Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Multiscale Total Variation with Automated Regularization Parameter Selection for Image Restoration

Yiqiu Dong

START Project, University of Graz Cooperators: M. Hintermüller, M. Rincon

November 3, 2010

イロト 不得 トイヨト イヨト

-

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method MTV Model Algorithm for MTV

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

1 Background

Degradation Model Rudin-Osher-Fatemi Model

2 Multiscale Total Variation Method

Multiscale Total Variation Model Algorithm for Multiscale Total Variation Model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 Spatially Adapted Parameter Selection Locally Constrained Problem

Recognition of Detail Regions Update of the Parameter λ

4 SA-TV Algorithm

- **5** Numerical Results
- 6 Extend to Color Image Restoration
- Conclusion

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Degradation Model

 $z = K\hat{u} + n$

- K ∈ L(L²(Ω)) is a blurring operator
- *n* represents white Gaussian noise with mean 0 and variance σ^2

Problem

- Restore û from z with n unknown
- III-posed problem

- 日本 - 1 日本 - 日本 - 日本

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Degradation Model

 $z = K\hat{u} + n$

- K ∈ L(L²(Ω)) is a blurring operator
- *n* represents white Gaussian noise with mean 0 and variance σ^2

Problem

- Restore \hat{u} from z with *n* unknown
- III-posed problem

(日) (圖) (E) (E) (E)

Yiqiu Dong

Outline

Degradation Model

ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Rudin-Osher-Fatemi (ROF) Model (1992)

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|$$

subject to $\int_{\Omega}|Ku-z|^2dx\leq\sigma^2|\Omega|$

- $BV(\Omega)$ denotes the space of functions of bounded variation
- $\int_{\Omega} |Du| = \sup \left\{ \int_{\Omega} u \operatorname{div} \vec{v} dx : \vec{v} \in (C_0^{\infty}(\Omega))^2, \|\vec{v}\|_{\infty} \leq 1 \right\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Yiqiu Dong

Outline

Degradation Model

ROF Model

MTV Method

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Rudin-Osher-Fatemi (ROF) Model (1992)

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|$$
 subject to $\int_{\Omega}|Ku-z|^{2}dx\leq\sigma^{2}|\Omega|$

• Equivalent to unconstrained minimization problem (Chambolle and Lions, 1997)

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{\lambda}{2}\int_{\Omega}|\mathcal{K}u-z|^{2}dx$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

λ > 0

Yiqiu Dong

Outline

Background Degradation

ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Results with Different λ

Original Image

 $\lambda = 20$

Noisy Image

 $\lambda = 10$

(日) (同) (日) (日)

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Multiscale Total Variation Model (Rudin, 1995)

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{1}{2}\int_{\Omega}\lambda(x)|Ku-z|^{2}dx$$

•
$$0 < \underline{\lambda} \leq \lambda(x) \leq ar{\lambda}$$
 a.e. in Ω

• In multiscale total variation model, λ is spatially varying

イロト 不得 トイヨト イヨト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Result with Multiscale Total Variation Method

λ

 $\lambda = 10$

Restored Image

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

 λ Selection

Local Constrain Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Primal-Dual Algorithm for ROF Model (Hintermüller and Stadler, 2006)

$$\min_{u\in H_0^1(\Omega)}\frac{\mu}{2}\int_{\Omega}|\nabla u|_2^2dx+\frac{\lambda}{2}\int_{\Omega}|\mathcal{K}u-z|^2dx+\int_{\Omega}|\nabla u|_2dx$$

- It is a close approximation of ROF model
- μ is helpful for function space analysis
- This algorithm uses Fenchel dual technique and semismooth Newton method
- This algorithm converges locally at a superlinear rate

Problem

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

$$\min_{u\in H_0^1(\Omega)}\frac{\mu}{2}\int_{\Omega}|\nabla u|_2^2dx+\frac{1}{2}\int_{\Omega}\lambda(x)|Ku-z|^2dx+\int_{\Omega}|\nabla u|_2dx$$

Dual Problem

$$\sup_{\substack{\vec{p} \in \mathbf{L}^{2}(\Omega) \\ |\vec{p}(x)|_{2} \leq 1 \text{ a.e. in } \Omega}} -\frac{1}{2} |||\mathcal{K}^{*}z - \operatorname{div}\vec{p}|||_{H^{-1}}^{2} + \frac{1}{2} ||z||_{L^{2}}^{2}$$

• Definition of Fenchel conjugate: $\mathcal{F}^{*}(v^{*}) = \sup_{v \in V} \{ \langle v, v^{*} \rangle_{V, V^{*}} - \mathcal{F}(v) \}$ • $\inf_{v \in V} \{ \mathcal{F}(v) + \mathcal{G}(\wedge v) \} = \sup_{q \in Y^{*}} \{ -\mathcal{F}^{*}(\wedge^{*}q) - \mathcal{G}^{*}(-q) \}$

イロト 不得 トイヨト イヨト

Problem

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

$$\min_{u\in H_0^1(\Omega)}\frac{\mu}{2}\int_{\Omega}|\nabla u|_2^2dx+\frac{1}{2}\int_{\Omega}\lambda(x)|Ku-z|^2dx+\int_{\Omega}|\nabla u|_2dx$$

Dual Problem

$$\sup_{\substack{\vec{p} \in \mathbf{L}^{2}(\Omega) \\ |\vec{p}(x)|_{2} \leq 1 \text{ a.e. in } \Omega}} -\frac{1}{2} |||\mathcal{K}^{*}z - \operatorname{div}\vec{p}|||_{H^{-1}}^{2} + \frac{1}{2} ||z||_{L^{2}}^{2}$$

- K* is adjoint operator of K
- $|||v|||_{H^{-1}}^2 = \langle (K^*\lambda K \mu \triangle)^{-1}v, v \rangle_{H_0^1, H^{-1}}$ with λ as function

イロト 不得 トイヨト イヨト

3

• The solution of the dual problem is not unique

Yiqiu Dong

Outline

Background Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Dual Problem

$$\sup_{\substack{\vec{p} \in \mathbf{L}^{2}(\Omega) \\ |\vec{p}(x)|_{2} \leq 1 \text{ a.e. in } \Omega}} -\frac{1}{2} |||\mathcal{K}^{*}z - \operatorname{div}\vec{p}|||_{H^{-1}}^{2} + \frac{1}{2} ||z||_{L^{2}}^{2} - \frac{\gamma}{2} \int_{\Omega} ||\vec{p}||_{\mathbf{L}^{2}}^{2}$$

Problem

$$\min_{u\in H_0^1(\Omega)}\frac{\mu}{2}\int_{\Omega}|\nabla u|_2^2dx+\frac{1}{2}\int_{\Omega}\lambda(x)|\mathcal{K}u-z|^2dx+\int_{\Omega}\Phi_{\gamma}(\nabla u)dx$$

・ロト ・聞ト ・ヨト ・ヨト

æ

•
$$\Phi_{\gamma}(\vec{v})(x) = \begin{cases} |\vec{v}(x)|_2 - \frac{\gamma}{2}, & \text{if } |\vec{v}(x)|_2 \geq \gamma \\ \frac{1}{2\gamma} |\vec{v}(x)|_2^2, & \text{if } |\vec{v}(x)|_2 < \gamma \end{cases}$$

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method MTV Model

Algorithm for MTV

 λ Selection

Local Constrain Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Optimality Condition

$$\operatorname{div} \vec{\vec{p}} \in \partial \left(\frac{\mu}{2} \int_{\Omega} |\nabla \bar{u}|_{2}^{2} dx + \frac{1}{2} \int_{\Omega} \lambda(x) |K \bar{u} - z|^{2} dx \right) \\ \vec{\vec{p}} \in \partial \left(\int_{\Omega} \Phi_{\gamma}(\nabla \bar{u}) dx \right)$$

Equations for the solutions

$$-\mu \triangle \bar{u} + K^* \lambda K \bar{u} - \operatorname{div} \vec{\vec{p}} = K^* \lambda z \quad \text{in } H^{-1}(\Omega)$$

$$\gamma \vec{\vec{p}} - \nabla \bar{u} = 0 \quad \text{if } |\vec{\vec{p}}|_2 < 1$$

$$|\nabla \bar{u}|_2 \vec{\vec{p}} - \nabla \bar{u} = 0 \quad \text{if } |\vec{\vec{p}}|_2 = 1 \end{cases} \text{ in } \mathbf{L}^2(\Omega)$$

・ロト ・ 雪 ト ・ ヨ ト

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Optimality Condition

$$\operatorname{div} \vec{\vec{p}} \in \partial \left(\frac{\mu}{2} \int_{\Omega} |\nabla \vec{u}|_{2}^{2} dx + \frac{1}{2} \int_{\Omega} \lambda(x) |K \vec{u} - z|^{2} dx \right)$$
$$\vec{\vec{p}} \in \partial \left(\int_{\Omega} \Phi_{\gamma}(\nabla \vec{u}) dx \right)$$

Equations for the solutions

$$-\mu \triangle \bar{u} + K^* \lambda K \bar{u} - \operatorname{div} \vec{\bar{p}} = K^* \lambda z \quad \text{in } H^{-1}(\Omega)$$
$$\max(\gamma, |\nabla \bar{u}|_2) \vec{\bar{p}} - \nabla \bar{u} = 0 \quad \text{in } \mathbf{L}^2(\Omega)$$

・ロト ・ 雪 ト ・ ヨ ト

Yiqiu Dong

Outline

Background

Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

ROF Model (1992)

$$\begin{split} \min_{u\in BV(\Omega)} \int_{\Omega} |Du| \\ \text{subject to } \int_{\Omega} |Ku-z|^2 dx \leq \sigma^2 |\Omega| \end{split}$$

Locally Constrained Model

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|$$
 subject to $S_u(x)\leq\sigma^2,$ a.e. $x\in\Omega$

・ロト ・ 雪 ト ・ ヨ ト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Locally Constrained Model

$$\label{eq:subject} \begin{split} \min_{u\in BV(\Omega)} \int_{\Omega} |Du| \\ \text{subject to } S_u(x) \leq \sigma^2, \text{ a.e. } x\in \Omega \end{split}$$

Local Smoothness

$$S_u(x) = w \star |Ku-z|^2(x) = \int_{\Omega} w(x-y)|Ku-z|^2(y)dy$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

• $w \in L^{\infty}(\Omega)$ is a normalized smoothing filter

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Locally Constrained Model

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|$$
 subject to $S_u(x)\leq\sigma^2, \text{ a.e. } x\in\Omega$

•

• Consider the unconstrained minimization problem

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{\gamma}{2}\int_{\Omega}\max(S_u(x)-\sigma^2,0)^2dx$$

イロト 不得 トイヨト イヨト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Unconstrained Version of Locally Constrained Model

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{\gamma}{2}\int_{\Omega}\max(S_u(x)-\sigma^2,0)^2dx$$

Multiscale Total Variation Model

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{1}{2}\int_{\Omega}\lambda(x)|Ku-z|^{2}dx,$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

•
$$\hat{\lambda}(y) = \gamma \max(S_u(y) - \sigma^2, 0)$$

 $\lambda(x) = w \star \hat{\lambda}(x) = \int_{\Omega} w(x, y) \hat{\lambda}(y) dy$
• $\lambda > 0$

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Locally Smoothing Filter

$$w(x,y) = \left\{ egin{array}{cc} rac{1}{w_{\epsilon}^2}, & \|x-y\|_{\infty} \leq rac{\omega}{2} \ \epsilon, & ext{otherwise} \end{array}
ight.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

• $0 < \epsilon \ll 1$

•
$$w_\epsilon$$
 such that $\int_\Omega \int_\Omega w(x,y) dy dx = 1$

Yiqiu Dong

Locally Smoothing Filter

$$w(x,y) = \begin{cases} \frac{1}{\omega^2}, & |x-y| \in [-\frac{\omega}{2}, \frac{\omega}{2}] \times [-\frac{\omega}{2}, \frac{\omega}{2}] \\ 0, & \text{otherwise} \end{cases}$$

Local Constraint

$$S_u(x) = w \star |Ku-z|^2(x) = rac{1}{\omega^2} \int_{\Omega^\omega_x} |Ku-z|^2 dy$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

•
$$\Omega_x^{\omega} = \left\{ y \in \Omega : |x - y| \in \left[-\frac{\omega}{2}, \frac{\omega}{2}\right] \times \left[-\frac{\omega}{2}, \frac{\omega}{2}\right] \right\}$$

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerical Results

MVTV Model

Yiqiu Dong

Locally Smoothing Filter

$$w(x,y) = \begin{cases} \frac{1}{\omega^2}, & |x-y| \in [-\frac{\omega}{2}, \frac{\omega}{2}] \times [-\frac{\omega}{2}, \frac{\omega}{2}] \\ 0, & \text{otherwise} \end{cases}$$

Local Constraint

$$rac{1}{\omega^2}\int_{\Omega^\omega_x}|{\it K}u-z|^2dy\leq\sigma^2, \,\, {
m a.e.}\,\, x\in\Omega$$

(日)、

э

•
$$\Omega_x^{\omega} = \left\{ y \in \Omega : |x - y| \in \left[-\frac{\omega}{2}, \frac{\omega}{2}\right] \times \left[-\frac{\omega}{2}, \frac{\omega}{2}\right] \right\}$$

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerical Results

MVTV Model

Yiqiu Dong

Local Variance Estimator

$$S_{i,j}^{\omega} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} \left((K\tilde{u})_{s,t} - z_{s,t} \right)^2$$

- \tilde{u} is the restored image by solving the classical ROF model with a relatively small λ
- Ω^ω_{i,j} = {(s + i, t + j) : ⌊^ω/₂⌋ ≤ s, t ≤ ⌊^ω/₂⌋} is the set of coordinates in a ω-by-ω window centered at (i, j)

Local Constrain Detail Detector λ Selection

Algorithm for MTV

SA-TV Algorithm

Numerical Results

MVTV Model

Yiqiu Dong

Outline

Background Degradation

Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Example 1

Restored Image

(日) (同) (日) (日)

Residual

 S^5

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method MTV Model

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Example 2

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

$$T_{i,j}^{\omega} = rac{1}{\sigma^2} \sum_{(s,t) \in \Omega_{i,j}^{\omega}} (n_{s,t})^2$$

- $T^{\omega}_{i,j}$ has the χ^2 -distribution with ω^2 degrees of freedom; i.e., $T^{\omega}_{i,j} \sim \chi^2_{\omega^2}$
- If $u = \hat{u}$ satisfies $n = z K\hat{u}$, then

$$S_{i,j}^{\omega} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} (z_{s,t} - (K\hat{u})_{s,t})^2 = \frac{\sigma^2}{\omega^2} T_{i,j}^{\omega}$$

• If the residual image $z - K\tilde{u}$ contains details, we expect

$$S_{i,j}^{\omega} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} (z_{s,t} - (K\tilde{u})_{s,t})^2 > \frac{\sigma^2}{\omega^2} T_{i,j}^{\omega}$$

Yiqiu Dong

Outline

Background Degradation Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

What is a suitable bound B such that $S_{i,j}^{\omega} > B$ implies that in the residual there are some details left in $\Omega_{i,i}^{\omega}$?

The bound should relate to the maximum of the m^2 random variables $\frac{\sigma^2}{\omega^2}T_k^{\omega}$, $k=1,\ldots,m^2$. We propose the following bound

$$B^{\omega,m} := \frac{\sigma^2}{\omega^2} \left(\mathfrak{E}(\max_{k=1,\ldots,m^2} T_k^{\omega}) + \mathfrak{d}(\max_{k=1,\ldots,m^2} T_k^{\omega}) \right)$$

- *m* × *m* is the image size
- E represents the expected value of a random variable

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Improved Local Variance Estimator

$$\tilde{S}_{i,j}^{\omega} := \begin{cases} \frac{1}{\omega^2} \sum\limits_{(s,t)\in\Omega_{i,j}^{\omega}} (z_{s,t} - (\kappa \tilde{u})_{s,t})^2 & \text{ if } S_{i,j}^{\omega} \ge B^{\omega,m}, \\ \sigma^2 & \text{ otherwise }. \end{cases}$$

イロト 不得 トイヨト イヨト

æ

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Example 1

(日) (同) (日) (日)

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Example 2

э

(日) (同) (日) (日)

Yiqiu Dong

Selection of the Parameter λ

$$(\hat{\lambda}_{k+1})_{i,j} = (\hat{\lambda}_k)_{i,j} + \rho((\tilde{S}_k^{\omega})_{i,j} - \sigma^2)$$
$$(\lambda_{k+1})_{i,j} = \frac{1}{\omega^2} \sum_{(s,t) \in \Omega_{i,j}^{\omega}} (\hat{\lambda}_{k+1})_{s,t}$$

Algorithm for MTV λ Selection

Local Constrain Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

• $\rho=\|\hat{\lambda}_k\|_\infty/\sigma$ in order to keep the new $\hat{\lambda}_{k+1}$ at the same scale as $\hat{\lambda}_k$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Basic MTV Algorithm

- 1: Initialize $u_0 = 0 \in \mathbb{R}^{m \times m}$, $p_0 = 0 \in (\mathbb{R}^{(m \times m)})^2$, $\lambda_0 = \hat{\lambda}_0 \in \mathbb{R}^{m \times m}_+$ and k = 0.
- 2: Solve the discrete version

$$u_k = \arg \min_{u \in BV(\Omega)} \int_{\Omega} |Du| + \frac{1}{2} \int_{\Omega} \lambda_k (Ku - z)^2 dx.$$

3: Based on u_k , update λ_{k+1} as

$$(\hat{\lambda}_{k+1})_{i,j} = (\hat{\lambda}_k)_{i,j} + \rho((\tilde{\mathbf{S}}_k^{\omega})_{i,j} - \sigma^2)$$
$$(\lambda_{k+1})_{i,j} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} (\hat{\lambda}_{k+1})_{s,t}.$$

イロト 不得 トイヨト イヨト

3

4: Stop, or set k := k + 1 and return to step 2.

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Tadmor-Nezzar-Vese(TNV) Algorithm (2004, 2008)

- 1: Initialize $u_0 = 0 \in \mathbb{R}^{m \times m}$, $p_0 = 0 \in (\mathbb{R}^{m \times m})^2$, $\lambda_0 \in \mathbb{R}_+$ and k = 0.
- **2:** Calculate $v_k = z K u_k$. Then, solve the minimization problem

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|+\frac{\lambda_k}{2}\int_{\Omega}|Ku-v_k|^2dx,$$

and get \tilde{u} .

- **3:** Update $u_{k+1} = u_k + \tilde{u}$.
- **4:** Based on u_{k+1} , update $\lambda_{k+1} = 2 \cdot \lambda_k$.
- **5**: Stop; or set k := k + 1 and go to step 2.

Yiqiu Dong

Selection of the Parameter λ

$$(\hat{\lambda}_{k+1})_{i,j} = 2 \cdot \min\left((\hat{\lambda}_k)_{i,j} + \rho\left(\sqrt{(\tilde{S}_k^{\omega})_{i,j}} - \sigma\right), L\right)$$
$$(\lambda_{k+1})_{i,j} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} (\hat{\lambda}_{k+1})_{s,t}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

• L is a large positive value to ensure $\hat{\lambda}_k \in L^\infty(\Omega)$

SA-TV Algorithm

MTV Model Algorithm for MTV

Numerica Results

MVTV Model

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

SA-TV Algorithm

- 1: Initialize $u_0 = 0 \in \mathbb{R}^{m \times m}$, $p_0 = 0 \in (\mathbb{R}^{(m \times m)})^2$, $\lambda_0 = \hat{\lambda}_0 \in \mathbb{R}^{m \times m}_+$ and k = 0.
- 2: Calculate $v_k = z K u_k$. Then, solve the minimization problem

$$\min_{u\in H_0^1(\Omega)}\frac{\mu}{2}\int_{\Omega}|\nabla u|_2^2dx+\frac{1}{2}\int_{\Omega}\lambda_k(x)|Ku-v_k|^2dx+\int_{\Omega}|\nabla u|_2dx$$

by primal-dual algorithm, and get \tilde{u} and p_{k+1} .

- **3:** Update $u_{k+1} = u_k + \tilde{u}$.
- 4: Based on u_{k+1} , update

$$\begin{aligned} (\hat{\lambda}_{k+1})_{i,j} &= 2 \cdot \min\left((\hat{\lambda}_k)_{i,j} + \rho\left(\sqrt{(\tilde{S}_k^{\omega})_{i,j}} - \sigma\right), L\right) \\ (\lambda_{k+1})_{i,j} &= \frac{1}{\omega^2} \sum_{(s,t) \in \Omega_{i,j}^{\omega}} (\hat{\lambda}_{k+1})_{s,t} \end{aligned}$$

5: Stop; or set k := k + 1 and go to step 2.

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Restoration of Noisy Images

Noisy Image

ROF (λ =11)

Original Image

Bregman ($\lambda_0=2.5$)

TNV ($\lambda_0=2.5$) SA-TV ($\lambda_0=2.5$)

(日) (同) (日) (日)

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Restoration of Noisy Images

Barbara

Part of Barbara

(日) (四) (王) (日) (日) (日)

Yiqiu Dong

Outline

Degradation Model ROF Model

MIV Metho MTV Model Algorithm for MTV

Local Constraint Detail Detector

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Restoration of Noisy Images

Original Image

Noisy Image

ROF ($\lambda_0=14$)

Bregman ($\lambda_0=2.5$)

TNV ($\lambda_0=2.5$) SA-TV ($\lambda_0=2.5$)

(日)、

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Final Value of λ

Cameraman

Part of Barbara

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Yiqiu Dong

Outline

Degradation Model

ROF Model

MTV Method MTV Model

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Final Value of λ

Cameraman

Part of Barbara

・ロト ・四ト ・ヨト ・ヨト 三日

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

PSNR of Restored Images by Our Method for Different ω

• Since the confidence interval technique from statistics is introduced in the local variance estimator, λ can be adjusted automatically based on the size of the windows Ω^{ω} . This yields a parameter-free method.

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

λ Selection Local Constrain

 λ Selection

SA-TV Algorithn

Numerical Results

MVTV Model

Conclusion

Restoration of MRI

Noisy images

Restored images

λ

э

ヘロト ヘ週ト ヘヨト ヘヨト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Restoration of MR Images with Non-Uniform Noise

$$\min_{u\in BV(\Omega)}\int_{\Omega}|Du|$$
 subject to $S_u(x)\leq \sigma^2(x), \ \text{a.e.} \ x\in \Omega$

r

- σ^2 is not a scalar but related to the position in the image
- Selection of λ becomes

$$(\hat{\lambda}_{k+1})_{i,j} = 2 \cdot \min\left((\hat{\lambda}_k)_{i,j} + \rho\left(\sqrt{(\tilde{S}_k^{\omega})_{i,j}} - \sigma_{i,j}\right), L\right)$$
$$(\lambda_{k+1})_{i,j} = \frac{1}{\omega^2} \sum_{(s,t)\in\Omega_{i,j}^{\omega}} (\hat{\lambda}_{k+1})_{s,t}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Yiqiu Dong

ROF Model

MTV Model Algorithm for MTV

Numerical Results

Restoration of MR Images with Non-Uniform Noise

Noise ratios

Restored images

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Metho MTV Model Algorithm for MTV

Local Constraint Detail Detector

SA-TV Algorithn

Numerical Results

MVTV Model

Noisy images

Conclusion

Restoration of MR Images with Non-Uniform Noise

Restored images

λ

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Degradation Model for Color Images

 $z = K\hat{u} + n$

- $\hat{\mathbf{u}}, \mathbf{z} : \Omega \to \mathbb{R}^M$ are vector-valued functions
- K ∈ L(L²(Ω; ℝ^M)) is a cross-channel blurring operator
- *M* is the number of channels in the color model

- 日本 - 1 日本 - 日本 - 日本

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Degradation Model for Color Images

 $\mathbf{z} = K\hat{\mathbf{u}} + \mathbf{n}$

- $\hat{\mathbf{u}}, \mathbf{z} : \Omega \to \mathbb{R}^M$ are vector-valued functions
- K ∈ L(L²(Ω; ℝ^M)) is a cross-channel blurring operator
- *M* is the number of channels in the color model

- 日本 - 1 日本 - 日本 - 日本

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method MTV Model

Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Multiscale Vectorial TV Model

$$\min_{\mathbf{u}\in \mathsf{BV}(\Omega)}\int_{\Omega}|D\mathbf{u}|+\frac{1}{2}\int_{\Omega}\lambda(\mathbf{x})|\mathbf{K}\mathbf{u}-\mathbf{z}|_{2}^{2}d\mathbf{x}$$

•
$$\int_{\Omega} |D\mathbf{u}| = \sup\left\{\int_{\Omega} \mathbf{u} \cdot \operatorname{div} \vec{\mathbf{v}} \ dx : \vec{\mathbf{v}} \in C_c^1(\Omega, \mathbb{R}^{M \times 2}), |\vec{\mathbf{v}}|_F \le 1 \text{ in } \Omega\right\}$$

•
$$\lambda \in L^{\infty}(\Omega)$$
 with $0 < \underline{\lambda} \le \lambda(x) \le \overline{\lambda}$ for almost all $x \in \Omega$

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Yiqiu Dong

Outline

Degradation Model

Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Original Image

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Yiqiu Dong

ROF Model

MTV Model Algorithm for MTV

MVTV Model

Restoration of Noisy Images

VTV method

(日)、

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Final Value of λ

・ロト ・四ト ・ヨト ・ヨト 三日

Yiqiu Dong

Outline

Degradation Model ROF Model

MTV Method MTV Model

Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithn

Numerica Results

MVTV Model

Conclusion

Restoration of Blurred Noisy Images

Noisy Images

VTV method

SA-TV method

э

イロト 不得 トイヨト イヨト

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

 λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerica Results

MVTV Model

Conclusion

Final Value of λ

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Conclusion

- Based on spatially dependent parameter selection, our method is able to preserve the details during noise removal.
- With confidence interval technique from statistics, our method is parameter-free.
- In our method, a superlinearly convergent algorithm based on Fenchel-duality and inexact semismooth Newton techniques is used to solve the multiscale total variation model.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Yiqiu Dong

Outline

Background

Degradation Model ROF Model

MTV Method

MTV Model Algorithm for MTV

λ Selection

Local Constraint Detail Detector λ Selection

SA-TV Algorithm

Numerical Results

MVTV Model

Conclusion

Thank you!

(日)、(四)、(E)、(E)、(E)