) dx

=
1

2

j∑
k=1

∫
B−

f
(
Φ−1
k (y)

)(
vk(y) + vk(σy)

)
d−1
k dy +

n∑
k=j+1

∫
B

f
(
Φ−1
k (y)

)
vk(y)d−1

k dy

=

∫
B

{
1

2

j∑
k=1

f
(
Φ−1
k (y−)

)
vk(y)d−1

k +

n∑
k=j+1

f
(
Φ−1
k (y)

)
vk(y)d−1

k

}
dy

=

∫
B

{
1

2

j∑
k=1

d−1
k

(
QT−1

k f
)
(y)vk(y) +

n∑
k=j+1

d−1
k

(
T−1
k f

)
(y)vk(y)

}
dy.

Thus, the functional Sf is represented by(
1

2
d−1

1 QT−1
1 f, . . . ,

1

2
d−1
j QT−1

j f, d−1
j+1T

−1
j+1f, . . . , d

−1
n T−1

n f

)
∈
[
H1,p

0

]n
.

3. The fact that R maps
[
H1,p

0

]n
onto H1,p

Γ (Ω) follows from the preceding steps of

the proof and the relation RSf = f for f ∈ H1,p
Γ (Ω) (cf. Lemma 2.15). �
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3. Interpolation spaces

We are now going to formulate our interpolation results.

Theorem 3.1. Let 0 < s < 1 and 1 < p0, p1 < ∞. Suppose that there holds
1/p = (1− s)/p0 + s/p1 and s 6= 1/p′. Then

H−s,pΓ (Ω) =
[
Lp0(Ω), H−1,p1

Γ (Ω)
]
s

and Hs,p′

Γ (Ω) =
[
Lp
′
0(Ω), H

1,p′1
Γ (Ω)

]
s
.

Proof. The second result is well known if (Ω,Γ) = (B,∅), see [20, Ch. 4.3.2,
Thm. 1 and 2]. The first result for the same case (Ω,Γ) = (B,∅) is a consequence
of the corresponding second result and the Duality Theorem for complex interpola-
tion, see [20, Ch. 1.11.3]. The proof of the first result for the general case follows
from the special case (Ω,Γ) = (B,∅) by the Retraction–Coretraction Theorem, see
[20, Ch. 1.2.4]. It is just the result of Lemma 2.15 which shows that the Retraction–
Coretraction Theorem is applicable and leads to the desired result. The general case
of the second assertion then follows from the first assertion by another application of
the Duality Theorem for complex interpolation. �

Theorem 3.2. Let s0, s1 ∈ [0, 1], 1 < p0, p1 < ∞ and si 6= 1/p′i, i ∈ {0, 1}.
Furthermore, suppose that there holds 0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1 and
s = (1− θ)s0 + θs1 6= 1/p′. Then[
H−s0,p0Γ (Ω), H−s1,p1Γ (Ω)

]
θ

= H−s,pΓ (Ω) and
[
H
s0,p

′
0

Γ (Ω), H
s1,p

′
1

Γ (Ω)
]
θ

= Hs,p′

Γ (Ω).

Proof. The theorem is an immediate consequence of Theorem 3.1 and the Reitera-
tion Theorem for complex interpolation, see [20, Ch. 1.9.3, Rem. 1]. �

In the following part of this section we shall deal with the interpolation of spaces
Hs0,p0

Γ (Ω) and Hs1,p1
Γ (Ω) for s0, s1 ∈ [−1, 1], 1 < p0, p1 <∞. In the sequel, we suppose

that Assumption 2.2 is always satisfied.

Theorem 3.3. Let 1 < p0, p1 < ∞, 1/pi − 1 < si ≤ 1 and si 6= 1/pi, i ∈ {0, 1}.
Moreover, suppose that 0 < θ < 1, 1/p = (1− θ)/p0 + θ/p1, s = (1− θ)s0 + θs1 6= 1/p.
Then

(3.1)
[
Hs0,p0

Γ (Ω), Hs1,p1
Γ (Ω)

]
θ

= Hs,p
Γ (Ω).

Proof. 1. In case that (Ω,Γ) = (B,∅) the assertion (3.1) follows immediately from
[20, Ch. 4.3.2, Thm. 1 and 2].

2. Applying the Retraction-Coretraction Theorem (see [20, Ch. 1.2.4]), Lemma 2.15,
and Lemma 2.16 to the special case (Ω,Γ) = (B,∅) we arrive at the desired result for
the general case. �

Lemma 3.4. There holds

(3.2)
[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
1/2

= Lp(Ω).
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Proof. 1. In case that (Ω,Γ) = (B,∅) the assertion (3.2) is an easy consequence of
results presented in [20, Ch. 4.3.3, Ch. 4.9.2].

2. The general case follows from the special case (Ω,Γ) = (B,∅) by means of the
Retraction-Coretraction Theorem (see [20, Ch. 1.2.4]), Lemma 2.15, and Lemma 2.16.

�

Theorem 3.5. Let s0, s1 ∈ [−1, 1], 0 < θ < 1 and s = (1− θ)s0 + θs1. Suppose that

(3.3) s0, s1, s /∈ {1/p,−1/p′}.

Then
[
Hs0,p

Γ (Ω), Hs1,p
Γ (Ω)

]
θ

= Hs,p
Γ (Ω).

Proof. Because of Theorem 3.2 we may assume that s0 > 0 and s1 < 0. From
Theorem 3.1 and Lemma 3.4 one obtains by means of the Reiteration Theorem, see
e.g. [20, Ch. 1.9.3 Rem. 1],

(3.4)


Hs0,p

Γ (Ω) =
[
Lp(Ω), H1,p

Γ (Ω)
]
s0

=
[[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
1/2
, H1,p

Γ (Ω)
]
s0

=
[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−s0)/2

.

Analogously one finds

(3.5) Hs1,p
Γ (Ω) =

[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−s1)/2

.

Hence, using once more the Reiteration Theorem, we get[
Hs0,p

Γ (Ω), Hs1,p
Γ (Ω)

]
θ

=
[[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−s0)/2

,
[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−s1)/2

]
θ

=
[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−θ)(1−s0)/2+θ(1−s1)/2

=
[
H1,p

Γ (Ω), H−1,p
Γ (Ω)

]
(1−s)/2

= Hs,p
Γ (Ω).

In the last stage we made use of (3.4) or (3.5), depending on the sign of s. The
condition (3.3) has been imposed to avoid forbidden indices in the above calculations.

�

Remark 3.6. Real interpolation between the Hs,p spaces leads to the usual Besov
spaces including trace conditions: one uses Lemma 3.4, an iteration formula between
complex and real interpolation, see [20, Ch. 1.10.3, Thm. 2], and quite similar consid-
erations as carried out in Theorem 3.1.



Griepentrog, Gröger, Kaiser, Rehberg, Interpolation for Function Spaces 119

References

[1] H. Amann, Parabolic Evolution Equations in Interpolation and Extrapolation Spaces,
J. Funct. Anal. 78 (1992), 233–270.

[2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser Verlag, Basel, Boston,
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brosius Barth Verlag, Heidelberg, Leipzig, 1995.

[21] J. Wloka, Partielle Differentialgleichungen, Teubner Verlagsgesellschaft Leipzig, 1982.



120 Math. Nachr. 241 (2002)

Weierstraß–Institut
für Angewandte Analysis und Stochastik
Mohrenstraße 39
D–10117 Berlin
Germany
E – mail: griepent@wias-berlin.de
groeger@wias-berlin.de
kaiser@wias-berlin.de
rehberg@wias-berlin.de


	Introduction
	Notations, Definitions, Preliminaries
	Spatial domain
	Function spaces
	Retractions and coretractions

	Interpolation spaces

