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Abstract

We study the exit problem of solutions of the stochastic differential equation dX{ = —U'(X}) dt+edL,
from bounded or unbounded intervals which contain the unique asymptotically stable critical point of
the deterministic dynamical system Y: = —U’(Y};). The process L is composed of a standard Brownian
motion and a symmetric a-stable Lévy process. Using probabilistic estimates we show that in the small
noise limit ¢ — 0, the exit time of X° from an interval is an exponentially distributed random variable
and determine its expected value. Due to the heavy-tail nature of the a-stable component of L, the
results differ strongly from the well known case in which the deterministic dynamical system undergoes
purely Gaussian perturbations.
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Introduction

The study of dynamical systems subject to small random perturbations keeps receiving much attention
both in the physical and the mathematical literature. In the simplest (one-dimensional) setting, systems
of this type find the following mathematical formulation. Consider the ordinary differential equation
Y, = ~U'(Y4), Yo € [~b,a], a,b > 0, where U is a potential function. Assume that U(0) = 0 and that
0 is the unique asymptotically stable point of the deterministic dynamical system associated with the
equation, that means that for any starting point x in [—b,a], the deterministic trajectory tends to 0:
Yi(z) — 0 as t — oco.

Now perturb the deterministic dynamical system with some small random noise, that is, consider the
solutions of the stochastic differential equation

t
Xi=a- [ V(X ds+em, (+)
0

where 7 is a random process, and the noise intensity parameter € is small compared to the other pa-
rameters of the system (e is close to 0). Under certain conditions on U and 7, for example under the
assumptions that U’ is Lipschitz and 7 is a semimartingale, the solution of the equation (x) is well de-
fined. In case n is a standard Brownian motion, the dynamical system is said to be perturbed by white
noise. If 77 is an Ornstein-Uhlenbeck process, the terminology of ‘red noise’ perturbation has been used.
The literature also knows perturbations by the so-called shot noises, fractional Gaussian noises, or Lévy
noises.

The stochastic dynamics of systems perturbed by white noise, which belong to the large class of
diffusions driven by the Brownian motion, in the small noise limit, i.e. for € — 0, has received a great
deal of attention for decades and is particularly well understood. The pioneering papers on this topic are
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[PAV33, [Krad0]. Later on it was studied in [Eri74] [Sch&0, IWiI82 BMO2], [KNI6], [FWI8
[Kol00l, BEGK02, BGK02), as well as in many other papers.

One of the main results in this field is concerned with the time it takes for the diffusion to exit a
neighborhood of a local attractor. Due to the fact that Kramers’ pioneering paper was one of the first
to derive heuristically some properties of an exit law of this type, in particular in the physical literature
it is often named Kramers’ law. Stated in modern language, it says that the expected exit time is
exponentially large in e 2 and the growth rate can be interpreted as the height of the potential barrier
to be overcome to leave the local attractor neighborhood (see section [l for a rigorous formulation).

White noise perturbations, however, are not always appropriate to interpret real data in a reasonable
way. This is the case for example if the nature of the underlying random perturbation process has to
model abrupt pulses or extreme events. A more natural mathematical framework for these phenomena
takes into account other than purely Brownian perturbations. In particular infinitely divisible Lévy
perturbations with jumps enter the stage.

The physical papers by P. Ditlevsen [Dif99al, [Dif990] motivating our research stipulate more general
noise sources of the type alluded to. They originate in simple physical concepts serving to interpret
paleoclimatic data. In fact, paleoclimatic records from the Greenland ice-core show that the climate of
the last glacial period experienced rapid transitions between cold basic glacial periods and several warmer
interstadials (the so-called Dansgaard—Oeschger events). Those records are given by the concentration of
certain oxygen, hydrogen or calcium isotopes in the annual layers of the ice-core extending over several
hundred millennia in the past. They can be used to reconstruct the global Earth temperature for the
time span for which the records are available. The calcium signal has the highest — almost annual —
temporal resolution and provides the most conclusive information about the statistics of the Dansgaard—
Oeschger warming events. They start with a very rapid warming of the North Atlantic region of about
5-10°C within at most a few decades. The warming is followed by a plateau phase with slow cooling
extending over several centuries, ending with an equally abrupt drop to basic glacial conditions. The
nature of these events is not clear, and several conceptual explanations have been proposed. One line
of arguments invokes instabilities in the North Atlantic thermohaline circulation as a causal mechanism
for these abrupt climate changes, and for the millennial time scale between jumps. A different reasoning
starts from the idea that the coupled atmosphere-ocean system in the tropics possesses several meta-
stable states, and claims global teleconnections that trigger changes in the North Atlantic thermohaline
circulation. In [GROT], the effect of stochastic resonance was brought into play in order to explain the
observed random periodicity of the Dansgaard—Oeschger events.

As for many climate phenomena, due to the non-linearity of the system the physical background is
highly complex. To understand some basic features, simple low-dimensional models may be used. For
the phenomena under consideration, in this spirit one may hope to recover important aspects of the
statistical properties of the observed data by modelling the paleoclimatic temperature process as the
solution of an equation of the type (*) with some noise term whose nature has to be determined. To take
account of meta- or multi-stability, it is natural to assume that the climatic potential function has (at
least) two wells, their stable minima corresponding to one cold (basic glacial) and at least one warm state
(plus an intermediate one). In this setting characteristics of the transition mechanism between climate
states may be reformulated in terms of the exit problem from local attractor neighborhoods for solutions
of the stochastic differential equation. This approach was taken in [Dif99al, [Dif990]. To account for a
reasonable choice of random noise perturbing the system, a spectral analysis of real ice-core data was
performed in [Dif99b]. The obtained spectral decomposition exhibits a strong a-stable component with
a ~ 1.75. The paper [Dif99a)] is concerned with an analysis of the exit times of (x) with an a-stable
noise 77 and in the limit of small e, performed on a physical level of rigor, with the help of a fractional
Fokker-Planck equation.

Climate dynamics is not the only source of stochastic models in which a-stable noise appears. For
example, it was shown in [SMB97, [BS02], that the thermally activated motion of the test particle along a
polymer in three-dimensional space is subject to %-stable motion due to the polymer’s self-intersections.
In recent years, Lévy noise sources have been playing an increasingly important role in models of financial
markets (see for example [ER99]).

In this paper we consider the equation (x) driven by the Lévy process L which is the sum of a standard
Brownian motion and an a-stable Lévy motion. Our approach of the asymptotic laws in the small noise
limit of exit times from bounded intervals or intervals which are unbounded from one side is purely
probabilistic and completely avoids fractional Fokker-Planck equations. We understand it as a first step
towards a complete understanding of transition patterns of Lévy-driven dynamical systems in bi- or
multi-stable potentials. The mathematical challenge consists in a large deviation analysis for exit times



replacing the classical theory of Freidlin-Wentzell [FWOS] for diffusions with Brownian noise. We base it
on a noise intensity dependent decomposition of L into a sum of two independent processes: a compound
Poisson with large jumps on the one hand, and a sum of the Brownian motion and a Lévy motion with
small jumps on the other hand. Given such a decomposition for small noise intensity e, the main idea
of our analysis is to prove that asymptotically exits from the considered domains are due to large jumps
of the first component, while the second component is not able to perturb the deterministic trajectory
of solutions of (x) without noise essentially. For this reason, the usual picture of a particle that has to
climb a potential well being pushed by a Brownian motion in order to exit a domain, which captures
the system’s behavior for Gaussian noise, changes drastically here. Instead of the height of the potential
well, a large jump to exit just takes note of the distance from the domain’s boundary. Pure horizontal
distances replace geometric quantities related to the potential in the large deviations’ estimates for exit
times in the a-stable Lévy case. Also, the mean values of the exit times change essentially in comparison
to the Gaussian noise setting: instead of Kramers’ times we obtain exit times of the order of e~ in the
small noise limit, i.e. times of polynomial instead of exponential dependence on €. Our approach can be
extended to more general heavy-tailed Lévy processes.

The structure of the paper is as follows. In section [[l we give a heuristic discussion of the asymptotic
exit law based on the decomposition of the a-stable Lévy noise perturbing our system, and the heuristic
picture that the small jump component does not essentially affect the asymptotic behavior. In section
we underpin this heuristic picture with mathematical rigor in proving that trajectories of the deterministic
system and the one in which only the small noise component is admitted to perturb are asymptotically
very close. This crucial observation is used in section Bl to derive in a rather technical way upper and
lower estimates for the law of the exit time of a bounded interval. In sections Hl and B these results are
transferred to the setting of intervals which are bounded on one side. This requires the possibility for
the deterministic trajectory to return from —oo in finite time.
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Preliminaries and notation

On a filtered probability space (2, F, (F¢)t>0, P) we consider a stochastic differential equation driven by
a Lévy noise of intensity e:

¢
Xf:x—/ U'(X;)ds+eLy, &>0. (1)
0

In general, a Lévy process is known to be a random process with independent and stationary increments,
which is continuous in probability and possesses rcll paths. It is completely determined by its one-
dimensional distributions which are infinitely divisible and characterized by the Lévy-Hincin formula. In
this paper we assume that

iNLy A iy . dy
Ee =exp{ —d— + (e —1 — i y{|y|] < 1})ﬁ , (2)
2 Jrvoy lyl

that is L is a sum of a standard Brownian motion with variance d > 0 and an independent a-stable Lévy
motion with 0 < o < 2. More information on Lévy processes can be obtained from [Ber98, [Saf99]. Since
a Lévy process is a semimartingale, the standard theory of stochastic integration applies to equation
@), see [SGO3, [Pra04] for more details. Throughout this paper we assume that the underlying filtration
fulfills the usual conditions in the sense of [Pro04], i.e. the filtration (F%):>0 consists of o-algebras which
are complete with respect to P and is right-continuous.

The Lévy measure of L is given by v(dy) = %7 y # 0. It is heavy-tailed and has infinite mass for

all o € (0,2), due to a strong intensity of small jumps.

We impose some geometric conditions on the potential function U. First, we assume that U has
a ‘parabolic’ shape with its non-degenerate global minimum at the origin, i.e. U'(x)z > 0, U(0) = 0,
U'(z) =0iff z =0, and U”(0) = M > 0. Further, to guarantee the existence of a strong unique solution
of (@) on R we demand that U’ is at least locally Lipschitz and increases faster than a linear function at
+oo (see also [SGO3, [Pra04]). Moreover, in order to obtain some fine small-noise approximations of X*®
in Section B we need that U € C? in some sufficiently large interval containing the origin.

We shall study the first exit problem for the process X° from bounded and unbounded intervals in
the small noise limit € — 0. In fact, we consider two cases.



(B) Let I =[-b,a], a,b > 0, and define the first exit time from I as
o(e)=inf{t >0 : X; ¢ [-b,a]}. (3)

(U) Let J = (—o00,a], a > 0, and assume that for some c1,c2 > 0 the regularity condition U(z) =
c1]z|*Te2, & — —oo, holds (see Remark BTl on page ETI). In this case we study the one-sided counterpart
of o(e) defined by

() =inf{t >0 : X{ > a}. (4)

We shall investigate the laws of o(¢) and 7(¢), in particular their mean values, as € — 0.

As a main tool of our analysis, we decompose the Lévy process L into e-dependent small and large
jump components. In mathematical terms, we represent the process L at any time ¢ as a sum of two
independent processes L: = £ + n;, with characteristic functions

2

iNES A ; . 1 dy
Ee1 = exp{ —dZ- —|—/ (€™ —1—ixyI{|y| < IH{|y| < —=}—2— 5,
{ 2 R\ {0} Ve [yl
1

e . dy
EeM = exp / (€™ — DI{Jy| > 7.
{ R\{0} Ve ly[tte

The Lévy measures corresponding of the processes £° and n° are
c 1 c 1
() =00 <l < 22D, Vi) = v 0yl > =), (©)

The process £° has an infinite Lévy measure with support [—%, %]\{0}, and makes infinitely many

jumps on any time interval of positive length. The absolute value of its jumps does not exceed 1/3/c. It
will be explained later in Remark Bl on page why the threshold 1/4/z is chosen.
The Lévy measure v, (-) of n° is finite. Denote

&zﬁ@ZA Y= 2o (7)

&) U a

Then, n° is a compound Poisson process with intensity (., and jumps distributed according to the
law B vp(-).

Denote 7x, k > 0, the arrival times of the jumps of n° with 70 = 0. Let Ty = 7 — 7,1 denote the
inter-jump periods, and Wi = n7, — 717, _ the jump heights of n°. Then, the three processes (Tk)k>1,
(Wk)r>1, and £° are independent. Moreover,

P(T, >u) = / Bee Petds =e P, w >0,

ETk:é:%sfa/zeooasseO, (8)
P(W, € A) ! / K|yl > ! }—1 dy, for any Borel set A CR
k = = = ) = 5
66 A \/g |y|1+a

Due to the strong Markov property, for any stopping time 7 the process &f,, — &5, ¢t > 0, is also a Lévy
process with the same law as £°.
For k > 1 consider the processes

& =En, — s
t
i) =2 — / U'(¥_)ds +e€f, te0,Ty).
0
In our notation, for z € R,

X =y (z) +eWil{t =T}, te[0,Ti],
Xiir, = 21 (xr, +eWh) +eWal{t = To}, t€[0,T3],

(10)
X =ap (@ + W) + eWil{t = Ti}, t € [0, Tkl
Finally, we denote by Y (z) the deterministic function solving the non-perturbed version of ()
t
Yi(2) = o _/ U'(Yy(2))ds, @ €R. (11)
0



1 Heuristic derivation of the main result and
comparison with (Gaussian case

In this section we shall provide the skeleton of a heuristic derivation of our main result on the asymptotic
law of the exit time from a bounded interval. In the subsequent two sections a rigorous underpinning of
these arguments will be given.

On the interval [0,7T%] and for 2 € R let us consider Y (x) and x"(x). These processes satisfy the
equations

:cf(:c)::c—/(; U(axS (z ))ds—i—aft7

3 (12)
Vi) o~ [ (U@ ds, te 0.1
0
while the law of T} is an exponential with parameter [..

The process &* being the part of L with the small jumps, our analysis will be based on comparisons
of the trajectories of z* and Y. If they are close, e.g. if for some y > 0, P, (supg<s<, lz% — Vi (z)| > &)
is small enough as € — 0, we can apply the following reasoning.

For any = € I, the deterministic solution Y (z) converges exponentially fast to the stable attractor
0. Define the relaxation time R(z,¢) the process Y needs to reach an £”-neighborhood of 0 from an
arbitrary point x € I. Then, as a separation of variables argument in ([[l) implies, for some p1 > 0,

—e7

R(z,¢) <max{/ —U’ W)’ aU,( )}<,u1|1n5| 0<e<eo. (13)

Since Y (z) and z"(x) are close on the interjump interval [0, 7y] for all k> 0 and all z € I, X° can
leave I only at one of the time instants 75, while jumping by the distance eWj.

If the process has not left I at jump number k — 1, it waits for the next possibility to jump at the end
of a random exponentially distributed time period Ty. Since T} (on average) is essentially larger than
the bound on the ‘relaxation’ time p1|lne|, € — 0, this means that X© jumps from a small neighborhood
of the attractor 0 (see Fig.[) .
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Fig. 1: A sample solution of the stochastic differential equation ().

Therefore, the following heuristic estimate makes clear, that in the small noise limit o(e) is an
exponentially distributed random variable with parameter €0/, with

9:i+bia. (14)

Indeed, for all £ > 1, 7, = Z?:1 T; has a Gamma law with the density S:e ﬁit% Hence for u > 0



=Y P(re>u) PeWiel,....eWi 1 €1,eWy ¢ 1)

S
:Z/ ﬁf@fﬁst%dt'“‘l’(ﬁm ¢0) - PlEWi ¢ ) (15)
k=1 :
< et = ﬂst k=1 1-P EW1 I k-1
:ﬂsP(ewlgéI)/ ooty P (k_(l)! g0yt

w k=1

— BP(eW: ¢ 1) / T g Bt Pet-PEWIED) gy _ (—uBP(WAED) _ p—us"0/a

u
For deriving the last formula we use the equations

_ b a, 1 < dy < dy
P(EW1¢I)—P(W1< EOI‘W1>€)—BE (/1 y1+a+‘/g y1+a>
a6+ 6) =5
ﬂs b N Bea
The mean value of o(¢) may be obtained immediately from (), or independently by the following
reasoning:

(16)

%ZETk'Pz(U 7779 ZkETk €W1€I ku,leI,kugéI)
B (17)

oo —1
— BPEW ¢ DY k(1 - P(eWs ¢ 1)F —%:%{QLQJF%} ‘
k=1

The aim of this paper is to make these heuristic arguments rigorous. This is done by proving the
following Theorems.

Theorem 1.1 There exist positive constants €o, v, §, and C' > 0 such that for 0 < e < e the following
asymptotics holds

exp {—usa%(l + ce“)} (1—Ce%) < Pu(o(e) > u) < exp {—ueag(l - ce“)} (14 Ce) (18)

uniformly for all z € [-b+¢”,a — "] and u > 0, where 6§ = a% + b%. Consequently,

Boo(s) = & { 1,1 y (140 (19)

e a® ba
uniformly for all x € [-b+¢7,a —€"].

Theorem 1.2 There exist positive constants €o, 7y, §, and C > 0 such that for 0 < e < &g the following
asymptotics holds

(e}

—u Eaa (1- 055)} (1+Ce’) (20)

exp {—uo%(l + 055)} (1-Ce’) <Pu(r(e) >u) < exp{

uniformly for all x < a —¢€” and u > 0. Consequently,

[e3

E.7(e) = er—a(l +0(%) (21)

uniformly for all x < a —e”.

It is interesting to compare the results stated above with their well-known counterparts for diffusions
driven by the Brownian motion of small intensity . Together with ([l) consider the diffusion X® which
solves the stochastic differential equation

t
Xf::c—/ U'(XE)ds + eWs, (22)
0



where W is a standard one-dimensional Brownian motion, and U is the same potential as in (). For the
diffusion X° we define the first exit time of the interval I by

6(e) =inf{t >0 : X{ ¢ [-b,a]}. (23)

Then the following statements hold for &(¢) in the limit of small €.
1. The first exit time &(¢) is exponentially large in e~2. Assume for definiteness, that U(a) < U(—b).
Then for any § > 0,z € I, according to [FWOg]:

ch(e@U(a)*‘s)/62 <a(e) < 6(2U(a)+5)/62) —0 as e—0. (24)

Moreover, 2 In E,6(¢) — 2U(a).
The mean of the first exit time can be calculated more explicitly (Kramers’ law) [Krad(,
[BEGK02):
Eoo(e) v — VT U@/ (25)
U’(a)/U"(0)

2. The normalized first exit time is exponentially distributed [Wil82) [BGK02): for u >0

P, (Eiég()g) > u) —e " as £—0, (26)

uniformly in z on compact subsets of (—b,a).

As we see, 6(g) and o(¢) have different orders of growth as ¢ — 0. The exit times of the a-stable
driven processes are much shorter because of the presence of large jumps which occur with polynomially
small probability. To leave the interval, the diffusion X© has to overcome a potential barrier of height
either U(—b) or U(a). So in the case considered here, Xg(g) = a with an overwhelming probability. The
diffusion ‘climbs’ up in the potential landscape. This also explains why the pre-factor in ([28) depends
on geometric properties of U such as the slope at the exit point and the curvature at the local minimum,
the place where the diffusion spends most of its time before exit.

The process X© on the contrary uses the possibility to exit the interval at one large jump. This is the
reason why the asymptotic exit time depends mainly on the distance between the stable point 0 and the
interval’s boundaries. The potential’s geometry does not play a big role for the low order approximations
of the exit time o(eg). Although it is important for the proof, it does not appear in the pre-factors of the
mean exit time in ([[d) and remains hidden in the error terms.

In the purely Gaussian case, to obtain the law of 6(g), the theory of partial differential equations
is used. In fact, the probability pe(x,u) = Px(6(¢) > ) as a function of x and u satisfies a backward
Kolmogorov equation (parabolic partial differential equation) with appropriate boundary conditions.
The function pe(z,u) can be (at least in R) expanded in a Fourier series with respect to the eigensystem
of the diffusion’s infinitesimal generator. Then, one concludes that pe(z,u) ~ efﬁu, where \{ is the
first eigenvalue. Further one shows, that \{E,d(¢) — 1 as ¢ — 0. In contrast to this, in the present
paper we obtain results without any use of operator theory. This suggests that some asymptotic spectral
properties of the integro-differential operators corresponding to the process X° can be formulated from
the probabilistic estimates obtained here. This is the subject of future research.

Perturbations of the deterministic dynamical systems by small infinitely divisible noises were consid-
ered e.g. in [FWOR], however in a different setting. There, the small parameter & was responsible for the
simultaneous scaling of jump size and jump intensity. As the simplest example of such a perturbation
one can consider a compensated Poisson process with jump size of the order £ and jump intensity of
the order 1/e (see also [Bor67]). In such a case the dynamics in the limit corresponds to the one of the
system perturbed by white noise, i.e. the probabilities of the rare (exit) events are exponentially small
in € and the characteristic time scales are exponentially large. Note that the perturbations considered in
the present paper are of quite a different nature. We only scale the jump sizes, while the jump intensities
stay unchanged.

2 Deviations from the deterministic trajectory: exit from
bounded interval

In this section we estimate the deviation of the solutions of the stochastic differential equation driven by
the small-jump process €£° from the deterministic trajectory on random time intervals of exponentially



distributed length. We show that the probabilities for at least polynomially small deviations are poly-
nomially small in € in the small noise limit. This rigorously underpins the starting point of our heuristic
derivation of the exit law.

For x € [—b, a] consider solutions z° and Y of the equations

2i() =z — / U' (25 (2)) ds + <€,
. (27)

Y}(x):x—/o U'(Ys(z)) ds.

The goal of this section is to prove the following estimate.

Proposition 2.1 Let T. be exponentially distributed with parameter Be, and independent of £&°. Let
c >0,y =22 Then there is g > 0 and C' > 0 such that for all 0 < & < &9 and © € [—b,a] the
inequality
P.( sup |z —Yi(z)] > ce”) < Celotn/? (28)
te[0,T:]
holds.

In order to prove the Proposition, we shall make use of the following Lemma in which the estimation
of the deviation from the deterministic trajectory is executed on a bounded deterministic time interval.

Lemma 2.1 Let T >0,c¢>0andy =232 0 <~y < %) Then there exist positive numbers eo and C

5

such that for all 0 < e < e and = € [—b, a] the inequality

Pz([sou%)] |25 — Yi(z)| > ce?) < CTe* /2 (29)

holds.
Proof of Proposition BTk We apply Lemma Bl and the definition of 3. to obtain for all z € [—b, a]

and € < gg

P.(sup |z; — Yi(z)| > ce”) = / P, (sup |z — Yi(z)| > ce?)Bee " dr
0

[0,Te] [0,7]
- (30)
< C'sa%’/z/ Tﬂsefﬁ” dr < Celetm/2,
0
[ |

The proof of Lemma EZTlis performed in three Lemmas in the sequel. It extensively uses the following
geometric properties of the potential U:

1. The deterministic trajectories Y:(x), x € [—b, a] converge to zero as t — oo due to the property
U'(z)x > 0 for = # 0.

2. The curvature of the potential at = 0 is positive. In small neighborhoods of zero we have
U(z) = %:cz + o(z?). Consequently Y decays there like e™** and the dynamics of #° reminds of

the dynamics of a process of Ornstein-Uhlenbeck type.

We now prepare our rigorous analysis by an asymptotic expansion of the random trajectories of z°
around the deterministic one of Y. To this end, fix some ¢ > 0 small enough which will be specified later
and define s

2 T dy ¢ _dy
T = max / , . 31
U e ), vw! ey

T has the property that for all z € [—a,b] and t > T, |Yi(z)| < 8, i.e. after T' the trajectory of Y (z) is
within a d-neighborhood of the origin. We next consider the representation of the process z° in powers
of € of the form

z%(z) =Y (z) +eZ°(x) + R (x), (32)
where Z°¢ is the first approximation of z° in powers of ¢ satisfying the stochastic differential equation
t
2i@) = - [ UV @) Zi(x)ds+ €7 (33)
0

The solution to this equation is explicitly given by

t ¥ 1
Zia) = [ IO g (34)
J0



Integration by parts results in the following representation for Z°¢:
t i "
Zi(w) =& - / €U (Yi(a))e 1 U O du g (35)
0

For x =0, Yi(z) = 0 for all t > 0, and Z°(0) is a process of the Ornstein-Uhlenbeck type starting at zero
and given by the equation

t
Zi(0) =& — M/ g_e M=) g, (36)
0
Lemma 2.2 There is a universal constant Cz > 2 such that for any T > 0, x € [—b,a] and € > 0
sup |Zi(z)| < Cz sup [&|, Ps-a.s.. (37)
s€[0,T) s€[0,7]
Proof: Obviously, for t < T
t 1
|Zi @) < sup 1] 1+ sup / U (¥a(a))le™ J2 D gs ) (38)
t€[0,T] tefo,7] Jo

We shall show that the integral in the parenthesis is uniformly bounded. Fix some § > 0 small enough
such that for some 0 < m1 < ma the inequality mi < inf), <5 U"(z) < SUP|, <5 U"(x) < m2 holds. This

implies, that m; < U”(Y:(z)) < ma for all z € I, and ¢ > T Let
T A
Cy :mg;(/ U (Ya(z))|e Js U ul@ndu g (39)
v 0
Consider an arbitrary ¢ > T. Then

t 1
|0 e g
0

) (40)
T 1" t 1
:/ |U”(YS(£C))|€7'[;U (Y (z)) du d8+/ |U”(YS(ZC))|€7[;U (Yu () du ds.
Jo T
Let us estimate the first summand in Q). We have
r " — (U (Yu(z))d — LU (Yu(z)) d T 1 — [T U (Yy(x)) d
/ U” (Ya(@))|e™ 12 U/ CuleD du gg — o= [1 U7 (u@)) / U (Ye(z))le o V7 OntD g
0 0 (41)
< efml(th)Cl < Cl'
The second summand in ([E0) is estimated analogously:
t ) // t
/ 0" (Vaa))le [0 CulD gs < / e gs < 12, (42)
T T mi
Taking Cz = max{2,C:1 + Z—?} completes the proof.
[ ]

To estimate the remainder term R® we need finer smoothness properties of the potential U. However,
the following Lemma shows that this restriction only has to hold locally.

Lemma 2.3 There exists C > 0 such that for all x € [—b,a] and T > 0,

sup |Ri(x)| < C (43)
te[0,T)

a.s. on the event {w : sup;cpo 7 [€€i (W)] < 1}

Proof: By hypothesis we know that for any ¢ > 0,z € [—b,a] we have —b < Y;(x) < a. Moreover, on
{supc(o. 1) 1667 | < 1} we have sup,c(o 1) [€Zi | < Cz due to LemmaZ2 Recall that U’ increases at least
linearly at infinity. This guarantees the existence of C' > 0 such that for any y € [—b,a],z € [-Cz, Cz]
we have

“Uly+2z+C)+U'(y)+U"(y)z < 0.
Hence for any T'> 0,7 > 7 > 0,z € [-b, a] the inequality

U (Yo(2) +eZi (x)+C) + U (Yo(2)) + U" (Yr(2))eZi_(z) < 0. (44)



holds on the event {sup,c(o 7 |e€i| < 1}. Now assume there is some z € [—b,a], and some (smallest)
7 € [0, 7] such that R;(x) = C. Observe that the rest term satisfies the integral equation

Ri(z) = /Ot f(R:(x), Ys(x),eZ5—(x)) ds (45)
with the smooth integrand
f(RY,e2)=-U (Y +eZ+R) +U(Y)+U"(Y)(e2).
This implicitly says that R® is an absolutely continuous function of time. By definition of 7, we have
0 < DR ()|t=r = —U'(Yr(z) + eZ5_(z) + O) + U' (Yo () + U" (Y~ (x))eZ;_(z) < 0,

a contradiction. A similar reasoning applies under the assumption R;(x) = —C. This completes the
proof. |
Lemma has a very convenient consequence. It states precisely that the solution process z°,
with initial state confined to [—b,a], stays bounded by a deterministic constant on sets of the form
{w : supye(o 1) € (w)] < 1}. Therefore, in the small noise limit, only local properties of U are relevant
to our analysis.
We next obtain a finer estimate of the remainder term R° on the time interval [0, T ].

Lemma 2.4 There exits Cy > 0 such that for 0 <T < T

sup |Ri(z)| < Cp( sup [e€3))?, Pe-as, (46)
s€[0,T] s€[0,T]

on the event {w : sup(y 7y [e&£| < 1} uniformly for x € [~b,a] and € > 0.

Proof: Using Lemma 3] choose K > 0 such that on the event {w : sup,c[o ) [€€i| < 1} the processes
a°(x),eZ% (), R* () take their values in [~ K, K] as long as time runs in [0,7]. For t < T < T, the rest
term R° satisfies the following integral equation:

Ri(2) = / [~U' (Va(e) + 25 (2) + R3(@)) + U'(Va(a)) + U” (Y (@))e Z5_ ()] ds

= —/0 [U'(Yi(z) +eZ_(2) + Ri(x)) — U'(Ye(2) + eZ5_(2))] ds

(47)
t
—/ [U'(Ys(z) + 25 (2)) = U'(Ya(x)) — U" (Ys(2))eZ5_(2)] ds
0
t t
== [ v Ri @ as = [ 5000 ezi @) as
with appropriate 0, 62 € [-K, K]. Thus
t
IRi@I< [ IR @)ds + 4TLC (sup i) (48)
0 ,
An application of Gronwall’s lemma yields the final estimates
|Ri(2)| < $TLCE™( sup |egi])* < $TLOZT"( sup [€7])° = O sup [e€i),
t€[0,T] t€(0,T] t€(0,7T] (49)
sup | Ri(x)] < Cp( sup [e€f])%.
te[0,T] t€[0,T]
A |
Now we derive a uniform estimate of the rest term R® on time intervals longer than 7.
Lemma 2.5 There exist positive constants Cr and Cg < 1 such that for T >0
sup |Ri(x)| < Cr( sup |e£5])° (50)
s€[0,T] s€[0,T]
on the event
Er ={w: sup [g&| < Cg} (51)

t€(0,7T]

uniformly for x € [—b,a].
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Proof: Fix some positive T > 7" and let w € {w : SUP; ¢ (0,7] le€f| < 1}. Again, using Lemma 3 choose
K > 0 such that on the event {w : sup,co 7 [e§i| < 1} the processes z°(z),eZ(x), R°(z) take their
values in [— K, K] as long as time runs in [0, 7]. The rest term R° satisfies the integral equation

R (x) = / F(RE (), Ya(a) e 25 (x) ds (52)
with
f(RY,eZ)=-U'(Y +eZ+R)+ U (Y)+U"(Y)(e2).

Moreover, R® is an absolutely continuous function of time. We write the Taylor expansion for the
integrand f with some 6 € [ — K, K]:
f(RY, eZ)=-U(Y +eZ+R)+ U (Y)+U"(Y)(e2)
3 (p
=-UY)-U"(Y)R+eZ) - UT()

U® ()
2

(R+e2)*+U'(Y)+U"(Y)(e2) (53)

=-U"(Y)R— (R+¢e2)*

Since U € €3, [U®| is bounded, say by L, on [~ K, K]. Using the inequality (R + £Z)? < 2(R? + £22?)
we obtain that for all R, Y and Z such that LjeZ| < A

f(R,Y,eZ) < -U"(Y)R+LR* + L(cZ)* < ~U"(Y)R+ LR> + A=g"(R,Y)

54
f(R,Y,eZ) > -U"(Y)R — LR® — L(cZ)* > —=U"(Y)R — LR®> — A= g (R,Y). (59
With the help of lemma B this immediately implies for 7' < ¢ < T that
t
R (@) / PR, Yo(o) 25 (2)) ds < Ryo) + [ " (R5(2),Y.()) ds,
n (55)

R;(z) = R%(x) +/ f(R5(x),Ys(x),eZ;_(x))ds > R3(x) + / g~ (Ri(x),Ys(x))ds.
T T
with A = De? (sup;eo,m) |¢5])? and a constant D > 2LC% which will be specified later.

To estimate the rest term R° on [T7 T we apply the subsequent comparison Lemma Bl Consider an
event
B = {u R < 21} 2w Cp( sup |e671)” < - sup [e€7)?} (56)
ma te[0,7] m2 tefo,1]
Thus, setting D > max{2LC%,C;m2} we obtain that P,(E1) = 1, € [~b,a] and the conditions of
Lemma 0] are fulfilled on the event

Ey={w:mi—4AL >0} ={w : sup |e&| <
2 { 1 } { te[o %?T | €t| 2\/@} (57)
On FE; the following inequality holds a.s. for x € [—b, a]:
1> 2D 14
sup |Ri(z)| < ==( sup |e&F])%. (58)
te[T,T) m2 iefo,1]

Thus denoting Cr = max{C4 }and Cg = min{%7 1} we may finish the proof.

mi
’» 2v/LD
|

Lemma 2.6 (Comparison lemma) Let T >0, Y be a smooth function on [0,T] and Z a rcll function
on [0, T]. Consider the integral equation

t
Rt:Ro+/ F(Re,Ye, Zo_)ds, t€[0,T), (59)
0

with a smooth function f satisfying
9 (RY) < [f(RY,Z)<g"(RY), RY,ZE€R, (60)
g:t(R7 Y)=-U"(Y)R+LR*+ A, R,Y€R, with L,A>Q0.

Moreover, let 0 < m1 < U"(Y:) < ma, t € [0,T], and mi — 4AL > 0. Then for 0 <t < T the following
holds:

11



. if Ro < = then Ry < £ mz
2. if Ro > _m_l then Ry > —2—’?
This yields, that if |Ro| < m—2 then sup,c(o 7y | Re| < fn—’z.

Proof: To prove the first statement, together with (B3] consider the Riccati equation
t
rj:Ro—i—/ gt(rf, Y ds, telo,T]. (61)
0

Under the conditions of the lemma, it is enough to prove two statements:
a) Re<rffor0<t<T.

b) rj<i—’?fort20.

To show a) we note that at the starting point ¢t = 0,

. R,—R .
DYR,| =1lim =22 = f(Ro, Yo, Z0) < g7 (Ro,Yo) =71 | , (62)
t=0  hlO h t=0

consequently it follows from the continuity of R and rT that r;” > Ry for at least positive and small .
Assume there exists 7 = inf{t > 0 : R, = r}} such that 7 € (0,T]. At the point 7 the left derivative of
R is necessarily not less than the derivative of # which leads to the following contradiction:

DR| =tmBrTBrh ppvo oz s = gtetv),
t=1 h|0 h t=1 (63)
f(R77YT7ZT*) = f(rj7YT7ZT*) < g+(r"'7YT)'
To prove b), we compare 7 with the stationary solution of the autonomous Riccati equation

t
Pt = po + / (—maps + Lpi + A)ds, t>0. (64)
0

Equation (B2]) has two positive stationary solutions at which the integrand vanishes:

4AL
po=pT = 2L<1i 1— 2). (65)

my

Repeating the comparison argument used for a), we obtain that if Ry < p~, then 7} < p~, ¢t € [0,T].
Applying the elementary inequalities

<l-vVl—-z<z z€]01], (66)

|8

to p~ we obtain that % <p < % < fn‘j This guarantees that for Ry < 2=, the solution of () does
not exceed %.

1
The proof of the second statement is analogous. |

Proof of Lemma Tk Let 7" > 0 and = € [—b,a]. Choose Er according to Lemma A Then there
exists o such that for € < ¢ the following holds:

{ sup |of(a) = Yi(@)| 2 e} = { sup [eZi (2) + Ri ()| > c7}

te[0,7] te[0,T]
C{ sup [eZi(2)| > 57} U{ sup |Ri(2)| > 5}
te[0,7] te[0,T]
C{ sup |e€| > 551U [{ sup |R{(z)| > <"} N Er| U {{ sup R ()| > &-} N B (67)
te€(0,7T] te[0,T te(0,T
/2
C{ sup [e&] > cel }U{ sup |e&f| > ce? }U{ sup le&t| > C’E}
te[0,7) ' 20z €[0,7] Ve tef0,7] '

={ sup |g&] > ;é; 1.
te[0,7)

12
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a — 27

e
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—e7/2
_eY

—b+2" L - - o e -
—b+3e7/2}F - -

—b

Fig. 2: The dynamics of z!(y) under condition sup |z} (y) — Yi(y)| < %

Consequently, with the help of Kolmogorov’s inequality we obtain for small € and some C' > 0

4C3
P.( sup |zf —Yi(x)| > ce”) < P( sup |e&| > c e”) < 2—2ZE(€fj5p)2
t€[0,T] te[0,7] 207 c?e?y (68)
:T4C%( 2 le/2-2 | g 22y < opglta/22

22—«

This completes the proof.

3 The law of o(¢)

For the purposes of this rather technical section we introduce the following notation. Denote Wy = Ty =
0, 2'(0) = z, and write [A for the indicator function of a measurable set A. Let I denote the exterior
and interior neighborhoods of I defined by I = [~b ¥ ¢q,a % q] for 0 < ¢ < min{a, b}.

Throughout this section we use the following constants. Chose 1, g2 and g9 > 0 such that for all
y € I the following holds for € € (0, o], (see Fig. B):
1. |Yi(y)| < % for t > pu1|Ine|. Consequently, denoting zF (y) = 2 (y) — Yi(y), we have |zF(y)| < &7 for
t > p1|Ing| under the condition |zf (y)| < %
2. Yi(y) € I, for all t > p2e?. Consequently, |zF(y)| € Iy )y for t > pse™ under the condition
|zF(y)| < % Let us show that pe with this property exists. Indeed, for all y € I, |Yi(y)]| is strictly
decreasing (y # 0), and Yz(0) = 0. Moreover, for —b < y1 < y2 < a, Yi(y1) < Yi(y2). Let r(z,e) =
inf{t > 0 : Yi(z) € I5.+}. Then by comparison for all x € I

r,e) <max{ [ ﬂ/fwﬂix & D<e<e (69)
= e U ), U T =

3.1 Upper estimate

In this subsection we give estimates of P, (c(g) > u) from above as ¢ — 0, u > 0. They are comprised in
the following Proposition with a rather technical proof. Recall that v has been chosen according to « in
Proposition E11

Proposition 3.1 Let § = min{«a/2,v/2}. There exist constants e > 0 and C > 0 such that for all
0<e<eg,z€[-b+e",a—e"] and u > 0 the following inequality holds

a |a® b

P(o(e) > u) < exp {—ui {i + i} (1- 055)} (14 Ce%). (70)
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Proof: For z € I, we use the following obvious inequality

Nk

P.(o(e) >u) = P > u)Pr(o(e) = 1) + Pu(o(e) > ul|o(e) € (th—1,7k))Pu(c(€) € (Th=1,7k))

£
Il

1

M

P(r > u) [Px(a(a) =)+ Pu(o(e) € (Tk,lmk))]

£l
Il
—

(71)

Then for any « € I and k € N, applying the independence and law properties of the processes x”,

j € N, the following chain of inequalities is deduced which results in a factorization formula for the
probability under estimation (compare with ([[H)):

P.(o(e) =m) =E.{X; € I,s € [0,7), X7, ¢ I}
=E. H ]I{a:@(xﬁp;ll +eWji—1) € 1,5 €0, Tj],xgﬂj (xgpzjl +eW,1)+eW; €1}

X ]I{:c];(:cf};l +eWr—1) el se 0, Tk]@"%c (1:%;11 +eWio1) + Wy ¢ I}
k—1
<E H supI{zl(y) € I,s € [07Tj]7ac?pj(y) +eW; e}

j= lyEI

x supI{at(y) € I, s € [0, Tu], %, (y) + Wi & I}
vel (72)

= 1:[ {supﬂ{xs (y)el,se [O,Tj],xjfj (y) +eW; € I}}

yel

x B {stépll{xs( yel,se [O,Tk],xfpk(y) +eWy ¢ I}}

~(B[switatw € 1.5 e D1k )+ W € I}Dkl

x E {sup]l{ms( ye1,s€[0,Th),xp (y) +eWy ¢ I}} .

yel

Analogously we estimate the probability to exit between the k-th arrival times of the compound Poisson
process n°, k € N. Here we distinguish two cases.

In the first case k=1,z € I.y. Then

P.(o(g) € (10,71)) = Pu(o(e) € (0,T1)) = E,I{X; ¢ I for some s € (0,T1)}

<E | sup I{z}(y) ¢ I for some s € [0,T1]}] ,
ye];
In the second case k >2,x € I. Then
Pz(o(e) € (Th—1,7k)) = E.I{X; € I,s € [0,74_1], X5 ¢ I for some s € (Tx—1,7k)}

=E, H al(ah, ! +eWjo1) € Is € [0, Ty, 2, (2, ' +eWj1) + W, € T}

x I{azk (:ch +eWg—1) ¢ I for some s € [0,7%)}
k—2 _
< EH supI{zl(y) € I,s € (07Tj]7x§«j(y)+EWj el}x

= 1yEI

x sup {z¥ ' (y) € I, s € (0, Thp—1], JJTk 1( )+ eWi_1 €1, acs(:cl}kl (y) + eWi_1) ¢ I for some s € [0, T]}
yel

- (E bgu{x;(y) € 1,5 € [0,Ti],zb (y) + W) € I}DH

x E {sup]l{mi(y) €1,s€(0,T1),xp, (y) + Wi € I, 22 (xp, (y) +eWi) ¢ I for some s € [0, T2]}| .

yel

(73)
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Next we specify separately in four steps the further estimation for the four different events appearing in
the formulae for P, (o(e) = ) and Px(o(e) € (Th—1, Tr)).
Step 1. Consider I{z}(y) € I, s € [0,T1],z7, (y) + eW1 € I}. For y € I, we may estimate

{zi(y) € I,s € [0, Th],x1, (y) + Wi € I}

= (y) € I,s € [0, Th], xp, (y) + Wi € I} (H{Sesllou;]lzs( )| > 5 }+H{S€S[1011;]IZi(y)l < EV})

S sup |z(y)| > Y+ sup |2(v)| < Fo2n (y) + Wi € T}

s€[0,T1] s€[0,T1]
=I{ sup |ai(y) >
s€[0,Ty]

+1{ sup |z;(y)| < Eg,le( )+eWh eI} (H{|EW1| < 5W}+}I{|EW1| > E; })
s€(0,Ty]

<I{ sup |z(y) > S} +HleWs| < 5}
s€(0,Ty]

FI{ sup |2M)| < WAl > ok () + eWa € LT3 > ] e}
s€[0,Ty]

+I{ sup [z (y)| < S [eWh| > 5,27, (y) + Wi € 1, T1 < | Inel}
s€(0,Ty]

< sup |z(y) > S} +HleWa] < 5}
s€(0,Ty]

+I{|eWs| > &, eWy € I} + T{|eWi| > 5, Ty < u1|ln6|}
=T{ sup |zi(y)| > ¢ ? +{eW; € w}+H{|EW1| > LTy < pa|Inel}.

s€[0,Ty]
Step 2. Consider I{z}(y) € I,s € [0,T1],z7, (y) + W1 & I}. For y € I, we may estimate

Ha(y) € 1,s € [0,T1], le( )+eWn ¢ I}
<I{ sup [z (y)| > S+ sup [=(y)| < Foam, (y) +eWa & 1}

s€[0,T4] s€[0,T4]
<K sup |z (y)| > 5
s€[0,T4]
+I{ sup |z (y)| < 5. [eWi| < 5T > poe” wp, (y) +eWn ¢ I} (=0)
s€[0,Ty]
+I{ sup |z:(y)| < 5, |eWi| < 5,0 < pae” o, (y) + W & 1}
s€(0,Ty]
+I{ sup |2i(y)| < 5 1eWal > &, 11 > pa|Inel, ar, (y) +eWh ¢ I}

s€[0,T4]

(75)

+1{ sup |zi(y)] < %7|EW1| > %7T1 < pa|Inel,zp, (y) + W ¢ I}

s€[0,Ty]
S sup |z (v)| > S} +H{Th < poe} + HeWn ¢ 15} +T{|eWh| > 5, Ty < pa|Inel}.
s€[0,T4]
Step 3. Consider I{z1(y) ¢ I for some s € [0,71]}. For y € I, we may estimate
I{zi(y) ¢ I for some s € [0,T1]} <I{ sup |2!(y)| > I+
s€[0,Ty]

H{ sup |-A(w)] < Z,al(y) ¢ I for some s € [0, T} (= 0)
s€(0,Ty]

(76)
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Step 4. Consider I{z}(y) € I,s € (0, T1], 2}, (y) + Wi € I, 23 (7, (y) + W) ¢ I for some s € [0, T3]}
For y € I, we may estimate

{zi(y) € I,s € (0,T1], 2, (y) + Wi € I,23(x, (y) +eWh) ¢ I for some s € [0, T2]}

=xi(y) € I,s € (0,T1), 2, (y) + Wi € I, 22 (xh, (y) +eWh) ¢ I for some s € [0, 2]}

+{zl(y) € I,s € (0,T1), 1, (y) + Wi € NI, 22 (z1, (y) + eW1) ¢ T for some s € [0, T2]}

<Hai(y) € 1,5 € (0,T1), 2, (y) + Wi € I} - sup I{ai(y) ¢ I for some s € [0, T3]} (77)
ye];

+{zs(y) € I,s € (0,Th), o7y, (y) + Wi € N[5}

< sup H{z3(y) ¢ I for some s € [0, T3]} + {zi(y) € I,s € (0,T1), 1, (y) + Wi € I\ }.

ye];

The first term in the resulting expression in the Step 4 is identical to the expression handled in Step 3,
while the second term requires an inessential modification of the estimation in Step 1.

Now we apply ([@), (@), @) and [ to estimate the expectations treated in Steps 1, 2, 3 and 4
above. In what follows, ¢. and C. denote appropriate positive constants. Fix also 0 < § < min{vy/2, a(1—
7), /2 = min{~/2, a/2}.

Step 1. Estimate E [sup,c; I{zi(y) € I,s € (0, T1],zr, +eW1 € I}]. We get

E |supl{zi(y) € I,s € (0,T1),xp, +eWi € I}}

yel

<P(sup 2(3)] > 5) + P(eWi € I5) + P(Wh| > S)P(Ty < ju|Ine])
[0,T1]

/2 1 1 (%)

< (atm)/2 4 q _ a(3/2=7)11

<cie + ICEE + S + cog [Inel

<1 —Ea/zg(l —Che°%).

Step 2. Estimate E [sup, ., {zi(y) € I,s € (0,T1],xp, +eW1 ¢ I}]. In fact,
E |sup[{zi(y) € I,s € (0,Th], xp, + W1 ¢ I}}
yel
< P(sup |21 (y)| > 5) +P(Th < pae”)
[0,T1]

+P(eW: ¢ 1) + P(|eWi| > S )P(T1 < pu|Inel) (79)

g/? 1 1
(at7)/2 a/2+y a(3/2—7)
< cie + cse —|— 3 {(a—e”)a + (b—e”)a} + coe [Ing|

o 0
/22(1—|—02€)

Step 3. Estimate E [supyerW {xi(y) & I for some s € [0, Tl]}} . We have

<P(sup |z (y)| > 5) < e <e2 05 (80)

[0,71]

E| sup I{zl(y) ¢ I for some s € [0,T1]}

yel—_~

Step 4. Estimate
E [sup,c; {zs(y) € I,s € (0,Th], o1, (y) + Wi € I, 22 (xk, (y) +eWhr) & I for some s € [0,T]}]. We fi-
nally obtain

E {sup]l{:ci(y) €1,s€ (0, T,z (y) + Wi € I,x2(ar, (y) +eW1) ¢ I for some s € [0, T2]}
yel
<P(sup |z(y)| > 5)
[0.71] (81)

+P(sup |z2(y)| > ) + P(eWr € [~b—¢e7,—b+2"]) + P(eW1 € [a — 2¢7,a +£7])
[0,71]

P(|eWi] > E)P(T1 < | Inel) < e®/? - Cue’.
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Then for z € I, 0 < € < gg, and some positive Cs,

P,(0(c) > u) < P(n > u) {e““%u +Cae®) 42/ C}

)

0 )
—&—ZP(m > u) (1 —Ea/2§(1—0156)) Ea/2§ [

2 S
5045

+ 14 Coe®
1 —e2/28(1 — C1e9) :

k=2

[e'e} oo 3 k—1 0 k—1 0
< : et Bet)™ " o (y_ ar2f a0 ar20 1 1 o
< kgzl ’ Bee 7(1@ )Y € 2( Cse”) € 2( + Cse°)

0 * B.te®/28(1—
< Ea/2§(1 + 0566)/ B.e Bete /Qg(l Cse?) dt
u

< 1+ Cse?
-1 —0555

< exp {—usag(l - 066)} (1+Ce’)

exp {—us"‘%(l - C556)} < exp {—us"‘%(l - C555)} (1 + Cse®)

(82)
with C' = max{C5,Cs}.

In the previous formula we have changed summation and integration. This can be done due to
the uniform convergence of the series Y 77 | 5567‘55'5% [1 — 6“/2%(1 - 0555)] o for all ¢ > 0 and
e < 0. Indeed, let tj, be the coordinate of the maximum of the density of the (3¢, k)-Gamma distribution.
For k > 2, it is easy to see that ¢, = % Then, with help of Stirling’s formula we obtain, that

_ )kt k1) (k= 1)F1 1 3
0< 2 Bet (ﬁs < 2 (k—1) ~ € , k . 83
S Bee Ty S P G-~ VamvE—1 % (83)
Then, for all € < g9,
e} — k—1
*56’5M 28 s < B <
2O Ty [1 e R0 -G s ey S =

where the constant ¢ does not depend on ¢ and e. Thus uniform convergence follows from dominated

convergence.
|

3.2 Lower estimate

In this subsection we estimate P,(o(¢) > u) from below as ¢ — 0, uw > 0. This leads to the following
Proposition with a rather technical proof again.

Proposition 3.2 There ezist constants €9 > 0 and C > 0 such that for all 0 < ¢ < g9, 0 < § <
min{a/2,v/2}, x € [-b+¢e7,a — 7] and uw > 0 the estimate

P(o(e) > u) > exp {—u% Lia + bia} (1+ ce“)} (1-Ce) (85)

s valid.

Proof: We use the following inequality:

[M]¢

P.(o(e) >u) = P > u)Pe(o(e) = ) + Px(o(e) > ulo € (h—1,7%)) Pz (0 € (Th=1,Tk))

ES
Il

1

(86)

M

P > u)Pr(o(e) = k).

x>
Il

1
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With arguments analogous to ([ZZ) we obtain the factorization

P.(c =m) =E.I{X; €I,5sc[0,7),X;, &1}
—E, H Hal(ah ' +eW;1) € 1,5 € [0, Ty, mT (z jT]fjl +eW,_1) +eW; €1}

X ]I{ac’;(x'%:l +eWio1) € 1,5 €10, Tk]m%c (acl%:l +eWio1) +eWy ¢ I}
>E, H al(ah, ! +eWjo1) € Is € [0, Ty, 2, (2, ' +eWj1) + W € I}

X ]I{ac’;(x'%:l +eWi_1) e l,s €0, Tk]m%c (ac’fp:l +eWho1) + Wy, ¢ I}
k=1

>E[] inf Hal(y) € 1,5 € (0, T3} 2%, (y) +eW; € 15}
j=1Y€ly
x inf H{z¥(y) € 1,5 € (0, TkLml’}k (y) + Wi ¢ I}

yEI;.Y

inf H{xi(y) el,se (07 Tj]7x%“j (y) +eWj e IE'V}:|

yEI;

k—1
— HE
j=1

:<E

For y € I, we next specify separately in two steps the further estimation for the two different events
appearing in the formulae for P, (o (g) = 7%).
Step 1. Consider the event I{z}(y) € I,s € (0,T1],z1, (y) + W1 € I, }. We may estimate

x E| inf H{zk(y) € I,s€(0,Tx],2%, (y )+5Wk¢1}}

ye];

inf [{z!(y) € I,s € (0,T1], 27, (y) + Wi GIE’Y}:|)

yEI;

x E | inf I{zi(y) € I,s€ (0,Th],xr, (y) + Wi ¢ I}} .

yEI;.Y

]I{J:i(y) el,se (0,T1], ach( )+eWrels}
ST sup |ol()] < 2,0l(y) € L,s € (0,Th), 2k () +eWh € I}

s€[0,T4]

> ]I{SES[EI;”ZS( )| < s = 7$S( )€ 1,s€(0, Tl] leWh] < 5 Tl > N2€ le( )+eWh e Ig'v}

41

+I{ ES[})II;F | lzs )| < 5,25 (y) € 1,5 € (0,T], [eWh| > %7T1 > pu|Inel, o7, (y) + Wi € I}
S 41

> I sup l2e ()| < S, [eWh] < 5, T1 > pae”}

+I{ Sup lzs ()| < 5 [eWA| > 5, Ty > | Inel,eWh € Tpeq }
s 1

= E{|8W1| < T1 > /,1/25 }

—I{ sup |zs( )| > 5 |EW1| < =Ty > pee™}
s€[0,T4]

+ {|eWh| > 55,11 > u1|1n5| 5W1 €}

—1I{ sup |zs( ) > S, [eWi| > &, 11 > pa|Ingl,eWs € I}
s€[0,T4]
={|eWi| < 5} —{]eWn| < 5;7T1 <p2e’} —I{ sup |z (y)l > G [eWi| < 5 Th > e}
s€[0,T4]
+ I{|eWn] > %,EWH € Iy} — I{|leWn] > %,Tl < pi|lne|,eWr € I~}
—I{ sup |zl(y)| > %,|€W1| > %,Tl > | lne|,eWr € I}
s€[0,T4]

> HeWn € Inor} — {T1 < pae”} — 2I{ sup |z4(y)| > 5} — I{|eWr]| > &, Tt < pua|Inel}.
s€[0,T4]

(88)
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Step 2. The event I{z}(y) € I,s € (0,T1], 2%, +eW1 ¢ I} may be estimated as follows:

Has(y) € 1,5 € (0, Th], o, +eW1 ¢ I}
>I{ sup |z(y)| < 5. 2i(y) € 1,5 € (0,Th], o, +eWi ¢ I}

s€[0,T4]
>1I{ sup |z;(y)| < %,xi(y) el,se (0, 1], Tn > u1|lne|,:1:]§p1 +eWr ¢ 1}
s€[0,T4]
>I{ sup |2H(y)| < 5T > pulInel,eWs ¢ 15} (89)
s€[0,T4]
=Ty > pu|Inel,eWr ¢ I5} = I{ sup |z:(y)| > S, T1 > | Inel,eW: ¢ 15}
s€[0,T4]
>HeWy ¢ I5Y —T{Ty < pa|Inel,eWs ¢ I5} —T{ sup |zi(y)| > %@Wl ¢ 15y

s€[0,Ty]

Now we apply ([BF) and ([B9) to estimate the expectations appearing in the formula for Py(o = 7). In
what follows, ¢; and C; denote appropriate positive constants. Fix also 0 < § < min{v/2, a(1—7),a/2} =

min{vy/2, a/2}.
Step 1. Here we estimate E [infyel;Y {zi(y) € I,s € (0,Th],xp, + Wi € I }] . In fact, we obtain from

employing results from sections Bl and [

E

yEI;,Y

inf H{xl(y) € I,s€ (0,Th],zh, +eWi € I }}

> P(eWh € I5ly) — P(Th < p2e”) — 2P(sup |24 (y)| > 5) — P(|leWi| > 51, T < | Inel)
[0,71] (90)

} e @t/ _ g o 3/2-) 1y

a/2

€ 1 1
>1-5

=177 {(a— 2oy T h—2e7)a

0
>1- ea/2§(1 + C1e%).

Step 2. We next estimate E [infyel;7 {zi(y) € 1,5 € (0,Th], %, +cWi ¢ I}] , for which we obtain

similarly

E | inf H{zl(y) € I,5s € (0,Ti],ah, +eWy ¢ I}

yEI;

>

P(eWi ¢ I1) <1 —P(T1 < jul|lnel) = P(sup |2 (y)| > %))

[0,71] (91)

> 5‘1/2 1 + 1 (1 _ C3Ea/2| 11’15| _ C2E(C¥+’Y)/2)
— 2 |(atem)e  (bte7)~

> aa“g (1 - 0255) .

Consequently, with C3 = max{C1,Ca}, for x € I, 0 < e < &g

P (o(e) > u) >y / e E;ftz o

u (92)

exp {—uea%(l + C355)} > exp {—ueag(l + 0366)} (1—Cse%)

k—1
dt {1 - 50‘/2;(1 + 0365)} sa/zg(l — C3e%)

1— Cyel
-1+ 0355

> exp {—usag(l + 066)} (1—Ce’)

with C' = max{C3,C5}. See the end of the proof of Proposition Bl for the justification of switching the
order of summation and integration in the above argument.
|
Proof of Theorem [Tk The statement of Theorem [Tl follows directly from Propositions Bl and
[ |

19



Remark 3.1 The threshold 1/,/¢ for separating the two parts of L is not the only possible choice.
Indeed, let us consider thresholds of the type 1/e” for p > 0. Then 8. = [, I{|y| > & }v(dy) = 2e°*. p
must satisfy some further conditions. Firstly, we demand that p < 1 so that we can easily calculate the

probability
@

1 d
Pl g ba) =555 [ > St

e =0, (93)

26l Jp\(_b a

This is the characteristic probability of our analysis. The probabilities of other relevant events should
have smaller order in the small noise limit. This for example applies to the event that £° leaves the
e”-tube around the deterministic trajectory (see Proposition EII), and the event that 71 < p2¢e”) (e.g.
see (@), @ and @D)). This leads to the following inequalities on p and v: 0 < p < 1, v > 0,
a(l—p) <2—-2p—2vand a(l —p) < ap+ . Applying some algebra we rewrite these inequalities in
the form

{’y<27“(1—p), 0<p<l, (94)

v > a(l - 2p), v > 0.

The solution set (p,~y) is non-empty for all a € (0,2) and depends on . However p = % is the minimal
value independent of « for which there exist v solving the inequalities. In this case any v from the
2—«

interval (0, Q*T“) is a solution. For our purposes we have taken v = ===.

4 Return from —oco and deviations from the deterministic
trajectory: exit from unbounded interval

With the aim of proving an analogue of Proposition EZI] we study in this section the exit problem of the
solution of our stochastic differential equation from the unbounded interval J = (—o0, a]. In this case we
shall use the condition that U’ increases faster than a linear function at —oo which guarantees a return
from infinity in finite time for the unperturbed deterministic motion. For simplicity we assume that for
large |z|, U is a power function, i.e. |U(z)| = c1|z|*T2, c1,c2 > 0 for |z| > N. This condition can be
weakened (see Remark EEJl at the end of this section). We stick to it to avoid technicalities irrelevant for
the main aim of the paper.

Fix two more positive numbers r and R such that N < r < R, and such that with Tr = f:::ﬂo ‘U‘,ig’y)‘
we have —r = Y7, (—R). Consider the equations (1) on the unbounded interval J. As in section
we estimate on the basis of the representations z°(z) = Yi(x) + ¢Zf (z) + Ri(x), with Yi(z) = = —
fot U'(Ys(z))ds and Z; (z) = & — fot & U"(Ys (x))% ds. We first prove an estimate enabling us to
transfer Lemma [Z2 to unbounded intervals.

Lemma 4.1 The inequality supc(o ) |25 (%) < 28Upe(o,ry) €5 holds a.s. for x < —R.

Proof: For all x < —R by definition of R and r we have Y;(z) < —r. Moreover, by assumption
U"(Yi(z)) > 0 for t € [0, Tg], whence

T U'(Ye(x))
Zi (x) < su Il 1+ su su / U"(Yy(2)) ——2"L ds | . 95
t(@) tE[O,IZD‘R] &1 ( ngRtE[O,I;“R] 0 (s ))U’(Ys(x)) (85)

We show that the integral in the latter parenthesis is uniformly bounded in x. Denote Y;(x) = v. Then
dv =Y(x)dt = —U'(Yi(z))dt = —U’(v) dt. Therefore

e U'(Yi(x)) / YR U (v)
/O U ) G s = U (V@) / T v
1 1
= U (Yru(z - <1.
0o |77y~ 77 ©
[ ]
Here is the analogue of Lemma
Lemma 4.2 There is a constant C% > 0 such that the inequality
sup |Z;(z)| < C% sup |&| (96)
te[0,T] te[0,T]

holds a.s. forx <a, T >0, > 0.
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Proof: The proof obviously has to combine the previous Lemma with Lemma on bounded intervals.
The inequality holds with C% =1+ Cz. [ |

To estimate deviations of the random paths from the paths of the deterministic equation, we restrict
from the start to sets of bounded scaled noise.

Lemma 4.3 On the event {sup,co 1, [€€i| < 1} the following inequality holds a.s.

sup |z — Yi(x)| < 10 (97)

t€(0,TR]

uniformly for © < —R.

Proof: It follows from LemmaBTl that sup,¢(o 7, |eZ; ()| < 2 a.s. on the event {sup,co 1, [€F] < 1}
We show that the rest term |R°| is bounded by 8. Indeed, the rest term satisfies the integral equation

Ri(z) = /O [—U'(Yi(2) +eZ;_(2) + R(2)) + U'(Ys(@)) + U" (Ys(2))e Z5_ ()] ds. (98)

R®(x) is absolutely continuous a.s. and Rg(z) = 0. Assume, that there exists a smallest 7 € [0, Tr] such
that RS (z) = 8. Then the left Dini derivative of R*(z) at this point is non-negative, i.e.

~U' (Yo (z) + eZ_(z) +8) + U'(Yr(x)) + U" (Yo (x))eZi_(x) > 0. (99)
On the other hand, our conditions on U guarantee

U (Yr(z)+eZ;_(z) +8) + U' (Yo (x)) + U" (Yr(2))eZi_ () (100)
< —U' (Y2 (@) +6) + U' (Y2 (2)) + 20" (Y- () < O,
and a contradiction is reached. The estimate R (z) > —8 is obtained analogously. |

The following lemma is an analogue of Lemma and gives a rough estimate for the remainder term
R*.

Lemma 4.4 There exists C > 0 such that for x € [-R,a], T >0

sup |Rf| < C (101)
t€[0,T]

a.s. on the event {sup,¢o 1 [€&7| < 1}.

Lemma B4l again has localizing consequences: It states precisely that the solution process z°,
with initial state confined to [—R,a], stays bounded by a deterministic constant on sets of the form
{sup,¢ (o, |66 (w)| < 1}. Therefore, in the small noise limit, only local properties of U are relevant to
our analysis.

Let us paraphrase the most important aspect of what we found in the previous Lemmas due to finite
return from —oo. With probability close to one, the random trajectory starting at x < —R reaches the
finite interval [—R, —7] in a finite non-random time Tk which does not depend on €. Our investigation
therefore reduces to the study of the dynamics of paths starting in the finite interval [—R,a]. Since
the deterministic trajectories starting in [—R, a] do not leave this interval, the statement of Lemma 2]
does not change. Due to Lemma B4 the estimate of the rest term R® given in Lemma EZJ also holds
unchanged.

Thus, in the case of the unbounded interval we have all necessary tools to estimate the exit proba-

bilities.
Remark 4.1 The conditions on the behavior of the potential U at —oo can be weakened. Indeed, a
slight extension of the proof of Lemma Bl allows to drop the convexity condition U” > 0. Furthermore,
to show that R® is bounded from above by some p1 > 0, we need to guarantee that the integrand in
@) is negative for R = pi under the condition [eZ_| < p2, p2 > 0. This leads to the inequality
—infocipy—prpotp] U (y+0) +U'(y) + p1|U" (y)| < 0, which has to hold for y < —N. For instance, for
the power function U(x) = c1|z|>T°2 considered above this inequality is equivalent to —(p2 — 2p1)|y| ™" +
O(ly|™2) < 0, y — —oo, and thus holds for any pz > 2p1 > 0.
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5 The law of 7(¢)

In this section we estimate P, (7(g) > u) for u > 0 as ¢ — 0. Indeed, the extensions of propositions Bl
for the estimation above and for lower bounds with parameter b = 400 take the following form.

Proposition 5.1 Let § = min{«a/2,v/2}. There exists g > 0 and C > 0 such that for all 0 < & < o,
z € (—o00,a—¢"] and u >0

o

P.(7(g) > u) <exp {—u °

— (1= Oe“)} (1+Ce°). (102)
Proposition 5.2 Let 6 < min{a/2,v/2}. There ezists €0 > 0 and C > 0 such that for all 0 < & < o,
x € (—oo,a—¢e"] and u >0

E(X

a®

P.(7(g) > u) < exp {—u (1+ 055)} (1—Ce®). (103)
Proof: The arguments to prove the estimates are similar to those of the bounded case. We just need
to adapt Steps 1, 2, 3 and 4 (see sections Bl and B2) to the case of an unbounded interval. Let us
consider for example the extension of Step 1 from section Bl The basic formula ([ZZ) holds in the case of
unbounded intervals with J replacing /. We demonstrate how to modify the reasoning just in the series
of inequalities () and in the estimate ([[(8). The other estimates are obtained analogously.

Firstly, we estimate I{z!(y) € J,s € [0,T1], 21, (y) + eW1 € J} for —R < y < a. Denote A =
{sup,e(o,7y) [€€7| < 1}. On the event A, the trajectory zt(y), t € [0, T1], belongs to a compact interval,
so its dynamics is indistinguishable form the one treated in the bounded case. Therefore, we have

]I{mi(y) eJse [07T1]7231T1 (y)+eWi € J}

=xi(y) € J,s € [0, 1], 7, (y) + Wi € J} (I{A} + I{A°})

<Hzi(y) € J,s € [0,T1), a7, (y) + Wi € J, A} + I{A} < -

< sup k() = Va(y)| > S} +HeWs € J5} + H{|eWi] > T3 < jur] Inel} + {4}

0,T

(104)

The case y < —R is slightly more complicated since we have to treat the return of z*(y) to a compact
interval in a finite time. Denote

B={w: sup [g&|<1}n{w: sup  |e&; — e&rpamy | < 1}
[0,TRATY] [TRATY,TH] (105)
D {w : sup |g&| < 1} = A.
[0,71]

Then we have
{zi(y) € J,s € [0, T1],z1, (y) + W1 € J}
<Hai(y) € J,s €0, Tr AT1),xi(y) € J,s € [Tr ATy, Th), 21, (y) + Wi € J} N B +I{A}
<Hai(y) € J,s € [Tr AT, Th],2p, (y) +eW1 € J}NB+I{A} < -+

< sup  |2i(y) = Yeorpan, @rpan ()| > 51+ H{eWn € J5 )}
s€[TrATy,T1] (106)

+{|eWr| > &, TR ATy < pua|Ine} + I{A%}

< sup I{ sup |zi(y) — Ye(y)| > S} +{eWh € J5}
ye[—R,—r] s€[0,T1]

+I{|eW1| > &, T1 < pa|Inel} + I{A}.

These estimates may be treated in a way similar to (). In fact,

1
E |sup[{zi(y) € J,s € (0,T1],xp, +eW1 € J}| <1— ea”ﬁu —Ce°) (107)
yeJ
for some C' > 0. The other steps are modified analogously. |
Proof of Theorem Combine the estimates of the above Propositions. |
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