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An Application of the Implicit Function Theorem to an Energy Model
of the Semiconductor Theory

In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wdarmeausbreitung und des
Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir losen ein gekoppeltes System nicht-
linearer elliptischer Differentialgleichungen, welches aus einer Wdarmeleitungsgleichung mit Joulescher Wdrme
als Quelle, einer Poisson—Gleichung fir das elektrische Feld und den beiden Drift-Diffusions—Gleichungen fir
die Ladungstrager mit jeweils temperaturabhdngigen Koeffizienten besteht und durch thermische und elektrische
Randbedingungen erganzt wird. Zum Beweis der Ezxistenz und der Eindeutigkeit von Holder—stetigen schwachen
Lésungen in der Ndahe von thermodynamischen Gleichgewichtspunkten benutzen wir den Satz tber Implizite
Funktionen, wobei beim Beweis der stetigen Differenzierbarkeit der aus der schwachen Formulierung des Prob-
lems resultierenden Abbildungen die Regularitdtstheorie fiir nichtglatte elliptische Randwertprobleme in Sobolev—
Campanato—Rdumen zur Anwendung kommdt

In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in
semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting
of the heat equation with Joule heating as a source, the Poisson equation for the electric field and drift-diffusion
equations with temperature dependent coefficients describing the charge and current conservation, subject to gen-
eral thermal and electrical boundary conditions. We prove the existence and uniqueness of Hoélder continuous
weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the continu-
ous differentiability of maps corresponding to the weak formulation of the problem we use regularity results from
the theory of nonsmooth linear elliptic boundary value problems in Sobolev—Campanato spaces.

MSC (1991): 35B65, 35D05, 35D10, 35J55, 80A20

1. Introduction

We consider the following stationary drift—diffusion model (1), (2) with recombination and generation for self-heating
semiconductors (cf. WACHUTKA [7]) consisting of continuity equations of electron and hole flow, Poisson’s equation
and a heat equation with Joule heating, but no thermoelectric effects. All functions are suitably scaled, especially

we have set ¢ = 1 for the elementary charge:

-V - (unVu) =R on Q,
-V - (vpVv) =R on Q,
-V (eVyY)=p—n+D on Q,

—V - (kV0) = un|Vul? + vp|Vo|]?> — (u+v)R  on Q.

(1)

Let us complete these equations with mixed boundary conditions for the electrical and thermal boundary behaviour:

u=wuy ondN\T and
v=vg ondQ\T and
Y=19 ondQ\T and
=0 ondN\Y and

“(unVu)=0 onT,
-(vpVv) =0 onT,
- (eVY) =0 on T,

¢
¢
e
¢ (kVO) =0 on Y.

(2)

Here and later on 2 is a bounded domain of the m-dimensional Euclidean space R™ for m > 2. We denote by ¢ the
outward unit normal vector field on the boundary 02, by Va the gradient of a function a : Q@ — R, by V - a the
divergence of a vector field a : © — R™, and for the scalar product in R™ we use a centered dot. Finally, I, ¥ C 09

are the possibly different Neumann parts of 9Q and 9Q\ T, 90 \ X the corresponding Dirichlet parts.
There occur several variables and related quantities in the model equations (1), namely,

—u  quasi—Fermi level of electrons,
quasi—Fermi level of holes,
electrostatic potential,
thermal voltage,

concentration of electrons,
concentration of holes,
recombination rate,
concentration of dopants.

SR SE]
o= 3



44 ZAMM - Z. Angew. Math. Mech. 79 (1999) 1, 43-51

To get a self-consistent system of equations we have to formulate constitutive laws:

nzNF(iH_d;_En>, szF(U_w;_Ep>, R:r{l—exp(u—gv>}. (3)

In order to involve the very important situation of heterogeneous materials we assume that the coefficients occuring
in (1) and (3) depend on spatial variables and some other arguments

w=p(xz,0) mobility of electrons, E, =E,(z,0) band edge quantity,
v=v(z,0) mobility of holes, E, =E,(z,0) band edge quantity,
N = N(z,0) electron state density, e =¢(x) dielectric permittivity,
P = P(x,0) hole state density, k= k(x,0) thermal conductivity,
F=F(t) distribution function, r=r(x,u,v,1%,0) relaxation rate.

Our aim is to prove existence and uniqueness of Holder continuous weak solutions to problem (1), (2) near thermo-
dynamic equilibria points. The main tool in our investigations is a regularity result from the theory of nonsmooth
linear elliptic problems with mixed boundary conditions in Sobolev—Campanato spaces (see RECKE [4]), which works
also in space dimensions m > 2 in contrast to the W1 P-theory (cf. GROGER [2]). Working in these spaces we are
able to derive differentiability properties of operators corresponding to the weak formulation of our problem, and to
show that the Implicit Function Theorem can be applied to ensure the announced existence and uniqueness result.

The paper is organized as follows. In Section 2 we specify the assumptions on the data of our problem.
Section 3 is devoted to the functional analytic background. Here we collect some properties of Sobolev—Campanato
spaces and some results of the regularity theory for nonsmooth linear elliptic boundary value problems. It also
contains differentiability properties for superposition operators connected with the weak formulation of problem
(1), (2). In Section 4 we define the appropriate Banach spaces and the open set for the application of the Implicit
Function Theorem. Furthermore, we formulate our problem in a weak sense and develop an equivalent formulation.
Section 5 contains our main result. Here we show the validity of the assumptions for the application of the Implicit
Function Theorem.

2. Assumption on the data
To specify the assumptions on the coefficients we define a special class of Carathéodory functions (cf. RECKE [5]):

Definition 1. Let I € N, I C R an open interval and @ C R! be a domain. We call a function a : Q@ x Q — I
admissible if and only if it fulfils the following properties:

y — a(z,y) is continuously differentiable for almost all z € §,
x+— a(z,y) and x — Dsa(x,y) are measurable for all y € Q.

For every compact set C' C @ there exist a compact interval I C I
and a compact set Jo C R! such that

a(z,y) € Ic for almost all z € Q and all y € C,

Dya(z,y) € Jo for almost all z € Q and all y € C.

For every compact set C C @ and 7 > 0 there exists a 6 > 0 such that for all y, z € C holds
ly — z| < § = |a(z,y) — a(z, z)| < 7 and |D2a(x,y) — Daa(z, z)| < 7 for almost all z € Q.

To work with regularity results for nonsmooth linear elliptic equations defined in nonsmooth domains we want
to use the following very general concept of regular sets (see GROGER [2]).

Definition 2. A bounded set H C R™ is called regular if and only if

for every point € OH of the boundary there exist two open neighborhoods
U CR™ of x and V in R™ and a bijective transformation B from U onto V,
such that B and B! are Lipschitz continuous and B(U N H) is one of the sets:
Elz{meRm||x|<1,xm<0}, (5)
Ey={zeR™||z| <1, z, <0},
E3={.’L’EE2|$m<OOI‘£B1>O}.
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For all further considerations we will assume that

Q C R™ is a bounded domain (m > 2) and I', £ C 99 such that
G=QUT and S = QU X are regular,
NN\ T and 90 \ ¥ contain nonempty open subsets,

W, v, Ky N, P Q x (0,400) = (0,+00) are admissible,
E,, E,: Qx (0,400) = R are admissible,

r: QxR x (0,4+00) = (0, +00) is admissible, (6)
F:R — (0,+00) is monotonously increasing, continuously differentiable on R
and there holds lim;, o F(t) = 400,

D : Q — R is measurable and bounded on £,
€:Q — (0,400) is measurable and bounded on 2,
0 <e, <e<e* < +oo almost everywhere on €.

The above general assumption on F includes the most physically relevant Boltzmann and Fermi-Dirac dis-
tribution functions. Furthermore, the nonsmoothness of the coefficients in the spatial variables is devoted to the
situation of heterogeneous semiconductor devices.

3. Functional analytic background

Now, for every regular set H C R™ and its interior {2 we define the following subspaces of the usual Sobolev space

Wh2(Q):

Co°(H) := {wla |w € C§°(R™) with supp(w)N (H\ H) =2},
Wy 2(H) := closure of C$°(H) in WY2(Q).

Let A™ the usual Lebesgue measure on the Lebesgue measurable sets of R”™. We denote by W ~12(H) the dual space
to Wy (H) and by (, )z and Jg : Wy >(H) — W~Y2(H) the dual pairing and the corresponding duality map

(Jgw,h)g = / (Vw - Vh 4 wh)dA™  for all w, h € W) *(H), (7)
H

respectively. We introduce suitable Banach spaces connected with the Campanato spaces £2¢(Q) for w € (m—2,m|:

Wy p 1= m / wdA™, [w]ig,w(m = sup Y / lw — wy [2dA™ |,
QNB(x,r) >0 QNB(x,r)
229(0) = {w € L2(Q) | [w] 20 < o0}, 012100 = ]2y + [0
Wa(@) = {w € W2(Q)| T € £29(0, R™)}, [l gy = 0l + 0By
X, (H) = {w € Wy (H) | Vw € £2%(Q,R™)}, lwllx., ) = lwlw, @),
Yy(H):={he W '(H)|3w € X,(H) : Jgw=h},  |hllvym = 15 bllx, -

Now, we collect some properties of the Sobolev—Campanato spaces W,,(€2) (see TROIANIELLO [6], HONG XIE [8]):

Theorem 1. Let Q C R™ be the interior of a reqular set H C R™ and w € (m — 2, m]|, then
(1) there exists a constant co, = Coo(w) > 0 such that for all w € £2%(Q) and z € L>®(Q) the product zw
belongs to £2%(Q) and can be estimated by

2wl g2 () < COOHZ”L‘X’(Q)Hw”22=w(ﬂ)§
(2) there exists cyy = cw (w) > 0 such that for all w € W, (Q) we have w € £2“72(Q) and there holds

lwl| g2.wt2(0) < ew |lwllw, @);

(3) the space £2“T2(Q) is isomorphic to the space CO"(QY) of Hélder continuous functions forn = (w—m+2)/2.
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Now, we formulate a regularity result for diagonal systems of nonsmooth linear elliptic equations (for a proof
see RECKE [4], compare also with TROIANIELLO [6] and HONG XIE [8]). Let I € N and v € (0,1), and denote by

M, and &; the spaces of all real (I x [)-matrices and real symmetric (I x [)-matrices, respectively, and, finally, by
L (R, 6,,) the set of all matrices M € L>°(Q, &,,) such that

1
YIEP < M(2)€-€ < 5 |€> for all £ € R™\ {0} and for almost all z € Q.

Theorem 2. LetkeN, y€(0,1), and HH =QUTy,...,H, = QUL with Ty,...,Tx C IN be regular sets
with the common interior Q C R™. For

A=(4;) € L2(Q,(6,,)F), d=(dij) € L™(Q,My),
b= (bi;) € L=(Q, (M)™), = (cij) € L=(Q (Mx)™)
we define the linear bounded operator
L(A,b,c,d) : Wy 2 (Hy) % ... x Wy (Hy) — WY2(Hy) x ... x W™E2(Hy,)

by

k
(L(A,b,c,d)w, ) ==Y /((Aini+b¢jwj)~V<pi+(Cij~ij +diju;) i) AA™
i,j=1¢

for allw = (wy,...,w),0 = (p1,...,p%) € Wol’Z(Hl) X ... X W01’2(Hk).

Then there exist constants wy € (m — 2, m) and wy = wo(y) € (M — 2,wy) such that

(1) the operator L(A,b,c,d) maps X,(Hy) X ... x X, (Hy) continuously into the space Y,,(Hy) x ... X Y, (Hy)
for all w € [0,w1]. Moreover, the following map is continuous:

(A,b,¢,d) € LF(Q,(6,,)F) x L(82, (M) ™) x L°(L, (My)™) x L= (€2, My,)
— L(A,b,e,d) € L(X,(Hy) X ... X Xo(Hg), Yo (Hy) X ... x Y,(Hg)).
(2) For all j € {1,...,k} and w € [0,w;] the space Y, (H;) equals the set of all functionals h € W~12(H;)
such that there exist functions z € £2%(Q,R™) and zy € £2*~2(Q) with
(h, ;) = /(z Vi + 2005) AN for all ; € Wy (Hj).
Q

Moreover, in that case there exists a constant cy = cy (w) > 0 such that

||h||Yw(Hj) < CY(”Z”SZW(Q,RT”) + ||Zo||£2,w2(sz)),

where the constant cy does not depend on z and zg.
(3) L(A,b,c,d) is a Fredholm operator of index zero from X, (Hy) X ... x X, (Hg) into Y, (Hy) X ... x Y, (Hy)
if w e (m—2,w].

For further considerations we have to ensure the continuous differentiability of several operators containing
superposition operators. Here we will apply the following differentiability result of RECKE [5]:

Lemma 3. Let Q C R! be a domain, | € N, Q@ C R™ a bounded domain, and a : Q x Q — R an admissible
function. Then the superposition operator

Se:{w e C(QR") |V € Q:w(z) € Q} — L™(Q),

defined by (S,(w))(x) := a(z,w(x)) for almost all x € 2, is continuously differentiable.

4. Weak formulations

Now, we are in the situation to specify the functional analytic setting of the problem (1), (2). In order to apply
the Implicit Function Theorem we have to consider suitable continuously differentiable maps resulting from a weak
formulation of the problem (1), (2) and defined on an open subset of an appropriate Banach space.
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Definition 3. We choose the Banach spaces for the problem (1), (2) as Cartesian products of function
spaces defined above:

Too i= W01’2(G,R3) X (W(}’Q(S) N L>(Q)) space of test functions for problem (9),

T := W, (G, R3) x W,72(8) space of test functions for problem (10),

W, = WHee(Q,R?) x W, (2, R?) space of boundary value functions,

X, = X, (G,R?) x X,(9) space of the homogeneous parts of solutions,
Y, =Y, (G,R3) x Y, (S) space of functionals.

Definition 4. We will decompose solutions of the problem (1), (2) into a sum of given boundary value
functions in W, and the homogeneous parts of solutions which we want to find in X,:

((UO7U07’¢)0700)7 (U7 Va\I/a 6)) S Ww X Xw — (’U,,U,I/},a) = (UO + U; Vo + V;w() + \11790 + @) € Ww'
Definition 5. Assume, that w € (m —2,m), ¢ > b > 0 and 0 < 6, < 6*. Then we define the open subset
M, = M, (b,c,6,,0%) C W, x X, as follows: There holds ((ug,vg, 0, 60), (U, V,¥,0)) € M, if and only if

((’U'O?’UO?’(/}(LQO)? (Uu‘/u\ll7®)) S Ww X wa
lup +U| < b, [ug+V|<b, [+ T¥| <c onQ, (8)
0. <6y+06 <6 onfd

Definition 6. For ((uo,vo,%0,60),(U,V,¥,0)) € M,, and all ¢ = (¢u, v, Oy, 99) € Too we define by
<g((u070071/)0,90)7 (vay‘:[’»@))»@ =
J(unV (U + wg) - Vo — Rpy) dAXN™ + [(vpV(V + 1vg) - Vb, — Repyy) dAA™
Q Q

+ [(eV(¥ +4g) - Vo, — (p—n+ D) dy) AN™ + [(kV(O + 0p) - Vo + (U +ug + V + vg) Reg) AA™
Q Q

— [ un|V(U 4 up)|? pg dN™ — [vp |V (V + vg)|* gg AA™
Q Q
a functional g((ug,vo, %o, 00), (U, V,¥,0)) on Ts,. We call (u,v,1,0) a weak solution of the problem (1), (2) to the
boundary value functions (ug, vo, %o, 0p) if and only if
((u07U07w0700)7(U7V7\P7®)) GMUJ and <g((u0av07¢0590)’(Uv‘/v‘lj7@))7¢> =0 forall ¢€T00 (9)
Analogously to the thermistor problem (see HOWISON, RODRIGUES, SHILLOR [3]), it is now possible to find

an equivalent formulation to (9) replacing the quadratic terms |V(U + ug)|? and |V(V + vg)|? by V(U + ug) - Vug
and V(V +vg) - Vg and further lower order terms:

Theorem 4. Let us define for ((uo,vo, %0, 60), (U, V,¥,0)) € M, and all ¢ = (pu, v, 0y, ve) €T the map
f: M, — W=L2(G,R?) x W=12(8S) in the following way:

(f((wo,v0, o, b0), (U, V, ¥, 0)), ¢) :=
h{(,unV(U +ug) - Vo, — Ripy) dA™ + {{(VPV(V + o) - Vo, — Rpy) dAA™

+S{(5V(\I/ +90) - Vou — (p—n+ D) py) dA™ + ({(KV(@ +00) - Viog + (uo + v9) Repg) dA™
—f{,unV(U +ug) - Vug - g dA™ —l—S{MnUV(U +ug) - Vg dA™

— [vpV(V 4+ vp) - Vg - o AX™ + [vpVV(V + 1vg) - Vipg dA™.
Q Q
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Then (u,v,1,0) is a weak solution of problem (1), (2) to the boundary value functions (ug,vo, %o, 00) if and only if
((wo, v0, %0, 60), (U, V,¥,0)) € M, and {f((uo,vo,%0,60),(U,V,¥,0)),0) =0 forallpeT. (10)

Proof. Let (u,v,,0) be a weak solution of the problem (1), (2) to the boundary value functions (ug, vo, 1o, 0o),
that means by definition:

((U07007¢0790)7 (U7‘/7\I]u 9)) S Mw and <g((u07®07¢0700)7 (U7 ‘/a \117@))7¢> =0 for all ¢ S Too

Now, we consider a test function ¢ = (@u, @u, ©p; we) € T. Since W, *(S) is the closure of C5°(S) in W2(Q) we
can choose a convergent sequence {¢4}ien C C§°(S) with ¢l — ¢p in W12(Q). Obviously, then

¢' = (Dus B, b, 8) = (Pu + Uy, 00 + Vg, 0y, 0p) € Too
is a sequence of test functions in Ty, and for ¢ = (pu, Pu, Py, @h) We easily obtain:
<f((u07 o, w(h 90)7 (Uv Vv \Ila @))7 Sol> = <g((’LL(), Vo, 2/}07 60)7 (U7 ‘/7 \Ijv 9))7 ¢7I> = 0.

Finally, the limiting process i — oo yields (f((uo,vo, %0, 00), (U, V,¥,0)),¢) = 0.
To proof the opposite direction let us now assume, that

((uo,v0, %0, 60), (U, V,¥,0)) € M, and {f((ug,vo,%0,60), (U, V,¥,0)),0) =0 forall o €T.

Fixing a test function ¢ = (Pus Pv, Py, o) € T we can find a convergent sequence {¢h}tien C C5°(S) with ¢)) — ¢
in WH2(Q) and ||| L () < 2||¢ol| Lo (o) for all i € N. Then ¢* = (¢u, v, dy, dp) € Too and

o = (pl, 0y, o) = (du — Udh, o — Vo, by, 04) €T
are test functions in 7" and there holds

{9((u0,v0,%0.00), (U, V, ¥, 0)),6") = (f((uo,v0. %0, 600), (U, V, ¥, 8)), ¢") = 0.
Again the limiting process i — oo yields (g((uo,vo, %0, 6o), (U, V,¥,0)),¢) = 0.

5. Local existence and uniqueness

Theorem 5. There exists a constant w1 € (m — 2, m) such that for all parameters ¢ >b >0, 0 < 0, < 0*,
and exponents w € (m — 2, w1] the map f: M,(b,c,0.,0%) — Y, is continuously differentiable.

Proof. First of all, because of the assumptions (6) and Theorem 1 and 2 there exists a constant wy € (m—2,m)
such that the map f: M, (b,c,0,,0*) — Y,, is continuous for w € (m — 2,w1].

For the proof of the existence and the continuity of the partial Fréchet derivatives D, f : M, — £ (W,,,Y,,)
and Dof : M, — £ (X,,Y,) we want to utilize an argument of RECKE [5]. To do so, we consider admissible
functions a : Q x M,, — R and introduce with the help of the associated superposition operators (see Lemma 3) the
operators A;jag, A9 Aiag, A?aﬁ, Ajg, Ag: M, — Y, by

ijaf
<A¢ja5(w0,W),QD> = fSa(wo,W) DiWoszSDB d)\m, (A?jaﬁ(wo,W),@ = fSa(wo,W) DinaDj(pﬁ d)\m,
Q Q
(Aiap(wo, W), ) := [ Sa(wo, W) D;Wy - g dA™, (A?aﬁ(wo,W),@ = [ Sa(wo, W) Djwoq - g dA™,
Q Q
<Ajﬁ(’(U0,W),QD> = fSa(w(),W) Djwﬁ d)‘mv <A5(w03 W)790> = fSa(w()v W) ¥B da™
Q Q

for all ¢ € T, where i,j € {1,...,m}, o,8 € {1,...,4} and
(wo1, - -, woa) = (uo, o, %0,00), (Wi,...,Wy) = (U,V,¥,0) and (p1,...,91) = (Qu; Pu; Py, ¥o)-
Except of the two operators f“, f¥: M, — Y, defined as
(f*(wo, W), ) == —K{S;m(wmw) V(U +uo) - Vug - g dA™,

(f”(wO,W),ga> = ffSup(wo,W) V(V —+ Uo) . V’Uo 2] d)\m,
Q
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and to be considered separately, each part of the map f can be splitted into a sum of operators of the type A;jqz,
A?jaﬁ, Aiag, A?aﬁ, Ajp, Ag : M, — Y,,. Because of the continuous embedding of W, x X,, into the space of bounded
continuous functions we are able to prove the continuous differentiability of the map f — f* — fY: M, — Y, for
w € (m—2,wi] in the same manner as in the announced paper of RECKE [5]. This argument also yields the existence
and the continuity of the partial Fréchet derivatives Dy f%“, Do f¥ : M, — L(X,,, Ys,).

It remains to consider the partial Fréchet derivatives Dy f*, D1 f¥. Let (wg, W) be an arbitrarily chosen point
of M,,. Now, we will prove that the linear map D1 f“(wg, W) : W, — Y, defined as

(D1 f*(wo, W)ibg, @) =

f SD2(#n) (’wo, W) Wo V(U + ’LL()) -Vug - oo dA™ + f S,m(wo, W) (VU + QVU,O) - Vg - oo dA™
Q Q

for all ¢ € T and wy = (4, ﬁo,z/so,éo) € W, yields the sought-for partial Fréchet derivative of f*. To do so, we
define for (wg + wo, W) € M,, the functional A" € Y,, by

<Au7 ¢> = <fu(w0 + w07 W) - fu(w07 W) - leu(wOa W)wOa <p> for Y e T
and split it into the three parts A* = A} + Ay + AY as follows

< 7117(,0> = f (S,m(wo + lf}07W) - Sun(wO7W) - SD,Z(#n)(wo, W) 12;0) V(U + UO) - Vug - g dA™,
Q

(A5, @) == [ (Sun(wo + o, W) = Sy (wo, W)) (VU + 2Vug) - Viig - g AN,
Q

(AY, @) == [ Spun(wo + o, W) |Viig|* pg dA™.
Q

Because of Theorem 1 and 2 there exists a constant ¢y = ¢p(w) > 0 such that the following norm estimates hold:

1A Iy, < eallSun(wo + @0, W) = Spn(wo, W) = Sp, () (wo, W) o | oo () | V0| 0 ()
+ eal|Spn(wo + o, W) — Spn(wo, W) — Sp, (in) (wo, W) o || oo () | Vo | Lo () [ VU [ e2. (),

A3y, < 2cal[Sun(wo + o, W) = Spun(wo, W) — Spy (uun) (wo, W) o | Lo () [ Vo || Lo (o) | Vol e (o)
+ eal[Spn(wo + o, W) — Syn(wo, W) — Sp, (in) (wo, W) o || oo () [ VU || e2. () | Viio || o< (22)
+ A llS Dy () (wo, W) ol < () (2IVuoll Lo () + VU e20(0)) [[Viiol| Lo (),

A5y, < eallSun(wo + o, W)||L<><>(Q)\|Vﬂo|\2Loo(Q)~

Now, with Lemma 3 it follows that Dy f*(wq, W) : W,, — Y,, is the partial Fréchet derivative of f* in (wo, W) € M,,.
Analogously, we prove the existence of the partial Fréchet derivative Dy f¥(wq, W) : W,, — Y, for w € (m — 2, wy].
Let {(w}, W9 }ien C M, be a convergent sequence with (w§, W?) — (wo, W) in M,,. From Theorem 2(2) it
follows the norm estimate
[(D1f*(wh, W) = Dy f*(wo, W)) 1iolly.,
<c ||SD2(;m) (w(i), Wi) V(Ui + uf)) . Vu6 - SDg(;m) (w07 W) V(U + UO) . VUOHQz,u(Q) ||71)0||Loo(9)
+c ||Sm(w67 WZ)<VUZ + QVUB) - S,m(wo, W)(VU + QVUO)HQz,w(Q) ||Vﬁ0||Lm(g2).

Again, Theorems 1 and 2 yield a constant ¢;, = ¢r,(w) > 0 such that we are able to estimate

D1 f*(wh, W*) = Dy f*(wo, W)l 2w, v.)

< LS Dy umy (W, W)l Loe ) (IIV (1 — o)) + V(U = U) [l 20 (0)) Vgl oo (@)
+ LS Dy (umy (Wh, W)l oo (@) IV (1 — o) | Lo (@) [V (U + u0) || 220
+ LIS Dy () (Wh, W) = Sy () (o, W) || oo () IV (U + w0) || 220 (0 [ Vo || L= )
+ep[[Sun (W, W)l L) (21V (ug = wo) |z @) + IV (U = U)||c20())
+ | Sun(wh, W) = Spn (wo, W)l zoe () (2 Vol s 0) + IVU || c2.0(0) -

According to Lemma 3 the limiting process i — oo yields || Dy f*(wf, W*) — Dy f*(wo, W)||2w.,,v.) — 0. By the
same argumentation we can show the continuity of the partial Fréchet derivative Dy f¥ : M, — L (W,,,Y.,).
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Theorem 6. Let o € (m —2,m) and
(ao,ﬁo,l/jo,éo) € W, such that Viug = Vg = V@O =0 and Up+7v9=0 onQ. (11)
We take positive constants 0., 0%, b, k. = Ku(04,0%), px = 14 (04,0%), Nu = Ny (04,0%), e = ex(0,0%) fulfilling

|tol, |Do] < b and 0. <6y <60 on

K« < k< — almost everywhere on Q x [6,,0%],
Rox
1 *
o < < — and p. <v < — almost everywhere on Q X [0, 0],
* o
N, <N < and N, < P< almost everywhere on Q X [0, 0%],

N, N,
e« > |E,| and e, > |E,| almost everywhere on Q x [0, 0"].

Finally, using the properties of F' (see (6)) we choose a constant ¢ = ¢(b, 0.,0%) > 0 such that

c>b+e. and c> || onQ,

c—b—e, 1 b+e.—c
N (S5 ) g (M) < 1Dl >0

Then, there exists a constant w = w(b, ¢, b,,0% e4,*) € (m —2,0) such that

(1) f (20,0, %0,00), (U, V,¥,0)) =0 has a unique solution in M, (b,c,0.,0%) and there holds
U=V =0=0 (thermodynamic equilibrium point);

(2) Do f (o, Do, 10, 00), (U, V, ¥, 0)) is a linear isomorphism from X,, onto Y,;

(3) there exist open sets Ko, K and a uniquely determined map s € C*(Ko, X,,) such that

Koy C W, is an open neighborhood of (g, 0o, %o, 0p),

K C X, is an open neighborhood of (0,0,V,0),

Ko x K C My, (b,c,0,,0%),

(U, V,¥,0) = s((ug, vo, %o,00)) if and only if

(w0, v0,%0,00) € Ko, (U,V,¥,0) € K, and f((uo,v0,%0,60),(U,V,¥,0))=0.

Proof. 1. At first we look for a solution (0,0, ¥,0) to the given boundary value functions (g, 7y, %0, fo).
That means, we have to deal with the remaining nonlinear Poisson equation. To do so, we follow closely the methods
of GROGER [1]. Because of the properties of F' (see (6)) we can find a constant ¢; € (0, ¢) such that

c1 >b+e, and ¢ > || on Q,

c1—b—e, 1 b+e. —c
N*F — " - —F —— ) —||D]|l7r o )
< 0* ) N, ( 0~ > [DllLe @) >0
Let us define for this constant ¢; > 0 and a function a : 2 — R the cut-off operator II as
c1 if ¢; <a(z),
(a)(z) ==} a(z) if —e1 < a(z) < e,
_Cl lf a(l') S _Cla

for x € (1, and an operator

fu i Wy(G) — W H(G)
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for a corresponding regularized problem by

(fu(0), py) = /sV(\I/+z/70) Vi, dA™
Q

+/(NF(%+H@%&M_E»PF<%_H@%&®+&>D)%dW
Q

1,2
for all ¢y € Wi*(G).
Note, that here and later on coefficients considered in a thermodynamic equilibrium point are overlined. Ob-
viously, by (6) the so defined operator fr is strongly monotone and Lipschitz continuous. Therefore, the regularized
problem

(fr(®),0p) =0 for all o, € Wy2(G) (12)
admits a unique solution ¥ € VVO1 2 (G). To show the boundedness of ¥ we consider the test function
¢y = max{¥ + by — c1,0} € WH(Q).
Because of 1/;0 < ¢1 we have
U+ 1/;0 —¢<VU and 0< Py < max {\Il, 0} almost everywhere on ).
With ¥ € W, *(G) it follows that
oy € WeA(G) and V(U + 1) - Vo = [Vey |2
Inserting ¢, into (12) we get for Qp = {z € Q | U+ g >y},

/gwmzdw Z/Dw¢dAm+/ (pF (vo—ceﬁE) _NF (uﬁ?—E» X
0 0
Q Q Q

II

1 b_cl+€>k Cl_b—e* .
= / <N*F (9*> - N.F <9*> + ||D||L°°(Q)) 0y dA™ < 0.

Qn
Hence, we have proved the estimate ¥ + 1)y < ¢; < ¢ almost everywhere on Q. Analogously, testing with
¢y = min{V¥ + g + ¢1,0} € W01’2(G),

we see that W + 1)y > —c; > —c and finally, |V + 1/30| < ¢1 < ¢ almost everywhere on €. Therefore, there holds

/gv@ SV dA™ = —/aw’o Vi dN™ + /(;5— i + D) oy AX™  for all gy € W, % ().
Q Q Q

Having in mind Theorem 1(1), Theorem 2(2) and assumption (6) it is easy to see, that there exists a constant
w1 € (m — 2,0) such that the integral terms on the right hand side define a functional in Y, (G). Furthermore, by
Theorem 2(3) there exists a constant wg = wg(e) € (m —2,wq) such that the integral on the left hand side defines an
injective Fredholm operator from X, (G) into Y, (G), which is then even a linear isomorphism from X, (G) onto
Y., (G). Therefore, to the given boundary value functions there exists a thermodynamic equilibrium point

((ﬂ07 Z_}07 J)Oa 50)7 (Oa Oa \I]v 0)) € Mwo (b7 C, 9*3 9*)a f((’l_j,o, 7707 ’lZ)Oa 0_0)7 (Oa Oa \I/a O)) =0.

To show its uniqueness let (U, V, 71 7) € Xy, be any homogeneous solution to the given boundary value functions.
Inserting at first the test function (U, V,0,0) € T and then (0,0,0,0) € T into (10) it follows immediately from (11)
that

U=V=0=0.
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Finally, we consider two homogeneous solutions (0,0, U,0) € X, and (0,0,¥5,0) € X,,. Testing (10) with
(0,0,¥; — Wy,0) € T and subtracting the remaining integral identities the monotonicity of F' yields ¥y = Ws.
2. Now, Theorem 5 gives us a constant wg € (m — 2,wp| such that the partial Fréchet derivative

DZf((ﬁ(b 1707 &07 éO)? (07 07 @7 O)) S X(szy ng)
exists. After a little computation we obtain the following matrix formulation of this derivative:

<D2f((a07770) 1;07970)7 (0707 \TJ?()))(Ua V7 \117 é)7 (@ua Pu, SD’L/M SDG)>

pn 00 0\ (VO\ [V, 70y 78y 0 0\ (U\ [eu

0 vp 0 O vV Ve, m / /0y T/6p O 0 1% Do m

= e dA n dA
/ 0 0 € O A Vo + az1  azz asz ass G Oap
e \o o0 o0 & \ve Ve a\o o o o0o/\g Vo

for all (U, v, \il,é) € X, and (¢u, Puv, Py, e) € T. Noting the diagonal structure of the matrix under the first
integral we can apply the regularity theory (see Theorem 2(3)) for weakly coupled systems to get a constant w €
(m — 2,ws] such that the partial Fréchet derivative

Ds f((@o, o, 0, 60), (0,0, ¥,0)) € £(X,, Ya)

is a Fredholm operator of index zero from X, into Y,,. Considering the equation
Dy f (0, %0, %0, 00), (0,0,%,0))(U,V,¥,0) =0

from the structure of the matrix under the second integral it follows at first
U=V=0=0

because of 7/ 0y > 0 on Q. In the third row of the matrix under the second integral then only the element ass is of
interest. Indeed, with the monotonicity of F' we get

N <U()+1Z()+\I}_En) P ('U()—iz()—\ll-i-Ep

= _—F/
43 =g % %

> >0 on
and therefore U = 0. Hence, Do f (1o, Do, 10, 00), (0,0,¥,0)) is injective and thus a linear isomorphism from X,
onto Y,,.

3. The third assertion is an immediate consequence of the above results and the Implicit Function Theorem.
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