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I. Introduction

Reducing or even eliminating a particular risk is an important task in risk management. How-

ever, often only imperfect hedging instruments are at hand, leading to basis risk. This is for

instance the case if the asset that is hedged does not exactly coincide with the asset underlying

the futures contract. A typical example for such a case is an airline company that wants to

protect itself against changing kerosene prices. Since there is no liquid kerosene futures market

the airline company may fall back on futures on less refined oil, such as crude oil futures, for

hedging its kerosene risk. This is a reasonable approach, if the price evolvements of kerosene and

of crude oil are very similar. The upper left panel of Figure 1 illustrates the close comovement

of the two price series at the IntercontinentalExchange (ICE).

The correlation between the price changes is the crucial determinant of an optimal cross-

hedge. A common approach in the literature and in practice is to obtain the optimal hedge

ratio by using the most frequent returns or price increments being available, irrespective of

the time to maturity. This is a valid approach if the correlation (between the returns or price

increments) and the ratio of the standard deviations are constant with respect to the sampling

frequency, such as for correlated (geometric) Brownian motions. However, in many cases the

correlation depends strongly on the selected time interval. For example in our empirical illus-

tration the correlation of the daily log returns of kerosene and crude oil is only 0.52, which

seems unexpectedly low given the strong comovement in the price series. The correlations of

the weekly, monthly and yearly log returns in contrast are at 0.72, 0.84 and 0.98, respectively.

Thus, the short-term correlation is considerably lower than the long-term correlation, pointing

towards a long-term relationship with potential short-term deviations. This property is closely

related to the concept of cointegration. It dates back to Engle and Granger (1987) and Granger

(1981) and assumes that a set of time series share a long-term relationship with temporary de-

viations from this “equilibrium”. More precisely, consider two integrated time series (of order
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one). They are cointegrated if a linear combination of them is stationary. This is supported

for our example in Figure 1, which shows on the lower panel a clear mean reverting behavior of

the spread between the logarithmic prices of kerosene and crude oil. Note that we do not use

an estimated cointegration vector but rather assume that the spread between the log prices is

stationary. This is more restrictive, but empirically supported by the p-value of the augmented

Dickey-Fuller test (which is ≤ 0.001) indicating that the null hypothesis of a non-stationary

spread is rejected.

From a fundamental point of view the spread of the kerosene and crude oil price is determined

by the marginal costs of producing (the finer) kerosene out of crude oil. Temporary deviations

of the spread from the marginal costs may occur due to a kerosene shortage or an oversupply.

The speed with which the spread reverts to a mean level essentially reflects how fast the market

can compensate the deviations. The common stochastic trend reflects shocks, such as, for

example, a natural or political crisis in the producing countries, that affect the price of crude

oil and, thus, also affect indirectly the price of kerosene due to the intensive and essential use

of crude oil in the production process for kerosene. Kerosene and crude oil, however, is only

one example for a pair of cointegrated processes and there are many studies pointing towards

a cointegration relation between asset prices and corresponding hedging instruments, see e.g.

Alexander (1999), Baillie (1989), Brenner and Kroner (1995), Lien and Luo (1993) and Ng and

Pirrong (1996) and the references therein.

The long-term relationship between the kerosene price and the crude oil price leads to the

observed increasing correlation in our example so that the optimal hedge ratios are not constant,

but depend on time to maturity. Intuitively, for long-term hedges it is likely that the two assets

are in their equilibrium relationship, whereas in the short-term the dynamics are dominated

by noisy fluctuations due to shortage or oversupply of kerosene. To account for a time varying

hedge ratio a possible strategy is to estimate the optimal hedge ratio for different maturity

times. However, this strategy is not consistent as the objective function, e.g. the variance of
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Figure 1: The upper left panel depicts the time evolvement of the daily price of crude oil in US$/BBL (dashed line) and for

jet kerosene in US$/BBL (solid line) from 1995/01/02 until 2010/06/30 (resulting in 4043 observations). The upper

right panel exhibits the scatter plot of the corresponding daily log returns and shows that there is positive correlation

among the two series as already mentioned in the text (with a correlation coefficient of 0.52). The lower panel depicts

the time evolvement of the spread of the log prices. Note that crude oil is usually traded in units of barrel, a volume

unit. In contrast the trading unit of kerosene is the metric ton, i.e. a weight unit. Although a common unit is not

necessary for our analysis we convert the price of kerosene per metric ton to a price per barrel by assuming a density of

kerosene of 810 kg/m3 (at 20 centigrade and 1 atm). This means a metric ton of kerosene has a volume of (1000/810)

m3 or 1234.6 liter. A barrel of crude oil contains 158.987 liter so that the ratio is 0.1288.
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the hedge error, is optimized within a one-period model (with different times to maturity). But

the reestimation implies that this strategy is a multiperiod strategy and it therefore results in

a suboptimal rule. This is also supported by Lien (1992), who shows that even in a very simple

model the multiperiod optimal hedge ratio differs from the hedge ratio obtained in a one-period

model.

Therefore, applying a one-period model is imperfect as it does not account for a dynamical

rebalance of the hedge. Howard and D’Antonio (1991), Lien (1992, 2004) and Lien and Luo

(1993) were among the first to consider a discrete-time multiperiod planning horizon of the

agent with (at least partially) cointegrated time series.1

A natural and self-evident generalization is to consider the possibility of adjustments to the

hedging position in continuous-time. This has the additional advantage that it is often possible

to compute the standard deviation of the hedge error for different hedging strategies in closed-

form, which seems to be impossible for discrete-time models. The availability of the standard

deviation of the hedge error in turn allows to assess the value of a hedging strategy. Since

portfolio risks are usually assessed daily, following a mark-to-market procedure, efficient risk

calculation algorithms are needed that allow to estimate the risk quickly. Fast hedge error

estimation algorithms are also needed for pricing. If a derivative can only be cross-hedged,

then a writer will ask for a premium for the hedge error. In order to determine the risk premia,

traders need to quickly estimate expected hedge errors. Obviously, the most convenient support

is given by closed-form formulas.

1Another strand of the literature is based on the recursive estimation of the parameters or states of a “dynamic”

model. Among others, Baillie and Myers (1991), Brenner and Kroner (1995) and Cecchetti, Cumby, and

Figlewski (1988) consider bivariate (G)ARCH models to estimate the time varying variances and covariances.

Although these models account for time variations in the distribution the variance of the hedge is still

minimized within a one-period model and with a fixed time to maturity.
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The aim of this paper is to set up a model that allows a rigorous study of the effect of a long-

term relationship on optimal cross-hedging strategies, and at the same time allows an efficient

calculation of the basis risk entailed by the optimal cross-hedges. We choose a continuous-time

line, and reproduce the long-term relationship of the prices by describing the spread as an

Ornstein-Uhlenbeck process, a Gaussian mean-reverting process, and by modeling the futures

price as a geometric Brownian motion (GBM). Noteworthy, our model differs from the widely

studied models where both processes, the risk source and the hedging instrument, are GBMs.2

In these models, in the following referred to as 2GBM models, the spread of the log prices is

not stationary since the variance of the spread is proportional to time. We further show that

these models underhedge the risk when cointegration is present (see Section A). Our model, in

contrast, explicitly accounts for a stationary spread. Furthermore, it is easy to estimate and it

is still tractable enough to allow for a quick calculation of the hedge error standard deviation

under different trading strategies. In particular, we are able to derive time-consistent strategies,

allowing for updating, that minimize the variance of the hedge error.

To this end, we first solve the optimization problem of finding the dynamic strategy that

minimizes the variance of the hedge error. In an abstract continuous martingale setting of an

incomplete market, variance optimal hedging strategies have been first described in Föllmer

and Sondermann (1986). We make use of their method and transfer it to the specific case of

cross-hedging risk with futures contracts within our Markovian model. The optimal hedging

strategy can be expressed in terms of the risk’s Greeks and a hedge ratio decaying with time

to maturity. Moreover, for linear risk positions we are able to derive a closed-form formula for

2Such models are considered for example in Ankirchner and Heyne (2011), Duffie and Richardson (1991),

Schweizer (1992), who derive cross-hedging strategies minimizing quadratic objective functions, and in

Ankirchner, Imkeller, and Dos Reis (2010), Davis (2006), Monoyios (2004), Musiela and Zariphopoulou

(2004), who provide cross-hedging strategies maximizing the hedger’s expected utility.
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the hedge error standard deviation.

The paper is structured as follows. Section II introduces our model and presents some empir-

ical evidence, while Section III briefly reviews hedging with futures contracts and derives the

variance optimal hedging strategy for our model. Section IV develops the implied hedge errors

within our model for linear and non-linear positions and Section V compares the hedge errors

between different models and (suboptimal) hedging strategies emphasizing the importance of

allowing for a stationary spread. An extension of our model to account for stochastic volatility

is given in Section VI. Section VII concludes while Appendix A contains some empirical results

and Appendix B provides the proofs.

II. The Continuous-time Model with a Stationary Spread

As always in modeling real-world phenomena there is a trade-off between the accuracy of

a model and its tractability. We therefore illustrate the implications of a stationary spread

between the futures price and the price of an illiquid asset by assuming a simplified and tractable

model, which is presented in Subsection A. This approach allows us to derive not only optimal

hedging strategies and their implied hedge errors (see Section III), but also to obtain the

transition density in closed form, so that the model can straightforwardly be estimated via the

efficient maximum likelihood method. An empirical illustration is provided in Subsection B.

A. Model Specification

Let I = (It)t≥0 denote the price process of an illiquid asset, and suppose that an economic agent

aims at hedging a position h(IT ), where h : R→ R is a measurable payoff function and T > 0

is a fixed time horizon. Furthermore, we assume that there exists a liquidly traded futures

contract with price process X = (Xt)t≥0, which evolves according to the stochastic differential
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equation (SDE)

dXt = µXt d t+ σXXt dW
(X)
t , X0 = x,(1)

with volatility σX > 0 and constant drift rate µ ∈ R. The process W (X) =
(
W

(X)
t

)
t≥0

is a

Brownian motion on a stochastic basis with probability measure P . We denote the spread of

the log prices, in the following simply referred to as the logspread, by

St = log(Xt)− log(It).

Although the non-stationarity of the logspread seems to be a plausible assumption for certain

asset classes, e.g. for stock prices, there also exist relevant examples for stationary logspreads

as shown in the introduction and the mentioned articles. We therefore propose to account

for cointegration by first modeling the logspread as a stationary process and then derive the

implied dynamics of the illiquid asset.

More precisely, we assume that the logspread follows a (Gaussian) Ornstein-Uhlenbeck pro-

cess, which is the continuous-time analogue of the stationary discrete-time first order autore-

gressive process. Under this assumption the logspread solves the mean reverting SDE

dSt = κ(m− St) d t+ σS(ρ dW
(X)
t + ρ̄ dW⊥

t ), S0 = s,(2)

where W⊥ =
(
W⊥
t

)
t≥0

is a Brownian motion independent of W (X), κ ≥ 0 is the mean reversion

speed, and ρ ∈ [−1, 1] the correlation. The logspread’s volatility σS is assumed to be non-

negative. Moreover, we define ρ̄ =
√

1− ρ2 and use, for the ease of exposition, the following

short-hand notation

W
(S)
t = ρW

(X)
t + ρ̄W⊥

t
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for the Brownian motion driving the logspread. Note that for κ ↓ 0 the Ornstein-Uhlenbeck

process becomes more and more persistent and in the limit a (scaled and shifted) Brownian

motion that is correlated with the Brownian motion of the futures price process.

The dynamics of X and S determine the dynamics of the illiquid asset price, as It = Xte
−St ,

t ≥ 0. A straightforward calculation, appealing to Itō’s formula, shows that the dynamics of I

satisfy

d It = It

(
1

2
σ2
S − κ(m− St) + µ− ρσSσX

)
d t+ ItσI dW

(I)
t ,

where σI =
√
σ2
X − 2ρσSσX + σ2

S and W (I) =
(
W

(I)
t

)
t≥0

is a Brownian motion defined by

W
(I)
t =

(
(σX − ρσS)W

(X)
t − ρ̄σSW⊥

t

)
/σI , t ≥ 0.

Note that the correlation ρIX between the Brownian motions driving I and X is given by

ρIX =
1

σI
(σX − ρσS) ,(3)

which is non-negative if and only if σX ≥ ρσS. For fixed parameters ρ and σX , we can write

ρIX as a function of σS:

ρIX(σS) =
σX − ρσS√

σ2
X − 2ρσSσX + σ2

S

.(4)

It can be shown that ρIX(σS) is strictly decreasing in σS, and hence invertible on R+. For a

proof of the following result see Appendix B.

Lemma II.1. Let σX > 0 and ρ ∈ (−1, 1). Then the mapping R+ 3 σS 7→ ρIX(σS) is strictly

decreasing. Moreover, the logspread’s volatility σS satisfies

σS = σX

√
1− ρ2

IX

ρ
√

1− ρ2
IX + ρIX

√
1− ρ2

.(5)
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Observe that (logXt, St, log It) is a 3-dimensional Gaussian process. Furthermore, it possesses

a closed-form transition density and hence efficient maximum likelihood estimation becomes

feasible. Indeed, a straightforward calculation shows that the triple (logXt, St, log It) satisfies


logXt

St

log It


∣∣∣∣∣∣∣∣∣∣


X0

S0

I0

 =


x

s

xe−s

 ∼ N



log x+
(
µ− σ2

X

2

)
t

se−κt +m (1− e−κt)

log x+
(
µ− σ2

X

2

)
t− se−κt −m (1− e−κt)

 ,Σ

 ,

where

Σ =


tσ2
X

ρσXσS

κ (1− e−κt) tσ2
X − ρσXσX

κ (1− e−κt)
ρσXσS

κ (1− e−κt) σ2
S

2κ

(
1− e−2κt

)
ρσXσS

κ (1− e−κt)− σ2

2κ (1− e−2κt)

tσ2
X − ρσXσS

κ (1− e−κt) ρσXσS

κ (1− e−κt)− σ2

2κ (1− e−2κt) tσ2
X − 2ρσXσS

κ (1− e−κt) + σ2
S

2κ

(
1− e−2κt

)


and N (m,V ) denotes the normal distribution with mean vector m and covariance matrix V .

As we specify first the dynamics of the futures contract as a GBM and the logspread as an

Ornstein-Uhlenbeck process the price of the futures contract leads the risk price. For example

if the futures price is subject to a (demand or supply) shock the risk price follows and reduces

the distance to the futures price. This asymmetric behavior is in line with empirical findings as

there is strong evidence that futures prices lead the spot prices, e.g. see Chan (1987), Kawaller,

Koch, and Koch (1987) and Stoll and Whaley (1990). Note that most studies investigate the

relationship between a stock index and the corresponding futures contract. However, their main

argument of less frequent trading in the spot market and differences in transaction costs are also

valid in our setup. They both lead to asymmetric access to information which in turn results

in an asymmetric behavior of the spread. Therefore, for the applications we have in mind, it

seems natural to model the futures and the spread first, and then to derive the spot dynamics

endogenously. Morevoer, it is also possible to specify the relation in the reverse direction, i.e.

to derive the dynamics of the futures price process based on the dynamics of the risk process
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and the logspread. One can then proceed in a similiar manner.

The model introduced has some similarities with Gaussian commodity spot models, e.g. with

the ones discussed in Schwartz (1997) or with the more general model provided in Casassus

and Collin-Dufresne (2005). In these models the triple of futures log price, spot log price

and logspread is a 3-dimensional Gaussian process, too. These spot models, however, have

different aims; e.g. they can be used for pricing long term forward commitments on the same

commodity. Any forward position can be hedged by using one interest rate derivative and two

short term futures contracts. This means that the latter models are complete and hence the

model dynamics under the risk-neutral measure have to be calibrated to current futures and

derivative prices.

The main aim of our model instead is to analyze the hedge error entailed when cross hedging

risk exposures with futures written on a correlated, but different risk source. Our model includes

a non-hedgeable risk factor, the spread, leading to incompleteness. We work under the physical

measure since this is the only measure under which the hedge errors characteristics are relevant

for risk management. Moreover, in a cross hedging situation a calibration is not always possible,

e.g. if there are no liquid kerosene futures.

B. An Empirical Illustration

In the following we illustrate the estimation of the model by reconsidering the example of

kerosene and crude oil. We use daily data of the spot kerosene price and the price of different

crude oil futures contracts. The maturity of the futures contracts range from January 2009

until October 2010, resulting in 21 (overlapping) time series.

In a first step we check via the augmented Dickey-Fuller test whether the logspread of the

kerosene spot price and the corresponding crude oil futures price is stationary. Table A1 in

Appendix A reports the results for the different futures contracts. For most of the pairs we reject

the null of a non-stationary logspread at any reasonable level. Of course, as one would expect
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for a statistical test, the procedure does not suggest the existence of a long-term relationship

for every pair even if it is present. For these cases the model uncertainty is obvious and we

will check in Subsection A how the application of an optimal hedging strategy influences the

hedging performance if the strategy is derived under our model but is applied to the 2GBM

model, and vice versa.

Table A1 in Appendix A also presents the estimation result for our data sets. To concentrate

on one asset in the remaining part of the paper we use one representative contract with moder-

ate, not extreme, parameter values especially for κ and ρ. We choose the contract with maturity

in August 2009. The number of observations at which both assets, the futures contract and the

spot kerosene, are traded is 885. Figure 2 shows the time evolvement of these two price series.

Obviously, the price evolvements are very similar, which is also supported by the time-series

plot of the logspread of the log prices (depicted in the lower panel).

In the next sections we derive the variance optimal hedge, the corresponding variance of

the hedge error and derive quantitative and qualitative statements in terms of the structural

parameters.

III. Optimal Variance Hedging with Futures Contracts

Suppose that a hedger sets up a portfolio consisting of futures contracts and cash positions,

in order to hedge the risk position h(IT ). In the following we denote by ξt the number of

futures contracts held in the portfolio at time t. We assume that any futures position strategy

ξ = (ξt)t∈[0,T ] is non-anticipating, i.e. at any time it incorporates only information publicly

available. In mathematical terms, this means that ξ is progressively measurable with respect to

(Ft)t≥0, the filtration generated by the Brownian motions
(
W (X), W⊥)T and completed with

the P -null sets of the basis.

If the futures price changes by ∆Xt from one trading day to the next, the hedger’s margin
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Figure 2: The upper left hand panel depicts the time evolvement of the daily price of the crude oil futures with maturity in

August 2009 in US$/BBL (dashed line) and for spot jet kerosene in US$/BBL (solid line) from 2006/02/27 until

2009/07/16 (resulting in 885 observations). The structure of this figure is the same as Figure 1 on page 3. The upper

right hand panel exhibits the scatter plot of the daily returns. The lower panel depicts the time evolvement of the

logspread of the log prices. Note, that the units have been normalized just as in Figure 1.
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account is adjusted by ∆Xt per futures contract. The cash position in the hedging portfolio is

changed accordingly, entailing a portfolio value change due to variation margins of ∆V mar
t =

ξt∆Xt.

Denote by V = (Vt)t∈[0,T ] the total value of the hedging portfolio. Given an interest rate

r, the cash position contributes to the portfolio by rVt d t, hence the total value satisfies the

continuous-time self-financing condition

dVt = ξt dXt + rVt d t.(6)

Equation (6) is linear. Therefore, given an initial portfolio value of V0 = v, the portfolio process

has the explicit representation

Vt = ert
(
v +

∫ t

0

e−rsξs dXs

)
,(7)

(see e.g. Chapter 5.6 in Karatzas and Shreve (1991)).

Consider a self-financing hedge portfolio with futures position ξt at time t. The conditional

hedge error of the portfolio at time t ∈ [0, T ] is then given by

Ct(ξ, v) = E
(
e−r(T−t)h(IT )|Ft

)
− Vt

= ert
(

E
(
e−rTh(IT )|Ft

)
− v −

∫ t

0

ξse
−rs dXs

)
.(8)

CT (ξ, v) will also be referred to as the realized hedge error. Note that if Ct(ξ, v) is negative, the

combined value of the risk and the hedge portfolio is expected to end up with a plus.

To determine the variance optimal strategy within our model, i.e. the strategy minimizing

the variance of the realized hedge error, we suppose that X is a martingale. This is a plausible

assumption since X is a futures price process. Moreover, the empirical analysis of crude oil

futures prices shows that the estimated drift parameter is close to zero for all contract months
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and statistically insignificant for most assets (see Table A1 in Appendix A). In addition, as the

estimation of the drift is notoriously challenging and very often highly speculative, it can easily

distort the main aim of hedging, which is the reduction of risk. We therefore discuss here the

martingale case in depth and postpone the discussion of the more general case to Section VI.

Assuming that X is a martingale means that µ = 0 and dXt = σXXt dW
(X)
t . Then (8)

implies that the discounted conditional hedge error is also a martingale. By applying a repre-

sentation theorem from Stochastic Analysis, the martingale e−rTE (h(IT )|Ft) can be written as

a stochastic integral process of the form

e−rTE (h(IT )|Ft) = e−rTE (h(IT )) +

∫ t

0

as dW (X)
s +

∫ t

0

bs dW⊥
s , t ∈ [0, T ],(9)

where a and b are progressively measurable and square-integrable processes (see e.g. Chapter

3.4 in Karatzas and Shreve (1991)). The first stochastic integral on the RHS is hedgeable, since

it is driven by the same BM as the futures X. More precisely, following the strategy

ξ∗t =
ate

rt

σXXt

,(10)

the gain from the futures position up to time t satisfies
∫ t

0
ξ∗se
−rs dXs =

∫ t
0
as dW

(X)
s . The

second integral in (9) is orthogonal to W (X), and hence completely non-hedgeable with X. This

implies that the strategy ξ∗ minimizes the variance of the realized hedge error (see Theorem 1

in Föllmer and Sondermann (1986) where this argument has been employed for the first time).

Moreover, the conditional hedge error satisfies

Ct(ξ
∗, v) = ert

∫ t

0

bs dW⊥
s + E

(
e−(T−t)rh(IT )

)
− ertv.

Profiting from the Markov property of the processes I and S, we may express a and b in

terms of sensitivities of the expected risk with respect to the futures and the logspread values.
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More precisely, let

ψ(t, x, s) = e−r(T−t)E
(
h
(
X t,x
T e−S

t,s
T

))
,

where X t,x and St,s are the solutions of (1) resp. (2) on [t, T ] with initial conditions X t,x
t = x

resp. St,st = s. We will refer to ψ as the value function. If h is Lipschitz continuous and its weak

derivative h′ is Lebesgue-almost everywhere differentiable, then ψ is continuously differentiable

with respect to x and s, and

ψx(t, x, s) =
∂

∂x
ψ(t, x, s) = e−r(T−t)E

(
h′(X t,x

T e−S
t,s
T )X t,1

T e−S
t,s
T

)
.(11)

For details we refer the interested reader to Lemma 4.8. in Ankirchner and Heyne (2011), where

a similar statement is shown. Notice that ∂St,sT /∂s = e−κ(T−t), and hence by the same reasoning

ψs(t, x, s) =
∂

∂s
ψ(t, x, s) = −e−r(T−t)E

(
h′(X t,x

T e−S
t,s
T )X t,x

T e−S
t,s
T e−κ(T−t)

)
= −e−κ(T−t)x

∂

∂x
ψ(t, x, s).(12)

The pair (X, S)T is a 2-dimensional SDE, driven by
(
W (X), W⊥)T via the diffusion matrix

Σ̃(x, s) =

σXx 0

ρσS ρ̄σS

 .

With Itō’s formula we obtain that the processes a and b, appearing in the martingale represen-

tation (9), are given by

at
bt

 = e−rt Σ̃
T
(Xt, St)

ψx(t,Xt, St)

ψs(t,Xt, St)

 .
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From (10) and (12) we can deduce the following result describing the variance optimal hedge

in terms of the futures-delta, and the minimal hedge error in terms of the logspread-delta.

Theorem III.1. The variance optimal futures position in the hedging portfolio is given by

ξ∗t =

[
1− σS

σX
ρe−κ(T−t)

]
ψx(t,Xt, St),(13)

and entails a realized hedge error of

CT (ξ∗, v) = E (h(IT ))− erT
(
v − ρ̄

∫ T

0

e−rtσSψs(t,Xt, St) dW⊥
t

)
.(14)

Observe that the optimal hedge ξ∗ is the Delta of the position’s expectation, dampened by

the hedge ratio defined by

f(T − t) = 1− σS
σX

ρe−κ(T−t).

The factor essentially equals 1 if the product of time to maturity T − t and reversion speed κ is

large. In this case the logspread is expected to return to its mean reversion level before maturity,

and hence the position should be fully hedged with the futures. As maturity approaches, the

short-term fluctuations have an increasing impact on the terminal hedge performance, making

the hedge ratio converge to

h = ρIX
σI
σX

.(15)

Indeed, due to (3), we have lim(T−t)↓0 1−σSρe−κ(T−t)/σX = 1−σSρ/σX = h. We remark that h,

defined in (15), is sometimes referred to as the minimum variance hedge ratio (see e.g. Chapter

3.4. in Hull (2008)).

Observe that if κ is equal to zero, which essentially means that there is no mean reversion,
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then the logspread is not stationary and its variance increases linearly with time. The hedge

ratio is not dampened and it coincides with h. In this case the strategy ξ∗ is equal to the

optimal strategy in a model where both X and I are modeled as GBMs (see Section A for more

details).

In Formula (13) the optimal hedge is expressed in terms of the Delta with respect to the

futures price. In order to obtain a representation in terms of the Delta with respect to the

illiquid asset price I, define first ϕ(t, y, s) = e−r(T−t)E
(
h(I t,y,sT )

)
, where I t,y,s is the solution of

the SDE for the illiquid asset on [t, T ], with initial values I t,y,st = y and St,st = s. Note that

ψ(t, x, s) = ϕ(t, e−sx, s), and in particular, ψx(t, x, s) = e−sϕy(t, e
−sx, s). Thus, the optimal

hedge may be rewritten as

ξ∗t = e−St
[
1− σS

σX
ρe−κ(T−t)

]
ϕy(t, It, St).(16)

If the logspread is positive, then the illiquid asset price is expected to rise relative to the futures

price. This explains why in Equation (16) the delta is reduced by the factor e−St . Conversely, if

the logspread is negative, then the illiquid asset is expected to fall relative to the futures price.

In this the case the delta is augmented by the factor e−St .

Finally, we remark that the hedge ratio remains the same if the hedger uses an option

on the futures for hedging the risk exposure h(IT ). Denote by ∆(t, x) the option’s delta at

time t, given a futures price of Xt = x. The dynamics of the option price P (t,Xt) satisfy

dP (t,Xt) = rP (t,Xt) d t + ∆(t,Xt) dXt, and the value of a self-financing portfolio containing

ξt options at time t is given by

Vt = ert
(
V0 +

∫ t

0

e−rsξs∆(s,Xs) dXs

)
.(17)
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The variance minimizing option position can be shown to be equal to

ξ∗t =

[
1− σS

σX
ρe−κ(T−t)

]
ψx(t,Xt, St)

∆(t,Xt)
.(18)

Suppose that a non-linear position of kerosene is hedged with an option, written on a crude

oil futures, having a similar payoff profile. Then the ratio of deltas ψx(t,Xt, St)/∆(t,Xt) is

usually stable and hence the hedging portfolio does not need to be rebalanced as strongly as

when using futures for hedging.

IV. Standard Deviation of the Hedge Error

Having derived the variance optimal strategy and the corresponding hedge error, see Theorem

III.1, we now aim at computing the implied standard deviation of the hedge error. This al-

lows us to quantify the risk associated with the optimal strategy, which is important for risk

management and performance evaluation of the hedging strategy. We therefore derive analytic

and semianalytic formulas for the standard deviation of the hedge error when minimizing the

variance of risk exposures within our model. As in the previous section, we assume that the

hedger does not have any directional view concerning the futures. This means that the futures

price X is a martingale with dynamics dXt = σXXt dWt.

We aim at computing the standard deviation of the hedge error when cross-hedging the

position h(IT ) following the strategy ξ∗ of (13). Note that the standard deviation of CT (ξ∗, v)

coincides with the standard deviation of erT ρ̄
∫ T

0
e−rtσSψs(t,Xt, St) dW⊥

t . The Itō isometry for

stochastic integrals implies

std(CT (ξ∗, v)) = erT ρ̄σS

√∫ T

0

e−2rtE (ψ2
s(t,Xt, St)) d t.(19)

In general, there is no closed-form expression for the formula for the integral in (19). For linear
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positions, however, we may explicitly calculate the variance, since the futures and the spread

are lognormally distributed. Besides, for positions corresponding to Plain Vanilla options, the

logspread-delta ψs has an explicit representation, and thus allows for an efficient Monte Carlo

simulation of the error (19). We proceed by discussing both cases separately.

A. Linear Positions

In this subsection we derive an analytic formula for the hedge error variance when cross-hedging

a linear position. This is the most relevant case, since most of the risk positions of industrial

companies are linear. Think for instance of an airline being exposed to a short position of

kerosene.

Suppose that the payoff function h given by h(y) = cy, with c ∈ R. In this case the delta of

the value function with respect to the futures price satisfies ψx(t, x, s) = e−r(T−t)E
(
cX t,1

T e−S
t,s
T

)
(see (11)). Thus, with (12), we get

∂

∂s
ψ(t, x, s) = −e−κ(T−t)xe−r(T−t)E

(
cX t,1

T e−S
t,s
T

)
.

In the following we do not only need to compute the expectation of the product X t,1
T e−S

t,s
T , but

also the expectation of the product of higher moments of the logspread and the illiquid asset.

We therefore straightly provide the following lemma.

Lemma IV.1. Let a ∈ R and b ∈ R+, then

E
(
e−aS

0,s
t (X0,x

t )b
)

= A(a, b, x, s, t),
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where A(a, b, x, s, t) is defined by

(20) A(a, b, x, s, t) =

xb exp

[
−1

2
σ2
Xt
(
b− b2

)
− ase−κt − a

(
m+ bρσXσS

1

κ

)(
1− e−κt

)
+

1

2
a2σ2

S

1

2κ

(
1− e−2κt

)]
.

With this at hand the standard deviation (19) simplifies to

std(CT (ξ∗, v)) = |c|ρ̄σS

√∫ T

0

e−2κ(T−t)E (X2
tA

2(1, 1, 1, St, T − t)) d t.(21)

From this we are able to derive the following explicit formula for the hedge error variance.

Theorem IV.2. The variance optimal cross-hedge of a linear position cIT entails a hedge error

with standard deviation

(22)

std(CT ) = σS
√

1− ρ2x exp

(
(m− s)e−κT −m− ρσXσS

1

κ

(
1− 2e−κT

)
+ σ2

S

1

4κ

(
1− 2e−κT

))
× |c|

√∫ T

0

exp

(
−2κ(T − t) + σ2

Xt− 2ρσXσS
1

κ
e−κ(T−t) + σ2

S

1

2κ
e−2κ(T−t))

)
d t.

The integral in (22) can be computed in a straightforward manner using standard numerical

quadratures algorithms.

When analyzing the dependence of the hedge error on the different model parameters it is

convenient to rewrite the hedge error formula (22) as follows:

(23) std(CT ) = |c| σS
√

1− ρ2x exp
(
(m− s)e−κT −m

) [∫ T

0

exp
(
−2κ(T − t) + σ2

Xt
)

× exp

(
−2ρσX

σS
κ

(
1 + e−κ(T−t) − 2e−κT

)
+
σ2
S

2κ

(
1 + e−2κ(T−t) − 2e−κT

))
d t

] 1
2

.
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The hedge error (22) can be approximated with simplified formulas. For long maturities, i.e.

large T , the factor exp
(
(m− s)e−κT −m

)
approximately coincides with e−m. Moreover,

∫ T

0

e−2κ(T−t)+σ2
X t d t =

eσ
2
XT − e−2κT

2κ+ σ2
X

≈ eσ
2
XT

2κ+ σ2
X

,

and hence

for long maturities: std(CT ) ≈ |c|xe−mσS
√

1− ρ2e

„
−ρσSσX+

σ2
S
4

«
/κ

√
eσ

2
XT

2κ+ σ2
X

.

Observe that the hedge error increases exponentially with time to maturity. However, the

volatility squared σ2
X is usually low (see Table A1 in Appendix A), and thus the hedge error

increases approximately linearly, with slope σ2
X/2, in the first several years (compare with the

upper left panel in Figure 3).

For short maturities, i.e. small T , the factor exp
(
(m− s)e−κT −m

)
approximately coincides

with e−s. Besides, by linearly approximating exponentials with the Taylor expansion up to the

first order, we have

∫ T

0

e−2κ(T−t)+σ2
X t d t =

e−σ
2
XT − e−2κT

2κ+ σ2
X

≈ T.

Therefore, we get the approximation

for short maturities: std(CT ) ≈ |c|σS
√

1− ρ2xe−s
√
T .

Note that the hedge error increases with order T 1/2, for short maturities (see the upper left panel

in Figure 3). The kink in Figure 3 is determined by how fast the Ornstein Uhlenbeck process

describing the logspread attains its stationary distribution. The variance of the logspread at

time T , as a function of time to maturity T − t, is given by σ2
S(1− e−2κ(T−t))/(2κ). The hedge
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Figure 3: This figure shows the sensitivity of the standard deviation of the hedge error with respect to the time to maturity

(in the upper left hand panel) and with respect to the parameters of the model (remaining panels). In each panel

only the parameter indicated on the abscissa is varied while the others remain fixed at the estimates from the futures

contract with maturity in August 2009.
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error is roughly proportional to the variance of the logspread.

The hedge error vanishes as the variance of the stationary logspread distribution, σ2
S/(2κ),

converges to zero. Moreover, it is straigthtforward to show

lim
κ↓0

std(CT ) = |c|xe−s σS
σX

√
1− ρ2

√
eσ

2
XT − 1.(24)

Of course, not only the impact of the time to maturity to the hedge error is of interest

but also the influence of the model’s parameters. Figure 3 highlights the sensitivity of the

standard deviation of the hedge error towards changes in the parameters. The figure depicts

the resulting standard deviation by changing one parameter and keeping the others constant.

The fixed parameters are set to the estimates of the futures contract with maturity in August

2009. The figure shows (in the middle left panel) the decreasing standard deviation in the

mean reversion speed κ. This comes at no surprise as a larger κ results in a faster return to the

long-term relationship. The reverse U-shaped behavior with respect to the correlation ρ (in the

right middle panel) highlights the change from the incomplete market setting for |ρ| < 1 to the

complete market setting for |ρ| = 1. With increasing instantaneous variance of the logspread

and the futures price process (σS and σX) the variance of the hedge error also increases (shown

in the lower panels).

B. Non-linear Positions

In practice the case of non-linear risk positions is also relevant. For instance, consider the very

illiquid German natural gas futures markets. Due to the illiquidity gas traders frequently use

futures of neighboring countries for hedging purposes. So, if operators of German gas power

plants protect themselves against changing gas prices by buying Dutch gas on the futures market

(e.g. natural gas futures of the Dutch market TTF) the basis risk is due to a geographical spread

in commodity prices which arises from different trading places for the same underlying. In this
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case TTF contracts serve as proxies that are cointegrated with the natural gas prices in the

German market area. The profit margin of a gas power plant is essentially determined by the

spark spread, i.e. the spread between the electricity price per MWh and the price of the amount

of gas the plant needs for producing 1 MWh of electricity. Electricity will only be produced

if the profit margin exceeds the operating costs. A gas power plant can thus be seen as a call

option, a highly non-linear position, on the spark spread. We therefore also consider here the

hedging of non-linear risk positions.

When it comes to hedging non-linear risk positions, the problem is that in general there

are no explicit formulas available for the standard deviation of the hedge error. We explain

here how a swift simulation analysis can be used to obtain the hedge error characteristics for

standard options.

The simulation-based hedge error analysis basically works as follows. First simulate N inde-

pendent paths of the futures price and the logspread. Then calculate the performance of the

hedging portfolio along any simulation path and subtract it from the risk position h(IT ). The

collection of hedge errors obtained in this way may be analyzed with respect to the empirical

standard deviation, median, and other statistical characteristics.

In order to calculate the portfolio value along any simulation path, one needs to compute the

portfolio position and hence the delta at any time discretization point. As we will show below,

for Plain Vanilla options there are analytic formulas for the deltas, allowing thus to quickly

calculate the portfolio performance for every simulation path. Indeed, the deltas resemble the

deltas for Plain Vanilla options in the Black-Scholes model. As an example we provide the

relevant formulas for a European call option with strike K, i.e. h is given by h(y) = (y−K)+.

First observe that the value function ψ for call options is given by

ψ(t, x, s) = E
(
(I t,x,sT −K)+

)
.
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From the proof of Lemma IV.1 it can be seen that I t,x,sT = e−S
t,s
T X t,x

T can be written as

I t,x,sT = x exp

(
−1

2
σ2
X(T − t)− se−κ(T−t) −m(1− e−κ(T−t))

)
exp(σN),

where N is a standard normal variable and σ2 is given by

σ2 = σ2
X(T − t)− 2ρσXσS

1

κ

(
1− e−κ(T−t))+ σ2

S

1

2κ

(
1− e−2κ(T−t)) .

We get

ψ(t, x, s) =
1√
2π

∫ ∞
−∞

(
xe−

1
2
σ2
X(T−t)−se−κ(T−t)−m(1−e−κ(T−t))+σy −K

)+

e−y/2 d y.(25)

In analogy to the standard Black-Scholes case we define the functions d+(t, x, s) and d−(t, x, s)

as

d+(t, x, s) =
1

σ

[
log

(
K

x

)
+

1

2
σ2
X(T − t) + se−κ(T−t) +m

(
1− e−κ(T−t))]

and d−(t, x, s) = d+(t, x, s)− σ.

Note that the integrand in the integral in (25) equals zero if y < d+(t, x, s), and hence

ψ(t, x, s) = x exp

(
−1

2
σ2
X(T − t)− se−κ(T−t) −m(1− e−κ(T−t)) +

1

2
σ2

)
Φ(d−(t, x, s))

−KΦ(d+(t, x, s)),

where Φ denotes the cumulative distribution function of the standard normal distribution. The

above explicit representation of ψ(t, x, s) yields

ψx(t, x, s) = exp

(
−1

2
σ2
X(T − t)− se−κ(T−t) −m(1− e−κ(T−t)) +

1

2
σ2

)
× [Φ(d−(t, x, s)) + ϕ(d−(t, x, s))∂xd−(t, x, s)]−Kϕ(d+(t, x, s))∂xd+(t, x, s),
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where ∂xd+(t, x, s) = ∂xd−(t, x, s) = 1/(σx).

The analytic and semianalytic formulas for the hedge error allow the efficient computation

and the comparison of the hedge error variance for different, potentially useable, liquid futures

contracts. Up to now, however, we assume that we hedge within the correct model (with a

stationary logspread). Although, statistical tests may help to decide whether the logspread

is stationary or not, there is always the risk to hedge within the wrong model and a relevant

question arises: how sensitive is the hedge error with respect to the model choice? We address

this question in the next Section.

V. The Performance of Suboptimal Hedging Strategies

So far we have assumed that we know with certainty that the price of the illiquid asset and

the price of the liquid futures contract are cointegrated and evolve according to our model.

However, it may happen that a statistical test leads to a wrong conclusion or different tests

lead to different implications. In other words, we face model uncertainty.

In the following Subsection A we consider a 2GBM model and derive the hedge error obtained

by using the optimal strategy from our model. Furthermore, we analyse the impact of applying

the optimal hedging strategy from the 2GBM model to our model. We then proceed by compar-

ing the optimal dynamic hedge with its optimal static counterpart. In practice, traders often

hedge linear positions statically, holding a position in futures that corresponds to the size of

the risk. By fully hedging the risk they intuitively reflect that the hedge ratio essentially equals

1 whenever time to maturity is long. In Subsection B we first derive the optimal static hedging

strategy and compare it with the hedging strategy ξ∗, which allows for portfolio regrouping.
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A. The Costs of Ignoring a Long-term Relationship or Falsely Assuming

a Long-term Relationship

We next introduce a simple model where both X and I are GBMs, hence are not cointegrated

and the logspread does not have a stationary distribution. We will refer to this model as the

2GBM model.

In both models, the futures price is assumed to satisfy the dynamics

dXt = σXXt dW
(X)
t ,

but in contrast to the model with a stationary logspread, discussed in the previous sections,

the 2GBM model assumes that the illiquid asset price process is also a GBM with dynamics

d It = σIIt(ρIX dW
(X)
t + ρ̄IX dW⊥

t ).

In this model the variance minimizing hedging strategy for European options with payoff func-

tion h are known to have the simple form

ζt = ρIX
σIIt
σXXt

ψy(t, It),(26)

where ψ(t, y) = e−r(T−t)E
(
h(I t,yT )

)
. For a derivation of (26) we refer to Hulley and McWalter

(2008); see also Ankirchner and Heyne (2011) for a derivation in a slightly more general setting

using Backward Stochastic Differential Equations (BSDEs).

The optimal cross-hedge within the 2GBM models (26), is essentially determined by the

cross correlation. If an airline company used a 2GBM model estimated with daily data to

hedge kerosene short positions, then it would considerably underhedge its kerosene risk, facing

thus unnecessarily high variations in costs. But, by how much does the hedge error increase if
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we use the wrong model? We next quantify the risk by calculating the hedge error when using

the optimal strategy ζ of the 2GBM model while the log prices are cointegrated and evolve

according to the dynamics of our model.

We restrict our analysis to linear positions of the form cIT . As before we denote the realized

hedge error by

CT = cIT − erT
(
v +

∫ T

0

e−rsζs dXs

)
.

The following proposition provides the hedge error variance for the strategy (26) under our

model with cointegration and under the 2GBM model.

Proposition V.1. Hedging the linear position cIT with the strategy ζ entails a hedge error in

the cointegration model with variance

V (CT ) = c2

{
A(2, 2, X0, S0, T )− A2(1, 1, X0, S0, T )− 2

∫ T

0

ρIXσI(σX − ρσSe−κ(T−t))Bt d t

+

∫ T

0

ρ2
IXσ

2
IA(2, 2, X0, S0, t) d t

}
,

where Bt is given by

Bt = X2
0 exp

(
σ2
Xt−

1

κ
σSσXρ

(
3− 2e−κT − 2e−κt + e−κ(T−t))− S0

(
e−κT + e−κt

))
× exp

(
1

4κ
σ2
S

(
2− e−2κT − e−2κt + 2e−κ(T−t) − 2e−κ(T+t)

)
−m(2− e−κT − e−κt)

)
.

Under the correct model, the 2GBM model, the minimal variance of the realized hedge error is

given by

V (CT ) = c2y2
(
1− ρ2

IX

) (
eσ

2
IT − 1

)
.(27)
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Proposition V.1 allows us to analyse the ignorance of a long-term relationship with respect

to the variance of the hedge error. Of course the variance of the optimal strategy ξ∗ given

by Equation (13) is less than the standard error using the strategy ζ from the 2GBM model

given by Equation (26). The upper panels of Figure 4 compare the performance of the two

strategies.3 When following the strategy ζ, the risk position is underhedged, yielding the hedge

error (dashed line) to grow continually with time to maturity. The hedge error does not flatten

as strongly as when following strategy ξ∗, whose corresponding hedge error is depicted by the

solid line. For very short maturities, the mean reversion has little time to develop and hence

the hedge error entailed by ζ is similar to the hedge error of ξ∗. For long maturities, however,

ζ is considerably outperformed by ξ∗, leading for example to a more than three times higher

error standard deviation over a two year hedging period.

Since by definition there is no strategy with a smaller variance than the variance optimal

strategy the proportion of a three times larger value is strongly convincing. To fairly compare

our model with the 2GBM model, we also consider the inverse case, that is we study the hedge

error of the optimal strategy from the model with the stationary logspread, ξ∗, when there is

no cointegration. To this end we have to derive the resulting hedge error in the 2GBM model

which is given in the next proposition.

Proposition V.2. Hedging the linear position cIT with the strategy ξ∗, see (13), entails a hedge

3Note that we used the estimated parameters obtained for the August 2009 crude oil futures contract (see

Table A1) and that the correlation ρIX can be expressed in terms of the structural parameters of our model,

see (4).
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error in the 2GBM model with variance

(28) V (CT ) = c2
{
B(0, 2, T )−B2(0, 1, T )

− 2

∫ T

0

σIρ

[
1− σS

σX
ρe−κ(T−t)

]
A(1, 1, 1, 0, T − t)σXB(1− e−κ(T−t), 1 + e−κ(T−t), t) d t

+

∫ T

0

[
1− σS

σX
ρe−κ(T−t)

]2

A2(1, 1, 1, 0, T − t)σ2
XB(2− 2e−κ(T−t), 2e−κ(T−t), t) d t

}
,

where B(a, b, t) is given by

B(a, b, t) = E
(
Xa
t I

b
t

)
= Xa

0 I
b
0 exp

(
1

2
t
[
σ2
X(a2 − a) + 2abσXσIρ+ σ2

I (b
2 − b)

])
.(29)

Note that now not all parameters are identified. This is in contrast to the previous scenario,

where we investigated the impact of ignoring a long-term relationship. As the logspread is not

stationary in the 2GBM model the parameter κ is implicitly set to zero. However, to provide a

realistic comparison we estimate the implied distribution of κ̂ in the following way: we simulate

10000 sample paths from the 2GBM model with T = 885 observations. Based on these time

series we estimate our model leading to the distribution of κ̂. For the graphical illustration

we use the corresponding 10%, 50% and 90% quantiles leading to 0.0927, 0.8365 and 2.2450

respectively. The dashed lines in the lower left panel of Figure 4 show the hedge error standard

deviation, for these different mean reversion speeds, when the real prices behave as in the 2GBM

model, but the risk is hedged according to the cointegration model optimal strategy ξ∗. As

a benchmark, the panel depicts also the genuine minimal error standard deviation (solid line)

implied by the optimal strategy ζ. The smaller the mean reversion speed, the smaller the hedge

error. Moreover, the hedge error converges to the minimal hedge error as the mean reversion

speed converges to zero, showing that the cointegration model embeds the 2GBM model.

In many real world applications, it may not be obvious that there is a long-term relationship

between the hedging instrument and the risk to be hedged. Comparing the left upper and left
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Figure 4: The upper left panel shows the standard deviation of the hedge error under cointegration using the optimal strategy

(solid line) and the strategy from the 2GBM model (dashed line). The lower left panel shows the standard deviation

under the 2GBM model using the optimal strategy (solid line) and the strategy from the cointegrated model (dashed

lines) for κ ∈ {2.2450, 0.8365, 0.0927}, from top to down, respectively. The panels on the right depict the ratio of the

standard deviation of the strategies.
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lower panel of Figure 4 we conclude that in ambiguous situations it is nevertheless better to

use a model allowing for a stationary spread rather than using a simpler model that does not.

The error implied by mistakenly assuming a stationary logspread is significantly smaller than

the error made by mistakenly assuming that the hedging instrument is not cointegrated with

the risk.

B. The Costs of Using a Static Hedge

In practice linear positions are often only statically hedged, even though the variance minimizing

hedge is not constant. In the numerical example below we compare the standard deviations

of static and dynamic hedges of a linear position, and address the question by how much the

dynamic variance minimizing strategy outperforms the static one.

For that purpose we need to derive the optimal static hedge position a ∈ R that minimizes

the variance

CT (a) = cIT − erT
(
v +

∫ T

0

e−rta dXt

)
.

With this at hand we can calculate the minimal error standard deviation that can be achieved

by hedging statically with futures.

Proposition V.3. The optimal static hedging position ǎ in futures contracts which minimizes

the variance of the hedge error is given by

ǎ =
Cov

(
cIT , e

rT
∫ T

0
e−rt dXt

)
V
(
erT
∫ T

0
e−rt dXt

) = ce−rT
E
(
IT
∫ T

0
e−rt dXt

)
σ2
XE
(∫ T

0
e−2rtX2

t d t
)(30)

32



with corresponding variance

V (CT (ǎ)) = E
(
C2
T (ǎ)

)
= c2V (IT )−

c2
[
E
(
IT
∫ T

0
e−rt dXt

)]2

σ2
XE
(∫ T

0
e−2rtX2

t d t
) .(31)

The expectation in the denominator is given by

E
(∫ T

0

e−2rtX2
t d t

)
=


X2

0

σ2
X−2r

(e(σ2
X−2r)T − 1), if σ2

X 6= 2r,

X2
0T, if σ2

X = 2r.

For the expectation in the numerator we have, assuming σ2
X > r,

E
(
IT

∫ T

0

e−rt dXt

)
=

 X2
0e

λ(T ) σ2
X

σ2
X−r

(
e(σ2

X−r)T − 1
)
, if ρ = 0,

X2
0e

λ(T )+
ρσXσS

κ
e−κT (Λ1(T )− Λ2(T )), if ρ 6= 0,

(32)

with

Λ1(T ) =
σ2
Xe

(σ2
X−r)T (|ρ|σXσS)−

σ2
X−r
κ

κ1−
σ2
X
−r
κ

(
γ

(
σ2
X − r
κ

,
1

κ
|ρ|σXσS

)
−γ
(
σ2
X − r
κ

,
1

κ
|ρ|σXσSe−κT

))
,

Λ2(T ) = e(σ2
X−r)T

( |ρ|σXσS
κ

)−σ2
X−r
κ
(
γ

(
σ2
X − r
κ

+ 1,
1

κ
|ρ|σXσS

)
−γ
(
σ2
X − r
κ

+ 1,
1

κ
|ρ|σXσSe−κT

))
,

λ(T ) = −S0e
−κT −m(1− e−κT ) +

σ2
S

4κ

(
1− e−2κT

)
− ρσSσX

κ

(
1− e−κT

)
.

Here γ(s, x) =
∫ x

0
ys−1e−y d y denotes the incomplete Gamma function. Furthermore we have

V (IT ) = A(2, 2, X0, S0, T )− A2(1, 1, X0, S0, T ),
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Figure 5: The panel on the left shows the standard deviation of the static (dashed line) versus the dynamic hedge error (solid

line). The right hand panel depicts the ratio. As we have to assume a constant interest rate for the computation of

the variance of the static hedge error we fix it at r = 0.02.

where A is as in (20).

Remark V.4. Note the assumption σ2
X > r in the Proposition above is only needed in order

to get a closed expression with respect to the incomplete Gamma function. In case σ2
X ≤ r

the defining integral of the incomplete Gamma function explodes around 0. In this case the

Formula (32) still holds if we replace γ with the upper incomplete Gamma function γ(s, x) =

−
∫∞
x
ys−1e−y d y. In any case, regardless of σ2

X > r, the formula (32) holds when we replace

Λ1(T )− Λ2(T ) with
∫ T

0
e(σ2

X−r)t(σ2
X − ρσXσSe−κ(T−t))e−ρσXσSe

−κ(T−t)/κ d t.

Proposition V.5. The expressions for the optimal static hedge ǎ (30) and for the corresponding

variance (31) from the previous proposition hold also in the 2GBM case. For the involved
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expectations we have

E
(∫ T

0

e−2rtX2
t d t

)
=


X2

0

σ2
X−2r

(e(σ2
X−2r)T − 1), if σ2

X 6= 2r,

X2
0T, if σ2

X = 2r,

and

E
(
IT

∫ T

0

e−rt dXt

)
=

 X0I0
ρIXσXσI
ρIXσXσI−r

(e(ρIXσXσI−r)T − 1), if ρIXσXσI 6= r,

X0I0ρIXσXσIT, if ρIXσXσI = r.

Furthermore

V (IT ) = I2
0 (eσ

2
IT − 1).

Using the expressions for the standard deviation of the hedge error from Theorem IV.2 and

Proposition V.3 we can compare the risks entailed by both strategies. The left hand panel of

Figure 5 depicts the standard deviation of the static and dynamic variance minimizing hedge

against time to maturity. The right hand panel shows the increase of the standard deviation

if one confines with the static hedge. The increase in the variability by more than 10% for

positions hedged over a period of one year indicates that the hedge should be dynamically

adjusted. The figure is again based on the estimated parameter values obtained for the August

2009 crude oil futures contract (see Table A1 in Appendix A).

VI. Including Directional Views and Stochastic Volatility

In this section we extend the model introduced in Section II by allowing for stochastic volatility

of the futures and the logspread. We assume that the volatility of both processes are propor-

tional to a Cox-Ingersoll-Ross process. The futures dynamics thus coincides with the dynamics

35



of the risky asset in the Heston model.

Let (W 1,W 2,W 3) be a 3-dimensional Brownian motion and suppose that the futures price

process X and its volatility ν = (νt)t≥0 evolve according to the SDE

dXt = µ(t, νt)Xt d t+
√
νtXt dW 1

t(33)

d νt = β(ϑ− νt) d t+ σν
√
νt
(
ρ1 dW 1

t + ρ1 dW 2
t ),(34)

where ρ1 ∈ [−1, 1], ρ̄1 =
√

1− ρ2
1, β, ϑ, σν > 0, and µ : R2

+ → R is measurable. As before, let

St = log(Xt)− log(It). Assume that the logspread’s volatility is proportional to ν, and that S

solves the mean reverting SDE

dSt = κ(m− St) d t+ σS
√
νt(ρ dW 1

t + ρ̄η dW 2
t + ρ̄η̄ dW 3

t ), S0 = s.(35)

Since we have included a directional view in the dynamics of the futures price, we cannot

directly invoke the method used in Section III for the derivation of the variance optimal hedge.

When the trading instruments are assumed to be trended, and hence are not martingales, then

it is very difficult to determine variance optimal hedging strategy. There are, however, other

quadratic optimality criteria that considerably simplify the calculation of hedging strategies.

A very intriguing type of hedging strategies are the so-called locally risk minimizing hedging

strategies. These are variance optimal strategies with respect to a particular martingale mea-

sure, usually referred to as the minimal martingale measure. For an overview on quadratic

hedging approaches we refer to Schweizer (2008).

In our extended model the minimal martingale measure Q̂ is given by

d Q̂

dP
= exp

(
−
∫ T

0

ω(t, ν) dW 1
t −

1

2

∫ T

0

ω2(t, ν) d t

)
,
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where ω(t, νt) = µ(t, νt)/
√
νt is the market price of risk.4

One can proceed as in Section III for the derivation of the local risk minimizing hedge, i.e.

the variance optimal hedge relative to Q̂. The value function of h(IT ) will be defined by

ψ(t, x, v, s) = e−r(T−t)E bQ (h(X t,x,v
T e−S

t,s
T )
)
.(36)

With the same assumptions on h one can show that the local risk minimizing hedge is given by

ξ̂t = ψx(t,Xt, νt, St)
[
1− σSρe−κ(T−t)]+

σνρ1

Xt

ψv(t,Xt, νt, St).(37)

Observe that the local risk minimizing hedge is now a weighted sum of the Delta and Vega

of the risk position’s expectation under the minimal martingale measure Q̂. Clearly, the term

involving the Vega of the position appears due to the additional non-tradable risk induced by

the stochastic volatility, which also needs to be cross-hedged.

A similar analysis as in the previous sections, e.g. estimation of model parameters, derivation

of hedge errors and their respective standard deviations, is somewhat more involved. However,

one can profit of the affine model structure and express the value function and its gradient

in terms of generalized Ricatti equations. Fourier inversion methods then yield semi-explicit

formulas for optimal strategies, which are amenable to swift simulation analysis.

VII. Conclusion and Outlook

Hedging is essential for controlling and managing risk and it is an important area of research. In

this paper we show that a long-term relationship between the risk and the hedging instrument

4A sufficient condition for this to be a proper measure change is the following growth condition on ω. For

A,B ≥ 0 and δ ∈ [0, 1/2] we assume |ω(t, x)| ≤ A+Bxδ, x ≥ 0.
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has important implications for the optimal hedging strategy and, thus, also for the hedge

error. In particular, we propose a model which explicitly takes into account such a long-term

relationship. We derive the variance optimal cross-hedge strategy und provide the variance of

the hedge error in terms of the model’s parameters. We demonstrate the practical relevance

of incorporating the long-term relationship through an empirical example, where we find a

long-term relationship between most crude oil futures contracts and the spot kerosene price.

Interestingly, the model is also consistent with the commonly observed behavior of commodity

traders, who use for cross hedges a hedge ratio of 100% instead of a hedge ratio dampened by

the cross correlation between the risk and the hedging instrument, which is implied by models

with only correlated Brownian motions. Furthermore, we show that even for cases where the

decision concerning the stationarity of the logspread is not obvious, it is better to allow for a

long-term relationship rather than to neglect it.

The model can be extended towards several directions to provide a more realistic dynamics for

asset prices. Especially the consideration of jumps in the price process seems to be an interesting

extension. However, several specifications are plausible and a careful empirical investigation

is needed. On an ad hoc basis it is, for example, not clear whether the price processes jump

together and how the jump sizes are related. These aspects will have significant impact on the

properties of the hedge error and we plan to investigate these questions in more detail in future

research.

Appendix A. Empirical Results

Table A1 shows the number of observations (second column), the p-value of the augmented

Dickey-Fuller test (third column) and the estimation result for different crude oil futures con-

tracts and their corresponding spot kerosene prices.
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Table A1: Estimates

contract nobs ADF µ σx σs κ m ρ
201010 1147 0.0888∗ 0.0751

(0.1302)
0.2768
(0.0059)

0.2871
(0.0060)

2.5548
(1.0976)

−0.1661
(0.0534)

0.3401
(0.0260)

201009 1147 0.0750∗ 0.0742
(0.1324)

0.2795
(0.0059)

0.2877
(0.0060)

2.7131
(1.1078)

−0.1687
(0.0515)

0.3475
(0.0260)

201008 1145 0.0631∗ 0.0763
(0.1361)

0.2823
(0.0059)

0.2886
(0.0061)

2.8890
(1.1728)

−0.1693
(0.0492)

0.3550
(0.0258)

201007 1123 0.0555∗ 0.0778
(0.1348)

0.2855
(0.0061)

0.2908
(0.0062)

3.0632
(1.1704)

−0.1731
(0.0473)

0.3646
(0.0259)

201006 1375 0.0310∗∗ 0.1703
(0.1209)

0.2758
(0.0053)

0.2993
(0.0058)

2.5899
(1.1150)

−0.1946
(0.0493)

0.3404
(0.0241)

201005 1080 0.0436∗∗ 0.1114
(0.1405)

0.2901
(0.0064)

0.2942
(0.0064)

3.5046
(1.2913)

−0.1752
(0.0410)

0.3771
(0.0262)

201004 1058 0.0326∗∗ 0.0906
(0.1453)

0.2954
(0.0065)

0.2970
(0.0065)

3.8040
(1.3324)

−0.1808
(0.0390)

0.3867
(0.0262)

201003 1035 0.0250∗∗ 0.0737
(0.1494)

0.3002
(0.0066)

0.3006
(0.0067)

4.1174
(1.4241)

−0.1836
(0.0371)

0.3990
(0.0262)

201002 1015 0.0193∗∗ 0.0906
(0.1518)

0.3035
(0.0068)

0.3020
(0.0069)

4.5175
(1.6076)

−0.1866
(0.0332)

0.4043
(0.0263)

201001 994 0.0126∗∗ 0.0789
(0.1551)

0.3098
(0.0070)

0.3045
(0.0069)

4.9939
(1.3783)

−0.1916
(0.0312)

0.4178
(0.0262)

200912 1245 0.0097∗∗∗ 0.1852
(0.1345)

0.2979
(0.0060)

0.3114
(0.0064)

3.8232
(1.2755)

−0.2137
(0.0374)

0.3892
(0.0241)

200911 950 0.0046∗∗∗ 0.0860
(0.1564)

0.3197
(0.0073)

0.3108
(0.0072)

6.3841
(2.0112)

−0.1994
(0.0238)

0.4415
(0.0261)

200910 928 0.0029∗∗∗ 0.0603
(0.1687)

0.3229
(0.0075)

0.3135
(0.0074)

7.0739
(1.9253)

−0.2032
(0.0231)

0.4532
(0.0261)

200909 906 0.0014∗∗∗ 0.0819
(0.1738)

0.3275
(0.0077)

0.3178
(0.0076)

8.0814
(2.1057)

−0.2061
(0.0208)

0.4677
(0.0260)

200908 885 ≤ 0.0010∗∗∗ 0.0430
(0.1807)

0.3321
(0.0079)

0.3223
(0.0078)

9.5437
(2.2822)

−0.2120
(0.0178)

0.4806
(0.0259)

200907 862 ≤ 0.0010∗∗∗ 0.0743
(0.1828)

0.3388
(0.0082)

0.3275
(0.0080)

11.5957
(2.5298)

−0.2166
(0.0153)

0.5011
(0.0256)

200906 1114 ≤ 0.0010∗∗∗ 0.1416
(0.1498)

0.3191
(0.0068)

0.3298
(0.0072)

6.6833
(1.7074)

−0.2404
(0.0233)

0.4579
(0.0239)

200905 819 ≤ 0.0010∗∗∗ −0.0114
(0.1953)

0.3516
(0.0086)

0.3407
(0.0086)

15.7614
(2.9919)

−0.2274
(0.0111)

0.5364
(0.0250)

200904 797 ≤ 0.0010∗∗∗ −0.0655
(0.1973)

0.3513
(0.0088)

0.3429
(0.0087)

15.9689
(3.0523)

−0.2307
(0.0103)

0.5594
(0.0245)

200903 775 ≤ 0.0010∗∗∗ −0.0672
(0.1953)

0.3436
(0.0086)

0.3351
(0.0086)

15.0723
(2.8192)

−0.2362
(0.0135)

0.5631
(0.0244)

200902 755 ≤ 0.0010∗∗∗ −0.0694
(0.2005)

0.3469
(0.0089)

0.3257
(0.0085)

12.1794
(2.4786)

−0.2411
(0.0146)

0.5815
(0.0242)

200901 733 0.0021∗∗∗ −0.0802
(0.1966)

0.3306
(0.0086)

0.3053
(0.0081)

10.9528
(2.4631)

−0.2398
(0.0160)

0.5742
(0.0247)

The first column presents the maturity date of the contract, the second column gives the number of observations. The third

column reports the p-value of the augmented Dickey-Fuller test for the null of non-stationarity. The ∗ (∗∗,∗∗∗) indicates

the rejection of non-stationary at the 10% (5%,1%) level. The remaining columns show the parameter estimates with the

corresponding asymptotic standard errors given in parenthesis.
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Appendix B. Proofs

Proof of Lemma II.1. By distinguishing the cases ρ ≥ 0 and ρ < 0 one can show that

∂ρIX/∂σS ≤ 0, and that the partial derivative is strictly smaller than zero if σS > 0. Thus, ρIX is

strictly decreasing in σS. From the definition of ρIX we have ρ2
IX = (σX − ρσS)2 / (σ2

X − 2ρσSσX + σ2
S),

which leads to the quadratic equation in σS

(B-1) (ρ2
IX − ρ2)σ2

S + 2ρσX(1− ρ2
IX)σS − σ2

X(1− ρ2
IX) = 0.

If ρ 6= ρIX , then Equation (B-1) has two solutions, namely

σS = σX

√
1− ρ2

IX

−ρ
√

1− ρ2
IX ± ρIX

√
1− ρ2

ρ2
IX − ρ2

.

Since ρ2
IX − ρ2 = (ρIX

√
1− ρ2 + ρ

√
1− ρ2

IX)(ρIX
√

1− ρ2 − ρ
√

1− ρ2
IX), this further yields

σS = σX

√
1− ρ2

IX

1

ρ
√

1− ρ2
IX ± ρIX

√
1− ρ2

.

If ρIX > ρ, then only one of the roots guarantees that σS ≥ 0, and we obtain (5). If ρIX = ρ,

then (B-1) has a unique solution, given by σS = σX/(2ρ). The inverse function of (4) is

continuous on ρ−1(R+). Therefore, Equation (5) must also hold true for ρIX < ρ.

Proof of Lemma IV.1. Since S0,s
t = se−κt + m(1− e−κt) +

∫ t
0
e−κ(t−u)σS(ρ dWu + ρ̄ dW⊥

u ),

we get

e−aS
0,s
t (X0,x

t )b = xb exp

(
− b

2
σ2
Xt− ase−κt − am(1− e−κt) +

∫ t

0

(bσX − ρaσSe−κ(t−u)) dWu

)
× exp

(
−
∫ t

0

(aρ̄σSe
−κ(t−u)) dW⊥

u

)
.

We calculate the variances of the independent normal variables given by the integrals in the
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last two factors. We have

∫ t

0

(bσX − ρaσSe−κ(t−u))2 d t = b2σ2
Xt− 2abρσXσS

1

κ
(1− e−κt) + a2ρ2σ2

S

1

2κ
(1− e−2κt)

and

∫ t

0

(aρ̄σSe
−κ(t−u))2 d t = a2ρ̄2σ2

S

1

2κ
(1− e−2κt).

We use this to derive

E
(
e−aS

0,s
t (X0,x

t )b
)

= xb exp

(
− b

2
σ2
Xt− ase−κt − am(1− e−κt)

)
× E

(
exp

(∫ t

0

(bσX − ρaσSe−κ(t−u)) dWu

))
× E

(
exp

(
−
∫ t

0

(aρ̄σSe
−κ(t−u)) dW⊥

u

))
= xb exp

(
− b

2
σ2
Xt− ase−κt − am(1− e−κt)

)
× exp

[
1

2

(
b2σ2

Xt− 2abρσXσS
1

κ
(1− e−κt) + a2ρ2σ2

S

1

2κ
(1− e−2κt)

)]
× exp

[
1

2

(
a2ρ̄2σ2

S

1

2κ
(1− e−2κt)

)]
,

from which the result follows.

Proof of Theorem IV.2. Recall that from (21) we have

(B-2) V (CT (ξ∗, v)) = c2ρ̄2σ2
S

∫ T

0

e−2k(T−t)E
(
X2
tA

2(1, 1, 1, St, T − t)
)

d t.
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By the definition of A, we have

E
(
X2
tA

2(1, 1, 1, St, T − t)
)

= exp

(
−2(m+ ρσXσS

1

κ
)(1− e−κ(T−t)) + σ2

S

1

2κ
(1− e−2κ(T−t))

)(B-3)

× E
(
X2
t exp

(
−2Ste

−κ(T−t))) ,
and again using the definition of A we get

E
(
X2
t exp

(
−2Ste

−κ(T−t))) = A(2e−κ(T−t), 2, x, s, t)

= x2 exp

[
σ2
Xt− 2se−κT − 2(m+ 2ρσXσS

1

κ
)(e−κ(T−t) − e−κT )

]
× exp

[
2σ2

S

1

2κ
(e−2κ(T−t) − e−2κT )

]
.

Combining the last equation with (B-3) we further obtain

E
(
X2
tA

2(1, 1, 1, St, T − t)
)

= x2 exp

(
σ2
Xt− 2se−κT − 2ρσXσS

1

κ
(1 + e−κ(T−t) − 2e−κT )

)(B-4)

× exp

(
−2m(1− e−κT ) + σ2

S

1

2κ
(1− 2e−κT + e−2κ(T−t))

)
.

The previous calculations yield, by combination of (B-2) and (B-4), Equation (22).

Proof of Proposition V.1. Since I is a GBM in the 2GBM model, the value function ψ

associated with the linear position h(x) = cx is given by ψ(t, y) = e−r(T−t)cy. Therefore,

ψy(t, y) = e−r(T−t)c, and the realized error variance in Model 1, following strategy ζt =

ρIXσIIte
−r(T−t)c/ (σXXt), satisfies

CT = cIT − erT
(
v +

∫ T

0

e−rT cρIXσIIt dW
(X)
t

)
,
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and consequently we have

V (CT ) = c2V (IT )− 2c2 Cov

(
IT ,

∫ T

0

ρIXσIIt dW
(X)
t

)
+ c2E

(∫ T

0

ρ2
IXσ

2
II

2
t d t

)
.

Note that V (IT ) = A(2, 2, X0, S0, T )− A2(1, 1, X0, S0, T ) and observe further that

E
(∫ T

0

ρ2
IXσ

2
II

2
t d t

)
=

∫ T

0

ρ2
IXσ

2
IA(2, 2, X0, S0, t) d t.

It remains to calculate the covariance above. To that effect we recall the decomposition

(B-5) of IT from the proof of Proposition V.3 and borrow the respective notation to write∫ T
0
ρIXσIIt dW

(X)
t =

∫ T
0
ρIXσIItdW̃

(X)
t +

∫ T
0
ρIXσIIt(σX − ρσSe−κ(T−t)) d t. Consequently,

Cov

(
IT ,

∫ T

0

ρIXσIIt dW
(X)
t

)
= X0e

λ(T )EQ

(∫ T

0

ρIXσIIt(σX − ρσSe−κ(T−t)) d t

)
= X0e

λ(T )

∫ T

0

ρIXσI(σX − ρσSe−κ(T−t))EQ (It) d t

=

∫ T

0

ρIXσI(σX − ρσSe−κ(T−t))E (IT It) d t.

In order to calculate E (IT It) we proceed similar as in Lemma IV.1. We decompose IT It into

IT It = X2
0 exp

(∫ T

0

[
σX(1 + 1u≤t)− σSρ

(
e−κ(T−u) + e−κ(t−u)1u≤t

)]
dWX

u

)
× exp

(
−
∫ T

0

σS ρ̄
(
e−κ(T−u) + e−κ(t−u)1u≤t

)
dW⊥

u

)
× exp

(
−1

2

∫ T

0

σ2
X(1 + 1u≤t) du

)
exp

(
−S0

(
e−κT + e−κt

)
−m(2− e−κT − e−κt)

)
.

The variances of the stochastic integrals are given by

∫ T

0

σ2
X(1 + 2u≤t + 1u≤t)− 2σSσXρ

[
e−κ(T−u) + 1u≤t

(
2e−κ(t−u) + e−κ(T−u)

)]
+σ2

Sρ
2
(
e−κ(T−u) + e−κ(t−u)1u≤t

)2
du
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and

∫ T

0

σ2
S ρ̄

2
(
e−κ(T−u) + e−κ(t−u)1u≤t

)2
du.

Hence taking expectation yields

E (IT It) = X2
0 exp

(
1

2

∫ T

0

[
σ2
X2u≤t − 2σSσXρ

[
e−κ(T−u) + 1u≤t

(
2e−κ(t−u) + e−κ(T−u)

)]]
du

)
× exp

(
1

2

∫ T

0

σ2
S

(
e−2κ(T−u) + 2e−κ(T+t−2u)1u≤t + e−2κ(t−u)1u≤t

)
du

)
× exp

(
−S0

(
e−κT + e−κt

)
−m(2− e−κT − e−κt)

)
.

The result follows by a simple calculation.

Proof of Proposition V.2. Recall from (13) that ξ∗t =
[
1− σSρe−κ(T−t)/σX

]
ψx(t,Xt, St),

with ψ(t, x, s) = e−r(T−t)E
(
h(X t,x

T e−S
t,s
T )
)

.

Hence for h(y) = cy we get ψx(t, x, s) = ce−r(T−t)E
(
X t,1
T e−S

t,s
T

)
= A(1, 1, 1, s, T − t). Thus,

the realized error variance in the 2GBM model, following the strategy above, satisfies

CT = cIT − erT
(
v + c

∫ T

0

e−rT
[
1− σS

σX
ρe−κ(T−t)

]
A(1, 1, 1, St, T − t) dXt

)
.

Consequently, setting v = ce−rTE (IT ), we have

V (CT ) = c2V (IT )− 2c2 Cov

(
IT ,

∫ T

0

[
1− σS

σX
ρe−κ(T−t)

]
A(1, 1, 1, St, T − t)σXXt dW

(X)
t

)
+ c2E

(∫ T

0

[
1− σS

σX
ρe−κ(T−t)

]2

A2(1, 1, 1, St, T − t)σ2
XX

2
t d t

)
.

It is straightforward to see that B(a, b, t) defined as B(a, b, t) = E
(
Xa
t I

b
t

)
, with X and I as in

the 2GBM model, fulfills (29). Hence V (IT ) = B(0, 2, T )− B2(0, 1, T ). Observe that we may,
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via Fubini’s theorem, write the expectation in the last term in the variance of CT above as

∫ T

0

[
1− σS

σX
ρe−κ(T−t)

]2

A2(1, 1, 1, 0, T − t)σ2
XE
(
exp

(
−2Ste

−κ(T−t))X2
t

)
d t.

In order to simplify further recall that St = log(Xt)− log(It). Thus,

E
(
exp

(
−2Ste

−κ(T−t))X2
t

)
= E

(
X

2−2e−κ(T−t)
t I2e−κ(T−t)

t

)
= B(2− 2e−κ(T−t), 2e−κ(T−t), t),

which combined with the previous integral yields the last term in (28). In order to simplify the

remaining term in the variance of CT we apply the standard trick of a change of measure, here

with dQ = (IT/I0) dP , Fubini’s Theorem, and reversing the measure change to obtain

∫ T

0

σIρ

[
1− σS

σX
ρe−κ(T−t)

]
A(1, 1, 1, 0, T − t)σXE

(
IT exp

(
−Ste−κ(T−t))Xt

)
d t.

Finally, using St = log(Xt) − log(It), and the independent increments of a Brownian motion,

we get

E
(
IT exp

(
−Ste−κ(T−t))Xt

)
= E

(
IT I

e−κ(T−t)

t X1−e−κ(T−t)

t

)
= E

(
I1+e−κ(T−t)

t X1−e−κ(T−t)

t exp

(∫ T

t

σI dW I
u −

1

2

∫ T

t

σ2
I du

))
= B(1− e−κ(T−t), 1 + e−κ(T−t), t),

which together with the previous integral yields the middle term in (28) and thus finishes the

proof.

Proof of Proposition V.3. The variance of the hedge error does not depend on the initial

capital v, and hence we may assume that erTv = cE (IT ). Holding the constant position a
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between 0 and T then entails the hedge error

CT (a) = cIT − E (cIT )− aerT
∫ T

0

e−rt dXt,

and since Xt is a martingale we have E (CT (a)) = 0. Hence, the variance of CT (a) is given by

E
(
C2
T (a)

)
= c2E

(
(IT − E (IT ))2

)
− 2acerTE

(
(IT − E (IT ))

∫ T

0

e−rt dXt

)
+a2e2rTE

((∫ T

0

e−rt dXt

)2
)

= c2E
(
(IT − E (IT ))2

)
− 2acerTE

(
IT

∫ T

0

e−rt dXt

)
+ a2e2rTE

(∫ T

0

e−2rtσ2
XX

2
t d t

)
.

The optimal ǎ which minimizes the variance of the hedge error is given by

ǎ = ce−rT
E
(
IT
∫ T

0
e−rt dXt

)
σ2
XE
(∫ T

0
e−2rtX2

t d t
) .

For the variance of the corresponding hedge error we have

E
(
C2
T (ǎ)

)
= V (cIT )−

Cov
(
cIT , e

rT
∫ T

0
e−rt dXt

)2

V
(
erT
∫ T

0
e−rt dXt

) = c2V (IT )−
c2
[
E
(
IT
∫ T

0
e−rt dXt

)]2

σ2
XE
(∫ T

0
e−2rtX2

t d t
) .

The expectation in the denominator is given by

E
(∫ T

0

e−2rtX2
t d t

)
=

∫ T

0

e−2rt E
(
X2
t

)︸ ︷︷ ︸
=X2

0 exp(σ2
X t)

d t =


X2

0

σ2
X−2r

(e(σ2
X−2r)T − 1), if σ2

X 6= 2r,

X2
0T, if σ2

X = 2r.

The computations for the expectation in the numerator are somewhat more involved. Using
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the explicit expressions for ST and XT , we may decompose IT into

(B-5) IT = XT e
−ST = X0e

λ(T )DT ,

where DT is the value at time T of the process D defined by, for all t ∈ [0, T ],

Dt = exp

(∫ t

0

(σX − ρσSe−κ(T−u)) dW (X)
u − 1

2

∫ t

0

(σX − ρσSe−κ(T−u))2 du

)
× exp

(
−
∫ t

0

ρ̄σSe
−κ(T−u)) dW⊥

u −
1

2

∫ t

0

ρ̄2σ2
Se
−2κ(T−u) du

)

and λ(T ) is a constant given by

λ(T ) = − S0e
−κT −m(1− e−κT )− σ2

X

2
T +

1

2

∫ T

0

(σX − ρσSe−κ(T−u))2 du

+
1

2

∫ T

0

ρ̄2σ2
Se
−2κ(T−u) du

= − S0e
−κT −m(1− e−κT ) +

σ2
S

4κ
(1− e−2κT )− ρσSσX

κ
(1− e−κT ).

Note that D is a strictly positive martingale and satisfies Novikov’s condition. Therefore we

can define a probability measure Q via

dQ = DT dP.

Under Q the processes W̃ (X) and W̃⊥, for all t ∈ [0, T ],

W̃
(X)
t = W

(X)
t −

∫ t

0

(σX − ρσSe−κ(T−u)) du

W̃⊥
t = W⊥

t +

∫ t

0

ρ̄σSe
−κ(T−u) du
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are independent Brownian motions. The dynamics of X, rewritten in terms of W̃ (X), satisfy

dXt = σX(σX − ρσSe−κ(T−t))Xt d t+ σXXt d W̃
(X)
t .

Observe that the expectation of Xt with respect to Q is given by

EQ (Xt) = X0 exp

(∫ t

0

σX(σX − ρσSe−κ(T−u)) du

)
= X0 exp

(
σ2
Xt+

ρσXσS
κ

e−κT
)

exp
(
−ρσXσS

κ
e−κ(T−t)

)
.

Now the expectation term in the numerator can be written as

E
(
IT

∫ T

0

e−rt dXt

)
= X0e

λ(T )EQ

(∫ T

0

e−rt dXt

)
= X0e

λ(T )

∫ T

0

e−rtσX(σX − ρσSe−κ(T−t))EQ (Xt) d t

= X2
0e

λ(T )+
ρσXσS

κ
e−κT(B-6)

×
∫ T

0

e(σ2
X−r)t(σ2

X − ρσXσSe−κ(T−t))e−
ρσXσS

κ
e−κ(T−t)

d t︸ ︷︷ ︸
=A

.

For ρ = 0 we are done. For ρ 6= 0 we continue by substituting u = |ρ|σXσSe−κ(T−t)/κ which

leads to an explicit expression for the above integral A in terms of the incomplete Gamma
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function γ(s, x) =
∫ x

0
ys−1e−y d y.

A = e(σ2
X−r)T

( |ρ|σXσS
κ

)−σ2
X−r
κ

1
κ
|ρ|σXσS∫

1
κ
|ρ|σXσSe−κT

u
σ2
X−r
κ (σ2

X − κu)e−u
1

κu
du

=
σ2
Xe

(σ2
X−r)T (|ρ|σXσS)−

σ2
X−r
κ

κ1−
σ2
X
−r
κ

1
κ
|ρ|σXσS∫

1
κ
|ρ|σXσSe−κT

u
σ2
X−r
κ
−1e−u du

− e(σ2
X−r)T

( |ρ|σXσS
κ

)−σ2
X−r
κ

1
κ
|ρ|σXσS∫

1
κ
|ρ|σXσSe−κT

u
σ2
X−r
κ e−u du

=
σ2
Xe

(σ2
X−r)T (|ρ|σXσS)−

σ2
X−r
κ

κ1−
σ2
X
−r
κ

(
γ

(
σ2
X − r
κ

,
1

κ
|ρ|σXσS

)
− γ

(
σ2
X − r
κ

,
1

κ
|ρ|σXσSe−κT

))
︸ ︷︷ ︸

=Λ1(T )

− e(σ2
X−r)T

( |ρ|σXσS
κ

)−σ2
X−r
κ
(
γ

(
σ2
X − r
κ

+ 1,
|ρ|σXσS

κ

)
− γ

(
σ2
X − r
κ

+ 1,
|ρ|σXσSe−κT

κ

))
︸ ︷︷ ︸

=Λ2(T )

.

Plugging this into (B-6) gives

E
(
IT

∫ T

0

e−rt dXt

)
= X2

0e
λ(T )+

ρσXσS
κ

e−κT (Λ1(T )− Λ2(T )).

The expression for the V (IT ) is straightforward.

Proof of Proposition V.5. The expressions for ǎ and the corresponding variance V (CT (ǎ))

are model independent and therefore the same as in Proposition V.3. In both models X is a

GBM and hence we again have

E
(∫ T

0

e−2rtX2
t d t

)
=


X2

0

σ2
X−2r

(e(σ2
X−2r)T − 1) if σ2

X 6= 2r

X2
0T if σ2

X = 2r
.
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For the expectation in the numerator we get

E
(
IT

∫ T

0

e−rt dXt

)
= E

(∫ T

0

e−rtd〈I,X〉t
)

=

∫ T

0

e−rtρIXσXσIE (ItXt) d t.

Straightforward computations give E (XtIt) = X0I0e
ρIXσXσI t, which plugged into the above

expressions gives the desired result. The expression for the V (IT ) is straightforward.
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