
STOCHASTIC ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 105

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2015

COMPARISON PRINCIPLE APPROACH
TO UTILITY MAXIMIZATION

PETER IMKELLER and VICTOR NZENGANG
Institut für Mathematik, Humboldt-Universität zu Berlin

Unter den Linden 6, D-10099 Berlin, Germany
E-mail: imkeller@math.hu-berlin.de, nzengang@math.hu-berlin.de

Abstract. We consider the problem of optimal investment for maximal expected utility in an
incomplete market with trading strategies subject to closed constraints. Under the assumption
that the underlying utility function has constant sign, we employ the comparison principle for
BSDEs to construct a family of supermartingales leading to a necessary and sufficient condition
for optimality. As a consequence, the value function is characterized as the initial value of a BSDE
with Lipschitz growth.

Introduction. The problem of optimal investment or utility maximization with or with-
out constraints or liabilities has been studied intensively since the early days of stochastic
finance. Various mathematical tool boxes have contributed to a number of methods. The
most classical and prominent one is based on duality theory. Its intrinsic link to con-
vex analysis also indicates natural limitations, in particular when facing constraints not
given by convex sets. A tool that has gained some popularity during the last two decades
features backward stochastic differential equations (BSDE). As opposed to convex du-
ality theory, it does not need convexity assumptions and is therefore able to deal with
scenarios in which constraints are formulated on closed, but not necessarily convex sets.
This primal stochastic approach has been shown to yield intrinsically stochastic, but not
explicit descriptions of optimal investment strategies in terms of the control components
of solution pairs of BSDEs tailor made for the underlying preference or utility function
(see El Karoui et al. [REK00], Hu et al. [HIM05]). For classical utility functions without
exogenous liability, simple BSDEs have been designed that lead to solutions of the pricing
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and hedging part of the maximization problem. For rather general utility functions, and
in presence of exogenous liabilities, various approaches have shown that in general the
forward dynamics of the asset prices on the underlying financial market and the back-
ward (control) dynamics expressed by the BSDE are fully coupled. As a consequence,
the primal stochastic approach leads to a system of coupled forward-backward stochastic
equations (FBSDE) (see Horst et al. [HHI+]), or, if formulated in terms of the dynamics
of the associated value function, to a system of backward stochastic partial differential
equations (BSPDE) (see Mania et al. [MT03]). For systems of FBSDEs, finding solutions
is essentially more involved, and explicitly solvable systems easily accessible to numerical
algorithms are even rarer.

Typically, generators of BSDEs arising in the primal stochastic approach of optimal
investment problems are quadratic in the control variable, and therefore lack the impor-
tant global Lipschitz continuity property. In this paper, we present a new version of the
primal stochastic (BSDE) approach for class of optimal investment problems character-
ized by utility functions that possess a definite sign, and to which liabilities are coupled in
a multiplicative form. In our approach we decompose the generator into a family of linear
generators depending on individual admissible investment strategies. We then associate
to each one of them an individual BSDE with linear generator for which the solution is
explicitly available. In order to return to the original optimization problem, we finally
heavily rely on the comparison principle for BSDEs: maximization in the generator corre-
sponds to maximization in the solution process describing the optimal portfolio and price.
Particularly attractive features of the global solution thus obtained are the following: it
can be represented by a BSDE with at least Lipschitz continuous (if not linear) gener-
ator, and it contains a necessary and sufficient condition for optimality of the optimal
investment process. It is therefore easily accessible for numerical approximation, given
some pre-knowledge on the optimal investment strategy that can be recursively obtained
along an algorithm.

The paper is organized as follows. In Section 1 we explain the basic concepts and
fix notation. In Section 2 our financial market model is set up. We explain the utility
maximization problem with multiplicative liabilities, and constraints defined by a random
progressive family of closed sets (closed multifunction) that are not necessarily convex.
In the main Section 3 we design our approach based on a combination of a family of
BSDEs with linear generators and the comparison principle. To make it work, the price
we have to pay is Assumption 3.1, which includes conditions on relative risk aversion and
asymptotic elasticity, on the sign of the utility function, and boundedness of the constraint
sets. In the main result (Theorem 3.7) we show that under this assumption the optimal
investment problem is solved by a single BSDE with linear generator associated to the
optimal investment process. In the final Section 4 we discuss our main result in the cases
of exponential and power utilities.

1. Notation and preliminaries. The purpose of this section is to fix notation and
review basic concepts that will be used throughout this paper. Let T ∈ (0,+∞) be the
finite time horizon and m, d ∈ N with m ≤ d. Throughout this paper, we work with



COMPARISON PRINCIPLE APPROACH TO UTILITY MAXIMIZATION 147

a filtered probability space (Ω,F ,F,P) with F = (Ft)t∈[0,T ]. We suppose that F is the
filtration generated by a d-dimensional Brownian motion W = (W 1, . . . ,W d), completed
with the P-null sets. We denote by P the σ-field of predictable subsets of Ω × [0, T ].
λ denotes the Lebesgue measure on [0, T ] and P⊗ λ the product measure on Ω× [0, T ].
E[ · ] is the symbol used for the expectation with respect to P. For x, y ∈ Rm×1 (resp.
Rd×1), we denote by | · | the Euclidean norm, and by 〈 · , · 〉 the inner product on Rm×1

(resp. Rd×1). Throughout this work, an Rm×1 vector a = (a1, . . . , am)tr will be identified
with its Rd×1 extension a = (a1, . . . , am, 0, . . . , 0)tr. We adopt the same identification
with Rm×1-valued processes. For an Rd×1 (resp. Rm×1)-valued predictable process Z, we
denote by

∫ ·
0 Zt dWt the stochastic integral of Z with respect to W . For two Rd×1- (resp.

Rm×1)-valued semimartingales X,Y , we write 〈X,Y 〉 for the co-variation process of X
and Y . For a semimartingale M , we denote by E(M) its Doleans–Dade exponential. The
vector space Hm is defined by

Hm := {A ⊆ Rm : A is nonempty and compact}.

Let A ⊆ Rm, b ∈ Rm. We denote by distA(b) the distance between b and A, defined as

distA(b) = inf
a∈A
|a− b|.

We endow Hm with the Hausdorff metric dH defined by

dH(A,B) := max
{

sup
a∈A

distB(a), sup
b∈B

distA(b)
}
.

(Hm, dH) is a complete metric space, and we write B(Hm) for its Borel σ-algebra. In the
sequel, the following spaces will play an important role:

• H2,d
T (or H2,m

T ), the space of Rd×1- (resp. Rm×1)-valued predictable processes such
that E

[∫ T
0 |Zt|

2 dt
]
< +∞;

• L2
T , the space of FT -measurable real valued random variables X that are square

integrable, i.e E[|X|2] < +∞.

2. The model. Our financial market consists of one bond S0 with zero interest rate
and m stocks with price processes (S1, S2, . . . , Sm). The dynamics of the price processes
is described by

dSit := Sit(θit dt+ dW i
t ), t ∈ [0, T ], i ∈ {1, . . . ,m}, (1)

where θ is Rm-valued predictable. To guarantee that our model is free of arbitrage, we
make the assumption

Assumption 2.1. The process θ is uniformly bounded, i.e. there exists a constant C > 0
such that |θt| ≤ C, ∀t ∈ [0, T ], P-a.s.

By Theorem 2.3 in [Kaz94], E(
∫ ·

0 θt dWt) is a uniformly integrable martingale and thus
defines a probability measure P̃ equivalent to P. Under this measure, the price process
S is a martingale. The set of equivalent martingale measures is therefore nonempty, and
so our market model is free of arbitrage according to [DS94]. Note that if m < d, our
market model is incomplete.
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We consider an investor endowed with the initial capital x > 0, and who buys and
sells the risky assets S according to trading strategies π ∈ H2,m

T . The wealth process Xπ,x

associated to π possesses the dynamics

Xπ,x
t := x+

∫ t

0
Σ(Xπ,x

s , πs)
dSs
Ss

, t ∈ [0, T ], (2)

with Σ(Xπ,x, π) = Xπ,xπ or π. The trading strategy π is interpreted as the amount of
money invested into the stocks if Σ(Xπ,x, π) = π. If Σ(Xπ,x, π) = Xπ,xπ, π is inter-
preted as the proportion of wealth invested into the stocks. Xπ,x is well defined due to
the integrability property imposed on π. Trading strategies are subject to constraints
due to regulations or management policies. We model the constraints by a measurable
multifunction

C : Ω× [0, T ]→ Hm. (3)

C is a P−B(Hm) measurable mapping. A process h is said to be dynamically constrained
to C and we write h ∈ C, if ht ∈ C(t, ω) for P⊗λ-a.a (ω, t) ∈ Ω× [0, T ]. So our admissible
trading strategies are elements of H2,m

T that are dynamically constrained to C. Their
collection is denoted by A, formally

A =
{
π ∈ H2,m

T such that π ∈ C
}
.

One natural scenario in which dynamic constraint sets appear is for example by the
re-parametrization of strategies according to [HIM05, Mor09].

Remark 2.2. Our model for stock price has constant volatility. This is by no means
restrictive. Consider a stock S̃ with the dynamics

dS̃t

S̃t
= µt dt+ σt dWt, t ∈ [0, T ],

where µ (resp. σ) is an Rm- (resp. Rm×d)-valued predictable process. Assume that the
coefficients of µ and σ are uniformly bounded and σ is of full rank. Let θ = σtr.(σ.σtr)−1µ.
Then clearly we have dS̃

S̃
= σ dSS . Hence parametrizing investment strategies through

ρ = πtr.σ puts us into the setup of constant volatility.

The objective of the investor is to maximize his expected utility from terminal wealth
eventually depending on a liability F , i.e. an FT measurable random variable. In other
words, he wants to solve the optimization problem

V (x) = sup
π∈A

E
[
U(Xπ,x

T , F )
]
, (4)

with U : dom(U) → R, and dom(U) ⊂ R × R. A trading strategy ν ∈ A is said to
be optimal if it attains the maximum in (4). In the sequel, we refer to V as the value
function. If the liability is of additive type, U has the form U(x, y) = U(x−y) or U(x, y) =
U(x + y), for (x, y) ∈ dom(U), where U is a deterministic utility function, i.e. a strictly
increasing and concave function. The problem (4) with additive liability has been well
investigated in the literature using convex duality arguments, see [CSW01] for bounded F ,
and [HK04] for the unbounded case. In this context, solving (4) leads to a pricing rule
for F , see [REK00, HK04]. The liability is of multiplicative type if U(x, y) = U(xy), for
(x, y) ∈ dom(U), again with a deterministic utility function U . Here F can be seen as
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a liability that scales the wealth of our investor by a random portion at maturity. In
this setting, (4) has been investigated in [Zar01, IRZ11] for the power utility. In this
paper, we are interested in the following form of U : U(x, y) = U(x)ỹ, where U is a utility
function and ỹ a deterministic function of y. The problem (4) therefore has the equivalent
formulation

V (x) = sup
π∈A

E[U(Xπ,x
T )H] (5)

where U : dom(U) ⊆ R→ R is a deterministic utility function, and H an FT -measurable
random variable. For H = 1, (5) is the classical portfolio optimization problem. Clearly,
utility maximization with additive liability and exponential utility function or multiplica-
tive liability with power utility function are particular cases of (5). The special form (5)
first appears in [Zar01] in the context of stochastic factors models. There H is a determin-
istic function of the terminal value of the stochastic factor process. The author employs
the classical PDE approach to solve (5) and shows how the solution leads to a suitable
bound on the prices of non-traded assets. There are other reasons for studying (5). For
instance, in case the investor wants to maximize his utility taking into account only some
particular scenarios, this corresponds to H = 1A, where A ∈ FT describes the set of sce-
narios. If H > 0, (5) can be seen as a classical portfolio optimization under the equivalent
probability with density H

E[H] .

Remark 2.3. For P ⊗ λ-a.a. (ω, t) ∈ Ω × [0, T ], C(ω, t) is compact, but not necessarily
convex. Hence A may not be convex. Therefore, an optimal trading strategy to (5) may
not exists. If it exists, it need not be unique.

Throughout this paper, we work under the assumption

Assumption 2.4. V (x) < +∞.

Among the classical tools to deal with stochastic optimal control problems there is
the dynamic programming principle (DPP). It involves considering the following family
of processes {V (·, Xπ,x), π ∈ A}, with

V (t,Xπ,x
t ) = ess sup

α∈A(t,Xπ,xt )
E[U(Xα,x

T )H|Ft], π ∈ A, t ∈ [0, T ], (6)

where
A(t,Xπ,x

t ) =
{
α ∈ A such that Xπ,x

s = Xα,x
s , s ∈ [0, t]

}
. (7)

The following proposition gives a necessary and sufficient condition for optimality.

Proposition 2.5. Assume 2.4. For every π ∈ A, V (·, Xπ,x) is a supermartingale. A trad-
ing strategy ν is optimal if and only if V (·, Xν,x) is a martingale.

Proof. See [EK81, Theorem 1.15, Theorem 1.17].

In a Markovian setting, it is well known that the dynamic value function V (·, x) satis-
fies a Hamilton–Jacobi–Bellman (HJB) equation. In a more general framework, Mania et
al. [MT03] derive a backward stochastic partial differential equation (BSPDE) for V (·, x)
under some strong regularities assumptions. Except for the classical utility functions,
there exists in general no closed form expression for V (·, x). In these particular cases, the
closed form expressions are obtained using solutions of BSDEs with quadratic growth,
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see [REK00, HIM05, Mor09]. In the following section, for a particular class of utility
functions we employ the tool of comparison principle for BSDEs to construct a family of
processes similar to (6) providing a necessary and sufficient condition for optimality.

3. The comparison principle approach. The comparison principle has been shown
to play an efficient role for stochastic control problems, see [EKPQ97, Section 3]. In this
section, we use this tool for the solution of (5). To achieve this, we will transform (5) into
a stochastic control problem expressed by a family of BSDEs with linear generators. We
begin by formulating some assumptions on the function U , the trading strategies and the
claim H that will turn out to be helpful for our approach.

Assumption 3.1. There exists a constant K > 0 such that

(A1) C is uniformly bounded by K,
(A2) U has a constant sign and is twice continuously differentiable,
(A3) for all π ∈ A, the processes U ′′(Xπ,x)

U ′(Xπ,x) Σ(Xπ,x, π) and U ′(Xπ,x)
U(Xπ,x) Σ(Xπ,x, π) are uni-

formly bounded by K,
(A4) H is a strictly positive square integrable random variable,
(A5) E

[
sup0≤t≤T |U(Xπ,x

t )|2
]
< +∞ for every π ∈ A.

(A1) states that trading strategies are uniformly bounded. The assumption (A2) on
the sign of U is restrictive as it excludes the logarithmic utility function. If Σ(Xπ,x, π) =
Xπ,xπ, then assumption (A3) states that risk aversion is bounded. If Σ(Xπ,x, π) = π,
(A3) amounts to saying that the absolute risk aversion is bounded. (A5) will ensure that
the processes we construct later have nice integrability properties. Under (A1), (A5) is
satisfied for the exponential and power utility functions.

From now on, we will suppose that U > 0. The arguments are similar when U < 0 and
the results in this case are obtained from the ones given by changing ess sup to ess inf.

3.1. Motivation and approach. In this subsection, we reformulate (5) as a stochastic
control problem featuring a family of BSDEs with linear generators. Once this is done, we
apply the comparison principle for BSDEs to determine the value function of (5) expressed
by the solution of a BSDE with Lipschitz growth. Along with the family of linear BSDEs
comes a suitable representation of (6), see (9). Let us briefly explain our approach. Fix
π ∈ A. Since the random variable U(Xπ,x

T )H is strictly positive and integrable, the
martingaleMπ,x defined byMπ,x

t = [U(Xπ,x
T )H|Ft], t ∈ [0, T ], is strictly positive. By the

strict positivity of U , there exists a unique adapted and continuous process Y π,x such
that U(Xπ,x)Y π,x = Mπ,x. The martingale property of the family of processes Mπ,x,
π ∈ A gives V (x) = U(x)Λ(x) with

Λ(x) = sup
π∈A

Y π,x0 . (8)

The family defined by (6) has a representation in terms of Y π,x, π ∈ A. To see this, for
π ∈ A, t ∈ [0, T ], α ∈ A(t,Xπ,x

t ), write Y α(t,Xπ,x
t ) for Y α,xt to make its dependence on

Xπ,x
t explicit. From the martingale property of Mα,x, α ∈ A(t,Xπ,x

t ), we deduce that

V (t,Xπ,x
t ) = U(Xπ,x

t )Y (t,Xπ,x
t ), P-a.s. (9)
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with
Y (t,Xπ,x

t ) = ess sup
α∈A(t,Xπ,xt )

Y α(t,Xπ,x
t ), P-a.s. (10)

Clearly Y (·, x) is the value process of the dynamic version of (8). (9) states a one-to-one
correspondence between the value function process V (·, x) and Y (·, x). Namely, we have
V (t, x) = U(x)Y (t, x). Unfortunately, computing Y (·, x) is as challenging as calculating
V (·, x). For every π ∈ A and t ∈ [0, T ], we have A(t,Xπ,x

t ) ⊆ A. We therefore get the
following upper bound for Y (t,Xπ,x

t ), t ∈ [0, T ]:

Y (t,Xπ,x
t ) ≤ ess sup

α∈A
Y α,xt , P-a.s. (11)

We focus on constructing a process Y that coincides almost surely with the right hand
side of (11). Since equality is given in (11) at time 0, Y will clearly serve to identify a
necessary and sufficient condition for optimality. The martingale representation theorem
and the dynamics of Xπ,x will be used to describe the dynamical properties of Y π,x. It
turns out to be the value process of a BSDE with a standard pair of parameters (Fπ, H),
with Fπ defined by (12). Hence Λ(x) in (8) can be computed by solving a family of
BSDEs to which we can apply the comparison principle.

For π ∈ A, the generator Fπ has the following structure

Fπ(ω, t, y, z) = U ′(Xπ,x
t (ω))

U(Xπ,x
t (ω))

〈
Σ(Xπ,x

t (ω), πt(ω)), θt(ω)y + z
〉

(12)

+ 1
2
U ′′(Xπ,x

t (ω))
U(Xπ,x

t (ω)) |Σ(Xπ,x
t (ω), πt(ω))|2y,

(ω, t, y, z) ∈ Ω× [0, T ]× R× Rd.
Fπ is linear in (y, z). Furthermore, the coefficients are uniformly bounded by Assump-

tions 2.1 and 3.1. Hence the generator is uniformly Lipschitz continuous and the Lipschitz
constant is independent of π. We denote it by K. Moreover, Fπ(·, ·, 0, 0) = 0. The pair
(Fπ, H) is therefore a standard pair of parameters. The following proposition guarantees
existence and gives a characterization of the solution pair (Y π,x, Zπ,x) of the associated
BSDE for every π ∈ A. The proof essentially relies on Itô’s formula and the verification
of some integrability properties.

Proposition 3.2. Assume that 2.1 and 3.1 hold. Then, for every π ∈ A, the solution
pair (Y π,x, Zπ,x) of the BSDE

−dY π,xt = Fπ(·, t, Y π,xt , Zπ,xt ) dt− Zπ,xt dWt, Y π,xT = H, (13)

is such that Rπ,x = U(Xπ,x)Y π,x is a martingale. Y π,x is strictly positive.

Proof. Let π ∈ A and Fπ as defined by (12). The pair (Fπ, H) is a standard pair of
parameters. So by Theorem 2.1 in [EKPQ97], (13) admits a unique solution (Y π,x, Zπ,x) ∈
H2
T ×H2,d

T . From Itô’s formula and (2), we deduce the following dynamics for U(Xπ,x):

d[U(Xπ,x
t )] =

[
U ′(Xπ,x

t )〈Σ(Xπ,x
t , πt)θt〉+ 1

2 U
′′(Xπ,x

t )|Σ(Xπ,x
t , πt)|2

]
dt

+ U ′(Xπ,x
t )Σ(Xπ,x

t , πt) dWt, for t ∈ [0, T ].
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Applying Itô’s formula to the product Rπ,x = U(Xπ,x)Y π,x, we obtain for t ∈ [0, T ]

dRπ,xt = Y π,xt dU(Xπ,x
t ) + U(Xπ,x

t ) dY π,xt + d〈Y π,x, U(Xπ,x)〉t
=
(
U ′(Xπ,x

t )Y π,xt Σ(Xπ,x
t , πt) + U(Xπ,x

t )Zπ,xt )
)
dWt.

This shows that Rπ,x is a local martingale. To show that it is a true martingale, it suffices
to show that E

[
〈Rπ,x〉1/2T

]
< +∞. Then the Burkholder–Davis–Gundy (BDG) inequality

allows us to conclude. In fact, we have

E
[
〈Rπ,x〉1/2T

]
= E

[∫ T

0

∣∣U ′(Xπ,x
t )Σ(Xπ,x

t , πt)Y π,xt + U(Xπ,x
t )Zπ,xt

∣∣2 dt]1/2
≤ E

[
sup

0≤t≤T
|U(Xπ,x

t )|2
∫ T

0

∣∣∣Y π,xt

U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt) + Zπ,xt

∣∣∣2 dt]1/2

≤ 1
2 E
[

sup
0≤t≤T

|U(Xπ,x
t )|2

]
+ 1

2 E
[∫ T

0

∣∣∣U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt)Y π,xt + Zπ,xt

∣∣∣2 dt] < +∞,

by Assumption 3.1 and the square integrability property of solutions of BSDEs.
The martingale U(Xπ,x)Y π,x is strictly positive since its terminal value U(Xπ,x

T )H
is. Moreover, U(Xπ,x) is strictly positive, so that this property transfers to Y π,x.

Proposition 3.2 has the following corollary that represents V (x) as the value function
of a stochastic optimal control problem in BSDE language.

Corollary 3.3. Under Assumptions 2.1 and 3.1, the following equation holds

V (x) = sup
π∈A

E[U(Xπ,x
T )H] = U(x) sup

π∈A
Y π,x0 , (14)

where (Y π,x, Zπ,x), π ∈ A, are given by Proposition 3.2. Furthermore, a trading strategy
π̄ ∈ A is optimal if and only if V (x) = U(x)Y π̄,x0 .

Proof. From Proposition 3.2 U(Xπ,x)Y π,x is a martingale for every π ∈ A. Hence, we
have E[U(Xπ,x

T )H] = E[U(x)Y π,x0 ] = U(x)Y π,x0 . Therefore

V (x) = sup
π∈A

E[U(Xπ,x
T )H] = sup

π∈A
E[U(x)Y π,x0 ] = sup

π∈A
U(x)Y π,x0 .

We now prove the second assertion of the proposition.
Let first π̄ ∈ A be an optimal trading strategy for (2). By definition of optimal-

ity, V (x) = E[U(X π̄,x
T )H]. The random variable U(X π̄,x

T )H is the terminal value of the
martingale U(X π̄,x)Y π̄,x. Hence

V (x) = E[U(X π̄,x)H] = U(x)Y π̄,x0 .

To show the converse, let π̄ ∈ A such that V (x) = U(x)Y π̄,x0 . By Proposition 3.2,
U(X π̄,x)Y π̄,x is a martingale with mean U(x)Y π̄,x0 . Therefore V (x) = E[U(X π̄,x

T )H].
Hence π̄ is optimal.

Corollary 3.3 demonstrates that to determine V (x), it is sufficient and necessary to
determine Λ(x) defined in (8). The relation (14) shows that (5) and (8) have the same
optimal trading strategy. Corollary 3.3 tells us that a trading strategy π̄ is optimal if
Y π̄ dominates the family Y π,x, π ∈ A, at time t = 0. The following proposition gives a
condition under which this domination pertains to the entire trajectory.
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Proposition 3.4 (Sufficient condition for optimality). Suppose that Assumptions 2.1
and 3.1 hold. Let π̄ ∈ A. The following are equivalent:

(C1) U(Xπ,x)Y π̄,x is a supermartingale for every π ∈ A,
(C2) F π̄(·, ·, Y π̄,x, Z π̄,x) = ess supπ∈A Fπ(·, ·, Y π̄,x, Z π̄,x), P⊗ λ-a.e.

If (C1) or (C2) holds then π̄ is optimal and we have for t ∈ [0, T ]

Y π̄,xt = ess sup
π∈A

Y π,xt , P-a.s. (15)

Proof. First assume that (C1) holds. Let π̄ ∈ A for which (C1) is satisfied. Let π ∈ A.
Then the process U(Xπ,x)Y π̄,x is a continuous supermartingale since U(Xπ,x) and Y π̄,x
have continuous paths. It has the unique decomposition U(Xπ,x)Y π̄,x = U(x)Y π̄,x0 +
N π̄,π+Aπ̄,π whereN π̄,π is a continuous local martingale and Aπ̄,π a decreasing predictable
process starting at 0. Applying Itô’s formula to U(Xπ,x)Y π̄,x, we obtain for t ∈ [0, T ]

d
[
U(Xπ,x

t )Y π̄,xt

]
= Y π̄,xt dU(Xπ,x

t ) + U(Xπ,x
t ) dY π̄,xt + d〈U(Xπ,x), Y π̄,x〉t,

= U(Xπ,x
t )

[
Fπ(·, t, Y π̄,xt , Z π̄,xt )− F π̄(·, t, Y π̄,xt , Z π̄,xt )

]
dt

+
[
Y π̄,xt U ′(Xπ,x

t )Σ(Xπ,x
t , πt) + U(Xπ,x

t )Z π̄,xt

]
dWt.

(16)

To identify N π̄,π with the stochastic integral part of (16) and Aπ̄,π with the corresponding
finite variation part, we only need to show that the stochastic integral part in (16) is
well defined. Once this is proven, the identification follows from the uniqueness of Doob’s
decomposition, see [Pro04, Theorem 13, Chapter 3]. The processes U(Xπ,x) and Y π̄,x have
continuous paths P-a.s. They are pathwise bounded since [0, T ] is compact. By definition
of BSDE solutions,

∫ T
0 |Z

π̄,x
t |2 dt < +∞, P-a.s. Using Assumption 3.1 and the integrability

property of U(Xπ,x), Y π̄,x and Z π̄,x, we have for C π̄,π = Y π̄,xU ′(Xπ,x)Σ(Xπ,x, π) +
U(Xπ,x)Z π̄,x∫ T

0
|C π̄,πt |2 dt =

∫ T

0
|U(Xπ,x

t )|2
∣∣∣Y π̄,xt

U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt) + Z π̄,xt

∣∣∣2 dt
≤ sup

0≤t≤T
|U(Xπ,x

t )|2
∫ T

0

∣∣∣Y π̄,xt

U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt) + Z π̄,xt

∣∣∣2 dt < +∞, P-a.s.

The process N π̄,π :=
∫ ·

0 C
π̄,π
t dWt is therefore a well defined local martingale. It follows

from the uniqueness of decomposition of supermartingales that the finite variation part
of (16) is a modification of Aπ̄,π. The process Aπ̄,π is decreasing, hence we have P⊗λ-a.e.
the inequality

U(Xπ,x)
[
Fπ(·, ·, Y π̄,x, Z π̄,x)− F π̄(·, ·, Y π̄,x, Z π̄,x)U(Xπ,x)

]
≤ 0.

Dividing by U(Xπ,x) > 0, we obtain the inequality

F π̄(·, ·, Y π̄,x, Z π̄,x) ≥ Fπ(·, ·, Y π̄,x, Z π̄,x), P⊗ λ-a.e. (17)

(17) is valid for every π ∈ A. Therefore we have

F π̄(·, ·, Y π̄,x, Z π̄,x) ≥ ess sup
π∈A

Fπ(·, ·, Y π̄,x, Z π̄,x), P⊗ λ-a.e.

Since π̄ ∈ A, we deduce (C2).
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Now assume that π̄ ∈ A satisfies (C2). Let π ∈ A. From (16),

U(Xπ,x)Y π̄,x = U(x)Y π̄,x0 +N π̄,π +Aπ̄,π,

where

Aπ̄,π =
∫ ·

0
U(Xπ,x

t )
[
Fπ(·, t, Y π̄,xt , Z π̄,xt )− F π̄(·, t, Y π̄,xt , Z π̄,xt )

]
dt,

N π̄,π =
∫ ·

0

[
Y π̄,xt U ′(Xπ,x

t )Σ(Xπ,x
t , πt) + U(Xπ,x

t )Z π̄,xt

]
dWt.

By (C2), U(Xπ,x)
[
Fπ(·, Y π̄,x, Z π̄,x) − F π̄(·, Y π̄,x, Z π̄,x)

]
is non-positive. Using Cauchy–

Schwarz’s inequality and Assumptions (A3), (A5), we obtain the integrability property

E
[∣∣∣∫ T

0
U(Xπ,x

t )
[
Fπ(·, t, Y π̄t,x, Z π̄t,x)− F π̄(·, t, Y π̄,xt , Z π̄,xt )

]
dt
∣∣∣] < +∞.

We deduce that Aπ̄,π is integrable, predictable and decreasing. Therefore to show that
U(Xπ,x)Y π̄,x is a supermartingale, it suffices to show that the local martingale N π̄,π

is a martingale. Using Assumption 3.1 and the integrability properties of the processes
U(Xπ,x), Y π̄,x and Z π̄,x, we get

E
[
〈Nπ〉1/2T

]
= E

[(∫ T

0
|Y π̄,xt U ′(Xπ,x

t )Σ(Xπ,x
t , πt) + U(Xπ,x

t )Z π̄,xt |2 dt
)1/2

]
≤ E

[(
sup

0≤t≤T
|U(Xπ,x

t )|
∫ T

0

∣∣∣Y π̄,xt

U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt) + Z π̄,xt

∣∣∣2 dt)1/2
]

≤ 1
2 E
[

sup
0≤t≤T

|U(Xπ,x
t )|2

]
+ 1

2 E
[∫ T

0

∣∣∣Y π̄,xt

U ′(Xπ,x
t )

U(Xπ,x
t ) Σ(Xπ,x

t , πt) + Z π̄,xt

∣∣∣2 dt] < +∞.

By the inequality of Burkholder–Davis–Gundy, E
[
sup0≤t≤T |Nπ

t |
]
≤ CE[〈Nπ〉1/2T ] < +∞.

Hence N π̄,π is uniformly integrable, thus U(Xπ,x)Y π̄,x is a supermartingale as the sum
of a martingale and a predictable, integrable, and decreasing process. We deduce that
(C2) implies (C1).

Let π̄ ∈ A such that (C2) holds. The relation (15) follows from the comparison
principle. Clearly, (15) implies that π̄ is optimal.

In general, (15) does not imply (C2), see [BCH+00]. It will be shown in Theorem
3.7 that under Assumption 3.1 they are equivalent. This will be a consequence of the
optimality property of π̄ and the comparison principle. Proposition 3.4 will then serve as
a necessary condition for optimality.

3.2. Main result. Consider F : Ω× [0, T ]× R× Rd defined by

F (·, t, y, z) = ess sup
π∈A

Fπ(·, t, y, z), (18)

with the ess sup in (18) taken with respect to the product measure P⊗ λ.
F will be used as the generator of the BSDE that characterizes the value function Λ.

The following lemma shows that F has the properties of a generator.

Lemma 3.5. F defined by (18) is P ⊗ B(R) ⊗ B(Rd) − B(R) measurable. Moreover, the
pair (F,H) is a standard parameter.



COMPARISON PRINCIPLE APPROACH TO UTILITY MAXIMIZATION 155

Proof. For every (ω, t) ∈ Ω×[0, T ], we have F (ω, t, 0, 0) = 0. For every π ∈ A, Fπ is linear
in (y, z) and the coefficients are uniformly bounded by the constant K. We deduce that
F is uniformly Lipschitz continuous in (y, z) with Lipschitz constant K. By definition
of ess supF (·, ·, y, z) is P − B(R)-measurable for every (y, z) ∈ R × Rd. We deduce from
Theorem 2 in [Gow72] that F is P ⊗ B(R)⊗ B(Rd)− B(R) measurable.

The pair (F,H) is standard as H is square integrable.

Now consider the BSDE

−dYt = F (·, t, Yt, Zt) dt− Zt dWt, t ∈ [0, T ], (19)
YT = H.

Since (F,H) is standard, a solution pair (Y,Z) exists and is unique. Let L+(F) be the
set of nonnegative càdlàg F-adapted processes. We denote by Ls

+(F) the set of processes
Ỹ ∈ L+(F) with terminal value H and such that U(Xπ,x)Ỹ is a supermartingale for every
π ∈ A. The following proposition collects some properties of the process Y .

Proposition 3.6. Assume 2.1 and 3.1. Let (Y,Z) be the solution of the BSDE with
parameter (F,H). Then Y ∈ Ls

+(F) and it is the minimal process in this class. Moreover,
Y has the following representation

Y = ess sup
π∈A

Y π,x, P⊗ λ-a.e. (20)

Proof. Since (Y, Z) is the solution of a BSDE, Y is continuous and adapted. Moreover,
H > 0 and F (·, ·, 0, 0) = 0, hence Y ≥ 0. We deduce that Y ∈ L+(F). Let π ∈ A. Pro-
ceeding as in the proof of Proposition 3.4, we see that U(Xπ,x)Y has the decomposition
U(Xπ,x)Y = U(x)Y0 +Nπ +Aπ with

Aπ =
∫ ·

0
U(Xπ,x

t )
[
Fπ(·, t, Yt, Zt)− F (·, t, Yt, Zt)

]
dt,

Nπ =
∫ ·

0

[
YtU

′(Xπ,x
t )Σ(Xπ,x

t , πt) + U(Xπ,x
t )Zt

]
dWt.

Arguments of Proposition 3.4 show that Nπ is a continuous martingale and Aπ an
integrable, predictable process. Moreover Aπ is decreasing by the choice of F . Hence
U(Xπ,x)Y is a supermartingale. Since π is arbitrary, we deduce that Y ∈ Ls

+(F). The
equality (20) is a consequence of the comparison principle. To see that Y is minimal in
this set, let Ỹ ∈ Ls

+(F). For π ∈ A, U(Xπ,x)Ỹ is a supermartingale with terminal value
U(Xπ,x

T )H. Since U(Xπ,x)Y π,x is a martingale with the same terminal value, we deduce
for all t ∈ [0, T ] that Ỹt ≥ Y π,x,P-a.s. From the representation (20), we infer that for all
t ∈ [0, T ] we have Ỹt ≥ Yt, P-a.s. Since Y and Ỹ are càdlàg, we have Ỹ ≥ Y . Hence Y is
the smallest process in Ls

+(F).

We can now state the main theorem of this paper which gives a necessary and sufficient
condition for optimality via the process Y .

Theorem 3.7. We suppose that Assumption 2.1 and 3.1 are valid. Let (Y,Z) be the
solution of the BSDE with parameter (F,H). Then we have V (x) = U(x)Y0. Moreover,
ν ∈ A is optimal if and only if F (·, ·, Y, Z) = F ν(·, ·, Y, Z), P⊗ λ-a.e. or Y = Y ν .
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Proof. By (20), Y0 = supπ∈A Y
π,x
0 . The equality V (x) = U(x)Y0 follows from (14). Let

ν ∈ A be an optimal trading strategy. Then Y ν0 = Y0. By definition of F , we have

F (·, ·, Y, Z) ≥ F ν(·, ·, Y, Z), P⊗ λ-a.e. (21)

Since the comparison is strict and we have Y ν0 = Y0, we deduce that (21) is an equality.
Hence Y ν = Y .

Suppose conversely that Y ν = Y or (21) is an equation. Then V (x) = U(x)Y0 =
U(x)Y ν0 . We deduce that ν is optimal.

Theorem 3.7 shows that to solve our optimal control problem, we only need to solve
the BSDE (19). The generator F of (19) is of Lipschitz growth. Hence it can be approx-
imated efficiently using numerical schemes for BSDEs, see [MPSMT02]. Our necessary
and sufficient condition for optimality is therefore easier to check than the condition pro-
vided by the stochastic maximum principle. This one involves adjoint equations of second
order. Alternatively, approaching the problem from the perspective of the dynamic pro-
gramming principle requires to solve a highly nonlinear PDE or a backward stochastic
PDE in terms of Mania et al. [MT03]. We do not tackle the problem of existence of an
optimal trading strategy. In the examples that follow, we will identify the optimal trading
strategy as measurable selection of certain multifunctions.

4. Applications to particular cases. In this section, we apply Theorem 3.7 to
solve (5) in the case of exponential and power utility. R+ denotes the positive real line.
Our market model is identical to that in Section 2.

4.1. The case of exponential utility with additive liability. Let x be the initial
endowment of our investor. To a trading strategy π ∈ H2,m

T , we associate the wealth
process Xπ,x described by the SDE

Xπ,x
t = x+

∫ t

0
〈πs, θs ds+ dWs〉, t ∈ [0, T ].

In our notation of Section 2, here we consider Σ(Xπ,x, π) = π. The utility function U is
given by U(y) = − exp(−αy), y ∈ R, with α > 0. As dom(U) = R, the set of admissible
trading strategies is given by

A =
{
π ∈ H2,m

T such that πt(ω) ∈ C(ω, t), for P⊗ λ-a.e. (ω, t) ∈ Ω× [0, T ]
}
.

Let H̃ be a real valued FT -measurable random variable. We deal with the optimization
problem

V (x) = sup
π∈A

E[U(Xπ,x
T − H̃)] = sup

π∈A
E[U(Xπ,x

T )H], (22)

with H = exp(αH̃). We suppose that H is square integrable. So (A4) is satisfied. By
the exponential structure of U and the boundedness of the trading strategies, (A2), (A3)
and (A5) are satisfied. Hence altogether Assumption 3.1 holds, provided H is square
integrable. Let π ∈ A. The generator Fπ defined in (12) has the form

Fπ(ω, t, y, z) = α2

2 y|πt(ω)|2 − 〈απt(ω), θt(ω)y + z〉, (ω, t, y, z) ∈ Ω× [0, T ]× R× Rd.
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Note that U < 0. So we replace ess sup by ess inf in the definition of F given by (18). We
have

F (·, ·, y, z) = ess inf
π∈A

Fπ(·, ·, y, z) = ess inf
π∈A

[α2

2 y|π|2 − 〈απ, θy + z〉
]
, (y, z) ∈ R× Rd.

The following theorem gives a representation of the optimal trading strategy as a
projection onto the predictable multifunction C.

Theorem 4.1. The value function V of problem (22) is given by

V (x) = U(x)Y0, x > 0,

where (Y,Z) is the solution of the BSDE

−dYt = ess inf
π∈A

[α2

2 Yt|πt|2 − α〈πt, θtYt + Zt〉
]
dt− Zt dWt, (23)

YT = H.

Every measurable selection π̄ of the multifunction P : Ω× [0, T ]→ Rm with values in the
closed subsets of Rm, defined by

P (ω, t) = arg min
a∈C(ω,t)

∣∣∣ 1
α

(
θt(ω) + Zt

Yt
(ω)
)
− a
∣∣∣2, (ω, t) ∈ Ω× [0, T ], (24)

is an optimal trading strategy.

Proof. By Lemma 3.5, the pair (F,H) is standard. Hence the BSDE (23) admits a unique
solution (Y, Z). By Theorem 3.7, V = U · Y0. The process Y is strictly positive since
H > 0. First we show that there is at least one measurable selection. Consider the map
Π : Ω× [0, T ]× Rm → R defined by

Π(ω, t, a) =
∣∣∣a− 1

α

(
θt(ω) + Zt

Yt
(ω)
)∣∣∣2.

Clearly, the map Π is measurable in (ω, t) and continuous in a. Since C is a measurable
multifunction with values in the closed sets of Rm, by the theorem of the measurable
selection [Roc76, Theorem 2.K], P is a measurable multifunction with values in the closed
sets. By the measurable selection theorem [Roc76, Corollary 1.C], it admits at least one
measurable selection ν. It is then straightforward to see that the ess inf in (23) is attained
at ν. Hence F (·, Y, Z) = F ν(·, Y, Z). We deduce from Theorem 3.7 that ν is an optimal
trading strategy.

Remark 4.2.
1. In the case under investigation, the family of supermartingales constructed is ex-

actly the one defined by El Karoui in the context of convex constraints. The construction
has already been achieved by Hu et al. [HIM05], Rouge et al. [REK00] in the Brownian
setting and by Morlais [Mor09] in the general continuous martingale setting. In these
papers, the family of supermartingales is constructed by means of quadratic BSDEs. In
the Brownian setting, the BSDE has the structure

−dPt = f(t, Qt) dt−Qt dWt, PT = 1
α

logH (25)
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with

f(ω, t, q) = −α2 dist2
(
q + θt(ω)

α
, C(ω, t)

)
+ qθt(ω) + |θt(ω)|2

2α ,

for all (ω, t, q) ∈ Ω × [0, T ] × Rd. The solution (P,Q) to (25) is related to the solution
(Y,Z) of (23) via the logarithmic transform

P = 1
α

log Y, Q = Z

Y
. (26)

In [REK00, HIM05, Mor09], the claim H is assumed to be bounded while in our approach
we only require an exponential moment of order 2α.

2. A BSDE similar to (23) has been obtained by Lim et al [LQ11] in a model of an
incomplete market with defaults. It is derived using arguments related to the dynamic
programming principle.

4.2. The case of the power utility with multiplicative liability. In this subsec-
tion, we consider the positive utility function U(y) = yγ , y ≥ 0, with γ ∈ (0, 1). The
market model is the same as in the previous subsection, just with a slightly different
meaning for trading strategies: they are measured in the proportion of wealth invested
into the stocks. This corresponds to choosing Σ(Xπ,x, π) = Xπ,x · π in Section 2. Hence
the wealth process Xπ,x associated to π is described by the SDE

Xπ,x
t = x+

∫ t

0
Xπ,x
s 〈πs, θs ds+ dWs〉, x > 0, t ∈ [0, T ].

Clearly, Xπ,x > 0 for π ∈ H2,m. The constraints on the trading strategies are described
by the multifunction C defined in (3). Hence the set of admissible trading strategies is
given by

A =
{
π ∈ H2,m

T such that πt(ω) ∈ C(ω, t) for P⊗ λ-a.e. (ω, t) ∈ Ω× [0, T ]
}
.

Let H̃ be a nonnegative FT -measurable random variable. We study the optimization
problem

V (x) = sup
π∈A

E[U(Xπ,x
T H̃)] = sup

π∈A
E[U(Xπ,x

T )H], x > 0, (27)

with H = H̃γ . We suppose that H is square integrable. Due to the boundedness assump-
tions on C, Assumption 3.1 holds. The generators Fπ, π ∈ A, defined in (12), have the
form

Fπ(·, t, y, z) = γ(γ − 1)
2 |πt(ω)|2y + γ〈πt(ω), θt(ω)y + z〉,

for all (ω, t, y, z) ∈ Ω× [0, T ]× R× Rd. Hence F defined in (18) takes the simple form

F (·, ·, y, z) = ess sup
π∈A

[γ(γ − 1)
2 |π|2y + γ〈π, θy + z〉

]
, (y, z) ∈ R× Rd.

The following theorem states the existence of an optimal trading strategy and char-
acterizes it as a measurable selection.
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Theorem 4.3. Assume 2.1 and 3.1. The value function V of problem (27) is given by

V = U · Y0,

where (Y,Z) is the solution of the BSDE

−dYt = ess sup
π∈A

[ (γ − 1)γ
2 |π|2tYt + γ〈πt, θtYt + Zt〉

]
dt− Zt dWt, (28)

YT = H.

Every measurable selection π̂ of the multifunction P : Ω× [0, T ]→ Rm with values in the
closed sets of Rm, defined by

P (ω, t) = arg min
a∈C(ω,t)

∣∣∣∣θt(ω) + Zt
Yt

(ω)
1− γ − a

∣∣∣∣2, (ω, t) ∈ Ω× [0, T ],

is an optimal trading strategy.

Proof. The proof is analogous to the proof of Theorem 4.1.

Remark 4.4.
1. In [Zar01], Zariphopoulou addresses (27) in the Markovian setting using PDE meth-

ods. It was investigated by BSDE methods in [HIM05, Mor09] with H̃ = 1 and in [IRZ11,
Section 2.2] with 0 < H̃ < 1. In both cases, the BSDE obtained is of quadratic growth
and its solution (P,Q) is related to the solution (Y, Z) of (28) via a similar logarithmic
transform as in (26).

2. BSDE (28) has already been obtained in [LQ11] in the context of incomplete mar-
kets with defaults via the dynamic programming principle.

3. The sign constraint on the utility function prevents us from studying simple log
utility. To get rid of this restriction, one may construct a family of martingales Rπ,x
of the form Rπ,x = U(Xπ,xY π,x) for utility functions defined on the positive real line.
Unfortunately, in this case the BSDEs attached to the processes Y π,x are of quadratic
growth. We therefore aim at a suitable comparison principle for BSDE with quadratic
growth to guarantee the validity of versions of Proposition 3.4 and Proposition 3.6. This
is subject of work in progress.

Acknowledgements. Victor is very grateful to the Berlin Mathematical School for
granting financial support.

References

[BCH+00] P. Briand, F. Coquet, Y. Hu, J. Mémin, S. Peng, A converse comparison theo-
rem for BSDEs and related properties of g-expectation, Electron. Comm. Probab.
5 (2000), 101–117.

[CSW01] J. Cvitanić, W. Schachermayer, H. Wang, Utility maximization in incomplete
markets with random endowment, Finance Stoch. 5 (2001), 259–272.

[DS94] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of
asset pricing, Math. Ann. 300 (1994), 463–520.

http://dx.doi.org/10.1214/ECP.v5-1025
http://dx.doi.org/10.1007/PL00013534
http://dx.doi.org/10.1007/BF01450498


160 P. IMKELLER AND V. NZENGANG

[EK81] N. El Karoui, Les aspects probabilistes du contrôle stochastique, In: École d’Été
de Probabilités de Saint-Flour IX–1979, Lecture Notes in Math. 876, Springer,
Berlin 1981, 73–238.

[EKPQ97] N. El Karoui, S. Peng, M.-C. Quenez, Backward stochastic differential equations
in finance, Math. Finance 7 (1997), 1–71.

[Gow72] K. Gowrisankaran, Measurability of functions in product spaces, Proc. Amer.
Math. Soc. 31 (1972), 485–488.

[HHI+] U. Horst, Y. Hu, P. Imkeller, A. Réveillac, J. Zhang, Forward-backward sys-
tems for expected utility maximization, Stochastic Process. Appl. 124 (2014),
1813–1848.

[HIM05] Y. Hu, P. Imkeller, M. Müller, Utility maximization in incomplete markets, Ann.
Appl. Probab. 15 (2005), 1691–1712.

[HK04] J. Hugonnier, D. Kramkov, Optimal investment with random endowments in in-
complete markets, Ann. Appl. Probab. 14 (2004), 845–864.

[IRZ11] P. Imkeller, A. Réveillac, J. Zhang, Solvability and numerical simulation of
BSDEs related to BSPDEs with applications to utility maximization, Int. J.
Theor. Appl. Finance 14 (2011), 635–667.

[Kaz94] N. Kazamaki, Continuous Exponential Martingales and BMO, Lecture Notes in
Math. 1579, Springer, Berlin 1994.

[LQ11] T. Lim, M.-C. Quenez, Exponential utility maximization in an incomplete market
with defaults, Electron. J. Probab. 16 (2011), 1434–1464.

[MPSMT02] J. Ma, P. Protter, J. San Martin, S. Torres, Numerical method for backward
stochastic differential equations, Ann. Appl. Probab. 12 (2002), 302–316.

[MT03] M. Mania, R. Tevzadze, Backward stochastic PDE and imperfect hedging, Int. J.
Theor. Appl. Finance 6 (2003), 663–692.

[Mor09] M.-A. Morlais, Quadratic BSDE driven by a continuous martingale and applica-
tions to the utility maximization problem, Finance Stoch. 13 (2009), 121–150.

[Pro04] P. Protter, Stochastic Integration and Differential Equations: Version 2.1, Stoch.
Model. Appl. Probab. 21, Springer, Berlin 2005.

[Roc76] R. T. Rockafellar, Integral Functionals, Normal Integrands and Measurable Se-
lections, Lectures Notes in Math. 543, Springer, Berlin 1976.

[REK00] R. Rouge, N. El Karoui, Pricing via utility maximization and entropy, Math.
Finance 10 (2000), 259–276.

[Zar01] T. Zariphopoulou, A solution approach to valuation with unhedgeable risks, Fi-
nance Stoch. 5 (2001), 61–82.

http://dx.doi.org/10.1111/1467-9965.00022
http://dx.doi.org/10.1090/S0002-9939-1972-0291403-X
http://dx.doi.org/10.1016/j.spa.2014.01.004
http://dx.doi.org/10.1214/105051605000000188
http://dx.doi.org/10.1214/105051604000000134
http://dx.doi.org/10.1142/S0219024911006437
http://dx.doi.org/10.1214/EJP.v16-918
http://dx.doi.org/10.1214/aoap/1015961165
http://dx.doi.org/10.1142/S0219024903002122
http://dx.doi.org/10.1007/s00780-008-0079-3
http://dx.doi.org/10.1007/978-3-662-10061-5
http://dx.doi.org/10.1111/1467-9965.00093
http://dx.doi.org/10.1007/PL00000040

	Notation and preliminaries
	The model
	The comparison principle approach
	Motivation and approach
	Main result

	Applications to particular cases
	The case of exponential utility with additive liability
	The case of the power utility with multiplicative liability


