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Abstract

In this paper we deal with the utility maximization problem with a general utility
function. We derive a new approach in which we reduce the utility maximization prob-
lem with general utility to the study of a fully-coupled Forward-Backward Stochastic
Differential Equation (FBSDE).
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1 Introduction

One of the most commonly studied topic in mathematical finance (and applied probably) is
the problem of maximizing expected terminal utility from trading in a financial market. In
such a situation, the stochastic control problem is of the form

V(0,2) ;= sup E[U(XT + H)] (1.1)
TeA

for a real-valued function U, where A denotes the set of admissible trading strategies, T < oo
is the terminal time, X7 is the wealth of the agent when he follows the strategy = € A and his
initial capital at the initial time zero is z > 0, and H is a liability that the agent must deliver
at the terminal time. One is typically interested in establishing existence and uniqueness
of optimal solutions and in characterizing optimal strategies and the value function V (t,x)
which is defined as

V(t,z) = sup E[U(X{p + H)|F].
meA
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Here X; 1 denotes the wealth of the agent when the investment period is [t,7] and where
the filtration (F)icpo,7) defines the flow of information.

The question of existence of an optimal strategy 7* can essentially be addressed using convex
duality. The convex duality approach is originally due to Bismut [2] with its modern form
dating back to Kramkov and Schachermayer [13]. For instance, given some growth condition
on U or related quantities (such as the asymptotic elasticity condition for utilities defined on
the half line) existence of an optimal strategy is guaranteed under mild regularity conditions
on the liability and convexity assumptions on the set of admissible trading strategies (see
e.g. [1] for details). However, the duality method is not constructive and does not allow for
a characterization of optimal strategies and value functions.

One approach to simultaneously characterize optimal trading strategies and utilities uses the
theory of forward-backward stochastic differential equations (FBSDE). When the filtration
is generated by a standard Wiener process W and if either U(z) := — exp(—ax) for some
a>0and H € L% or U(x) := % forv € (0,1) or U(x) = Inxz and H = 0, it has been shown
by Hu, Imkeller and Miiller [9] that the control problem can essentially be reduced to
solving a BSDE of the form

T T
Y, = H—/ Z.dW, —/ (s, Z)ds, te (0,7, (1.2)
t t

where the driver f(t,z) is a predictable process of quadratic growth in the z-variable. Their
results have since been extended beyond the Brownian framework and to more general utility
optimization problems with complete and incomplete information in, e.g., [8], [19], [20], [21]
and [I7]. The method used in [9] and essentially all other papers relies on the martingale
optimality principle and can essentially only be applied to the standard cases mentioned
above (exponential with general endowment and power, respectively logarithmic, with zero
endowment). This is due to a particular “separation of variables” property enjoyed by the
classical utility functions: their value function can be decomposed as V (¢, z) = g(x)V; where
g is a deterministic function and V' is an adapted process. As a result, optimal future trading
strategies are independent of current wealth levels.

More generally, there has recently been an increasing interest in dynamic translation in-
variant utility functions. A utility function is called translation invariant if a cash amount
added to a financial position increases the utility by that amount and hence optimal trad-
ing strategies are Wealth—independentﬂ Although the property of translation invariance
renders the utility optimization problem mathematically tractable, independence of the
trading strategies on wealth is rather unsatisfactory from an economic point of view. In
[18] the authors derive a verification theorem for optimal trading strategies for more gen-
eral utility functions when H = 0. More precisely, given a general utility function U and
assuming that there exists an optimal strategy regular enough such that the value function
enjoys some regularity properties in (¢, z), it is shown that there exists a predictable random
field ((t, %)) (1,2)e0,7]x (0,00) Such that the pair (V;¢) is solution to the following backward

Tt has been shown by [6] that essentially all such utility functions can be represented in terms of a BSDE

of the form



stochastic partial differential equation (BSPDE) of the form:

V(t,z) =U(x) —/t (s,2)dWs — / ‘%C 5,2) ds, tel0,T] (1.3)

where @, denotes the partial derivative of ¢ with respect to x and V,, the second partial
derivative of V with respect to the same variable. The optimal strategy 7* can then be
obtained from (V). Unfortunately, the BSPDE-theory is still in its infancy and to the
best of our knowledge the non-linearities arising in cannot be handled except in the
classical cases mentioned above where once again one benefits of the “separation of variables”
(see [II]). Moreover, the utility function U only appears in the terminal condition which
is not very handy. In that sense this is exactly the same situation as the Hamilton-Jacobi-
Bellman equation where U only appears as a terminal condition but not in the equation
itself.

In this paper we propose a new approach to solving the optimization problem for
a larger class of utility function and characterize the optimal strategy «* in terms of a
fully-coupled FBSDE-system. The optimal strategy is then a function of the current wealth
and of the solution to the backward component of the system. In addition, the driver of
the backward part is given in terms of the utility function and its derivatives. This adds
enough structure to the optimization problem to deal with fairly general utilities functions,
at least when the market is complete. We also derive the FBSDE system for the power
case with general (non-hedgeable) liabilities; to the best of our knowledge we are the first
to characterize optimal strategies for power utilities with general liabilities. Finally, we link
our approach to the well established approaches using convex dual theory and stochastic
maximum principles.

The remainder of this paper is organized as follows. In Section [2] we introduce our financial
market model. In Section B we first derive a verification theorem in terms of a FBSDE
for utilities defined on the real line along with a converse result, that is, we show that a
solution to the FBSDE allows to construct the optimal strategy. Section [4]is devoted to
the same question but for utilities defined on the positive half line. In Section [5| we relate
our approach to the stochastic maximum principle obtained by Peng [22] and the standard
duality approach. We use the duality-BSDE link to show that the FBSDE associated with
the problem of maximizing power utility with general positive endowment has a solution.

2 Preliminaries

We consider a financial market which consists of one bond S° with interest rate zero and of
d > 1 stocks given by

dSi .= Sidwi + Sieidt, ie{l,....d}

where W is a standard Brownian motion on R? defined on a filtered probability space
(Q,F, (Fier): P), (Fi)epr) is the filtration generated by W, and 6 := (6',... ,0%) is
a predictable bounded process with values in R?. Since we assume the process 6 to be
bounded, Girsanov’s theorem implies that the set of equivalent local martingale measures



(i.e. probability measures under which S is a local martingale) is not empty, and thus
according to the classical literature (see e.g. [7]), arbitrage opportunities are excluded in
our model. For simplicity throughout we write

t

We denote by -3 the inner product in R¢ of vectors o and 3 and by |-| the usual associated
L?-norm on R%. In all the paper C' will denote a generic constant which can differ from line
to line. We also define the following spaces:

SY(RY) := {B Q% [0,T] = R%, predictable, E[ts[tépT] 18:%] < oo} ,
€0,

T
H2(RY) := {5 : Q% [0,T] — R%, predictable, E [/O ,Bty%zt} < oo}.

Since the market price of risk 6 is assumed to be bounded, the stochastic process

t t
g(_g . W)t = exp (—/ Gdes — 1/ |93‘2d8>
0 2 Jo

has finite moments of order p for any p > 0. We assume dy + do = d and that the
agent can invest in the assets St ...,S8% while the stocks §d1+1, ..., 8% cannot be in-
vested into. Denote S* := (S ..., 8%, 0...,0), WH .= (W', ..., W%, 0...,0), WO =
0,...,0,Wh+l W) and 6% := (9',...,0%,0...,0) (the notation H refers to “hedge-
able” and O to “orthogonal”). We define the set II* of admissible strategies with initial
capital x > 0 as

T
II* .= {7r :Qx[0,7] > RY, E [/ ]Wt\2dt] < 00, 7 is self-financing } (2.1)
0

where for 7 in IT* the associated wealth process X7 is defined as
t it
X[ = x—i—/ T dSH =z + Z/ m.dS,, te€][0,T].

Every 7 in II? is extended to an R%valued process by
7= (xt,. . 7¥0,...,0).

In the following, we will always write 7 in place of 7, i.e. 7 is an R%valued process where
the last do components are zero. Moreover, we consider a utility function U : I — R where
I is an interval of R such that U is strictly increasing and strictly concave. We seek for a
strategy 7* in II% satisfying E[U (X7 + H)] < oo such that

T = argmax cyye, E[U(XF+H)|]<co {E[U(XT + H)]} (2.2)

where H is a random variable in L2(€Q, Fr,P) such that the expression above makes sense.
We concretize on sufficient conditions in the subsequent sections.



3 Utilities defined on the real line

In this section we consider a utility function U : R — R defined on the whole real line. We
assume that U is strictly increasing and strictly concave and that the agent is endowed with
a claim H € L?(Q, Fr,P). We introduce the following conditions.

(H1) U : R — R is three times differentiable

(H2) We say that condition (H2) holds for an element 7* in 1%, if E[|U" (X7 + H)|?] < oo
and if for every bounded predictable process h : [0,7] — R, the family of random variables

T 1 T
( / hdS7t / U’ (X{,E* + H +er / hMSZ“‘) dr)
0 0 0 £€(0,1)

is uniformly integrable.

Before presenting the first main result of this section, we prove that condition (H2) is
satisfied for every strategy m* such that E[|U’(XT + H)|] < co when one has an exponential
growth condition on the marginal utility of the form:

Uz +y) <C(1+U'(z)) (1+exp(ay)) for some a € R.

Indeed, let G := fOT h,.dS! and d > 0. We will show that the quantity

1
q(d) := sup E HG/ U'(XF + H +erG)dr
e€(0,1) 0

1 |G [, U(x5 +H+er)dr’>d}

vanishes when d goes to infinity. For simplicity we write J. 4 := 1| G [ UN(XE" + HberG)dr|>d"
0 T

5e,d:|

2 1/2
(sg,d] |

Since E [|U'(X7 + H)|?] is assumed to be finite we deduce from the inequality

By the Cauchy-Schwarz inequality

1
q(d) < sup E [(1 +U'(XF + H)) ‘G(l +/ exp(aer@))dr
ce(0,1) 0

. 1/2
< CE [|U’(X;,E +H)y2] sup E

1
‘G/ exp(aerG)dr
e€(0,1) 0

exp(alzr) < 1+exp(azr) forallzeR, 0< (<1

that
) 1/2
q(d) < C sup E []0(2 + exp(aG))| 58@] :
€€(0,1)

Applying successively the Cauchy-Schwarz inequality and the Markov inequality, it holds
that
41174 14
a(d) < CE ||G2+exp(a@))l'] " sup E[d.]
e€(0,1)



1/4 1 X 1/4

< CE [|G(2+exp(ac;))|4} 4~ sup E [|G| / U/(XT + H +erG)dr
£€(0,1) 0

/4 1/8

< CE [|G(2 + eXp(aG))|4} g [|G(2 + exp(aG))|?]

Let p > 2. Since h and 6 are bounded it is clear that E [|G]??] < co and

El

G(2 + exp(aG))]
<E[I0P?]*Ej2 + explac)|¥ ] i

<C (2 +E [[exp(aG)FP} ) i

T T
1
=C <2 +E {exp </ 2pach, AWt — 2/ |2pozh7«]2dr>
0 0

1 T 1/2
exp <2 /0 12pach, | 4 2pah,. - GTdrﬂ)

<C.

Hence limg_, o, g(d) = 0 which proves the assertion.

3.1 Characterization and verification: incomplete markets

We are now ready to state and prove the first main result of this paper: a verification
theorem for optimal trading strategies.

Theorem 3.1. Assume that (H1) holds. Let 7* € II* be an optimal solution to the problem
(2.2) which satisfies assumption (H2). Then there exists a predictable process Y with Yp = H
such that U'(X™ +Y) is a martingale in L*(Q, Fr,P) and

JU(XT +Y)

*i:—H—*—Zi, tel0, 7], i=1,...,d
Tt tU//(th "‘}/t) t [ ] ? 1
where Zy := d<YC’l¥V>t = (d<Y£/i>t,...,d<Y’d7w>.

Proof. We first prove the existence of Y. Since E[|U’(XF +H)|?] < oo, the stochastic process
a defined as oy := E[U' (XX + H)|F], for t in [0, T is a square integrable martingale. Define
Yy :i= (U)"Yay) — XJ. ThenY is (Ft)tefo,r)-predictable. Now It6’s formula yields

o - T 1 1 [T UG U ay))
Y+ X7 = Vi + XE _/t Wdas+2/t T ek (31

By definition, « is the unique solution of the zero driver BSDE

T
o = U'(XT + Vi) — / B,dW,, t€0,T], (3.2)
t



where § is a square integrable predictable process with valued in RY. Plugging (3.2)) into

(3.1) yields

T T 77(3)( v
. * 1 1 UCPN(XT +7Y5)
i+ X[ =XF +H— | o BsdWs + = s 5|7 ds.
X XF = [ Wt | g v
Settlng Z Wﬁ, we have
* * T ~ 1 T U(g) Tt 5 12
Y.+ X[ =X7T +H—/t stWs+2/t i (XTI +Y5)|Zs|7ds.
Now by putting Z? := Z' — 7*!, i = 1,...,d, we have shown that Y is a solution to the
BSDE
Y, =H - / ZydW, — / f(s, X ,Y,, Zs)ds, te[0,T], (3.3)
where f is given by
i IR A — )
f(s, XT Y5, Zs) = 5 7 — (X7 +Ys)|ms + Zs|* — 7y - 0s. (3.4)

Finally, by construction we have U’'(X]" +Y;) = ay, thus it is a martingale.

Now we deal with the characterization of the optimal strategy. To this end, let A :
[0,7] — R% be a bounded predictable process. We extend h into R? by setting & :
(hY,...,h%,0,...,0) and use the convention that h is again denoted by h. Thus for every
¢ in (0,1) the perturbed strategy 7* + eh belongs to IT*. Since 7* is optimal it is clear that
for every such h it holds that

1 T T
l(h) = lir% E]E [U(a: +/ (7} 4 eh,)dSH? + Y7) — Uz + / mrdSH + YT)] <0. (3.5)
e— 0 0

Moreover we have

T

1 T
- <U(:E + / (7} + eh,)dS* + Y7) — Uz + /
0 0

T 1 T
_ / hydSH / U’ (Xgi* + Y+ fe / hrdSZ“‘> do.
0 0 0

Now using (H2), Lebesgue’s dominated convergence theorem implies that (3.5)) can be rewrit-
ten as

rrdsh YT>)

T
E [U’(X{,E* + Y7) / hrdSZ"] <0 (3.6)
0

for every bounded predictable process k. Applying integration by parts to U’( X7 +Y5)seo,1)

and (5 hrdS7), we get

elo, 7]’

T
U(XE +Yr) / h,dSTt
0



T
=U'(z+Yp) x0 +/ U'(XT + Yy)hsdS™
0
T S ) .
[ hedSH OO Yo [ ZAWE (30, (5, X Ya, Z0))ds]
0 0
1 T S .
+ 2/ / hedSH UGN (XT" + Y, |n* + Z,|?ds
0 0
T *
+/ UNXT +Ys)hs - (mh + Zs)ds.
0
By definition of the driver f, the previous expression reduces to
) T
UK +Yr) [ heds)
0
T * *
- / (U’(X;r LY, + U"(XT + V) (n + Zs)> - hgds
0
T s . T )
- / / hedSH U"(XT + Ys) (7t + Zs)dWH +/ U(X™ +Y)hedWH.  (3.7)
0 0

0

The next step would be to apply the conditional expectations in , however the two
terms on the second line of the right hand side are a priori only local martingales. We
start by showing that the first one is a uniformly integrable martingale. Indeed, from the
computations which have led to (3.3) we have that

U'(X™ +Y)(n" + 2Z) = B,

where we recall that ( is the square integrable process appearing in (3.2)). Using the BDG
inequality we get

E | sup
s€[0,7T

/ / hudS™ U (XT + Y ) (2 + Z)dW
0 0

T s
/ / h,dSH
0 0
< CE <sup / h,dSH
0

s€[0,7T
Young’s inequality furthermore yields

5 1/2
]65]2ds

) " ([ 1pas)

1/2

s 2\ 1/2 T 1/2
E (sup /h,«dSZ'l ) </ ’Bs‘2ds>
sef0,77 /0 0
s 2 T
< CE | sup /thSﬂ + CE [/ |552ds}
s€[0,77 1/0 0




sup
s€[0,T]

§C<1+E / h-dWH
0

)

where we have used that h and 6 are bounded. Applying once again the BDG inequality,

we obtain
2

E | sup

s€[0,T

s T
/ hedW| | <4E [/ |hT]2dr] < 0.
0 0

Putting together the previous steps, we have that

E | sup / / hodSH U"(XT 4+ Y,) (7 + Z,)dWH|| < oo,
sefo,7]1Jo Jo
thus we get

T rs

B[ [ [ heasttvrxz + Vot + zgaw) <o
o Jo

Note that (f(f U'(xXr _i_y:g)hdeg{)t - is a square integrable martingale.
S )

U'(X™ +Y) = a is a square integrable martingale and thus

r rT
E/ )U’(X;T*—i—Ys)hs
LSO

2
ds] < 00.

Similarly,

T
E [ U'(XT +Yr) / h,dS7

}<oo.
t

Taking expectation in (3.7)) we obtain for every n > 1 that
. T
E [U’(X;E + Y1) / thSZf]
0
T * *
=E [/ (U’(X;r +Y5)0s + U"(XT +Ys)(mh + Zs)> - hst} ;
0
which in conjunction with (3.6 leads to
T
E [/ (U’(X;T* +Y,)0s +U"(XT +Y,)(x! + Zs)) : hsd5:| <0
0

for every bounded predictable process h. Replacing h by —h, we get

T
E [/ (U’(X;r* + Y0 +U"(XT +Ys)(nk + ZS)> - hsds] = 0.
0

Indeed

(3.8)

(3.9)

Now fix i in {1,...,d1}. Let Al := U'(XT" + Yy)0s + U"(XT + Yo)(n* + Zi) and hy :=
0,...,0,1 4i>0,0,. .. ,0) where the non-vanishing component is the i-th component. From

(13.9) we get that
T * . * i ;
| [ Lagnolt" (X7 4 Y08+ UXT 4 V) ZDlas)| = .
0

9



Hence, A® < 0, dP ® dt — a.e.. Similarly by choosing hs = (0,...,0, 1Ag<0707-~70) we
deduce that

U'(X™ +Y)0 +U"(X™ +Y3)(n] +2]) =0, dP@dt—ae.
This concludes the proof since i € {1,...,d;} is arbitrary. O

The verification theorem above can also be expressed in terms of a fully-coupled Forward-
Backward system.

Theorem 3.2. Under the assumptions of Theorem the optimal strategy ™ for 18
given by

_02 U/(Xt + Y’t)

3 U”(X 4 Y;)

where (X,Y,Z) € R x R x R? is a triple of adapted processes which solves the FBSDE

—Zi telo,T], i=1,...,ds,

(Xo+Ye Xs+Ys
Xy = m_fo<8WM+Z)dWH fo(SU”(XiiY))‘FZS)QZ{dS

T UG (X 4Y)|U (Xs+Ys
Y, = H-| stws—ft [ g7 (UT,()Q'”()):,,* )1 (3.10)

with the notation Z = (Zl, /A A Zd). In addition, the optimal wealth process

=:ZH =79

X™ is equal to X.
Proof. From Theorem [3.1] we know that the optimal strategy is given by

i g UT 1Y)
tU”(X“ +Yt)

where (Y, Z) is a solution to the BSDE (3.3|) with driver f like in (3.4)). Now plugging the
expression of 7* in relation (3.4]) yields

XZT* _ x—f()( M ) W’H f0< M Zs).gzids

—Zl, telo,T], ic{l,...,d}

ST (X7 4vs) T (X7 +Ys)

T T U®) X;T*+YS U’ X§*+Ys 2 )

s (3)
HOHPTELAD | 7, g — 1120280 (x7 +Ys>] ds.

\

Recalling that X™ := x + fo 75 (AW + 0%ds) for any admissible strategy m, we get the
forward part of the FBSDE. O

Remark 3.3. Using [t6’s formula and the FBSDE (3.10)), we have that

U’(X+Y)—U’(33+Yo)+/ —QZ*U’(XSH{g)de‘Jr/ U" (X +Ys)Z2aw?e.
0 0

10



Remark 3.4. Note that using the system (3.10)), for a := U'(X™ +Y), integration by parts
yields for every t in [0,T]

VX + Y (XT - XT)
t t
_ / (X7 = X™ Vdas + / g (ms — 7AW
0 0
¢ *
4 [ (0t 4 UM 4 YN ) - (- s
0

t t
:/ (XT — XT)do, +/ o (ms — ) dWH
0 0

showing that U'(X™ +Y)(X™ — X™ ) is a local martingale for every w in II%.
The converse implication of Theorems [3.1] and [3.2] constitutes the second main result.

Theorem 3.5. Let (H1) be satisfied for U. Let (X,Y, Z) be a triple of predictable processes

which solves the FBSDE satisfying: Z is in H2(RY), E[|U(X7+H)|] < oo, E[|U'( X7+

H)|?] < o0, and U'(X +Y) is a positive martingale. Moreover, assume that there exists a
constant k > 0 such that

U'(x)

o U (z

<K

~—

for all x € R. Then

i U/(Xt—i-Y}) . . )
= 7' tel0,T 1,....d
4y U”(Xt-i-Yt) t 1) € [ ) ]7 ? 6{ ) ) l}a

is an optimal solution of the optimization problem (12.2)).

Proof. Note first that by definition of 7%, X = X™ . Since the risk tolerance —% is
bounded and since Z is in H?(R?), we immediately get E [fOT |7T;k\2ds] < 00, thus, 7 € TI*. By

assumption, U'(X +Y) is a positive continuous martingale, hence there exists a continuous
local martingale L such that U'(X +Y) = £(L). And we know from Remark (3.3 that

. . "
L =log(U'(z + Yp)) +/ —ptaw —I—/ VX 1Y)

79awe.
0 0o U(Xs+Y) ? B

Define the probability measure Q ~ P by
dQ  U'(Xr+H)

dP T E[U'(Xp + H)]

Girsanov’s theorem implies that W := WH4+ WO = (Wh6l-dt,... Wh 44 .qt, Wwh+l —
%Z‘llﬂ dt, ... W2 — %Z@ -dt) is a standard Brownian motion under Q. Thus
X™ is a local martingale under Q for every 7 in II*. Now fix 7 in II* with E[|U(X7 + H)|] <
0o. Let (7,)n be a localizing sequence for the local martingale X™ — X™ . Since U is a

concave, we have

UXF+H)—-UXE +H) <U(X} +H)(XF—XF). (3.12)

11



Taking expectations in (3.12) we get

E[U(XF + H) - U(XF + H)]
E[U" (X7 + H)]

< Eg[X] - XT']

T NATn 5
— Eg [ lim / (s — w;)dwgf]
0

n—oo

TNATn N
= lim Eq [/ (s — W;‘)dWSH] =0
0

n—0o0

which eventually follows as a consequence of Lebesgue’s dominated convergence theorem.
To this end we prove that
] .

Indeed the BDG inequality and the Cauchy-Schwarz inequality imply that

|

T 2
< CEq (/ |Ts — Tr;f|2ds>
0

_cop | U+ H))] </0T Iy — 77:|2d5>%

E[U" (X7 + H
273 T 1
] E [/ |7 —w;‘|2ds} < 00.
0

We have proved in Theorem that if exhibits an optimal strategy 7* € II*, then
there exists an adapted solution to the FBSDE . As a byproduct we showed the
optimization procedure singles out a “pricing measure” under which the asset prices and
marginal utilities are martingales. In that sense, the process Y captures the impact of future
trading gains on the agent’s marginal utilities. If we assume additional conditions on the
utility function U, we get the following regularity properties of the solution (X,Y, 7).

Eg | sup

t
/ (s — ﬂ:)dWJ{
t€[0,77 |/0

Eq | sup

t€[0,T]

t ~
/ (7 — 7Y
0

‘ U'(Xr+ H)
| B0 (xr + H)]

|

Proposition 3.6. Assume that for H € L*>°(Q, Fr,P) and that the FBSDE (3.10) admits
an adapted solution (X,Y,Z) such that' Y is bounded. Let

UG (z)

or(@) = T VP @IV (@) reR

T U”(JJ)’ 902(1’) = (U//(x))g) ) 903('%) = U”(x) )

Assume that U is such that @;, i = 1,2,3 are bounded and Lipschitz continuous functions.
Then (X,Y, Z) is the unique solution of (3.10) in S*(R) x S®(R) x H2(R?). In addition,
Z - W is a BMO-martingale.

12



Proof. Let (X,Y,Z) be a solution to such that Y is bounded. Then, using the
usual theory on quadratic growth BSDEs (see for example [20, Theorem 2.5 and Lemma
3.1]) we have only from the backward part of the FBSDE that Z is in H?(R?) and that
Z - W is a BMO-martingale. In addition there exists a unique solution to the backward
component in this space for a given process X. Now the previous regularity properties
of the processes (Y, Z) imply that X is in S?(R). We turn to the uniqueness of the X

process. Assume that there exists another solution (X', Y’ Z’) of . Hence, Theorem
_ XYY gi i

U”(X’-i—Y’) 3

original problem and X' is the optimal wealth process. However, by strict concavity

of U and by convexity of II* the optimal strategy has to be unique. So X and X' are

the wealth processes of the same optimal strategy, thus, they have to coincide (for instance

X1 = X}, P—a.s.) which implies (Y, Z') = (Y, Z). O

implies that 7 := i €{l,...,d1} is an optimal solution to our

In the complete case we are able to construct the solution (X,Y, Z). This is the subject
of the following Section.

3.2 Characterization and verification: complete markets

In this section we consider the benchmark case of a complete market. We assume d = 1 for
simplicity. H denotes a square integrable random variable measurable with respect to the
Brownian motion W.

In the complete case we can give sufficient conditions for the existence of a solution to
the system (3.10). Our construction relies on the following remark.

Remark 3.7. Using (3.10) the martingale U’(X”* +Y') becomes more explicit, because Ito’s
formula applied to U'(X™ +Y) yields

t
U(XF +Y) =U'(z+Yp) +/ U'(XT 4+ Ys)(nk + Zg)dW,
0

t
=U'(z+Yp) — / U'(XT + Ys)0sdWs,
0
where we have replaced ™ by its characterization in terms of (X,Y,Z) from Theorem H
Hence,
UXT +Y) =U'(z+Y0)E(—0- W), te€0,T). (3.13)

This remark will allow us to prove existence of a solution to the system (3.10) under
a condition on the risk aversion coefficient —% of U. To this end, we give a sufficient
condition on U for the system (3.10]) to exhibit a solution. We have the following remark.

Remark 3.8. If (X,Y, Z) is an adapted solution to the system (3.10), then P := X +Y is
solution of the forward SDE

v [ VR L W USRIV (PP
P = — — - T|. .14
R o L e 7 I A

In addition, if (X,Y,Z) is in S*(R) x S3(R) x H?(RY), then P € S*(R). Thus a necessary
condition for the FBSDE (3.10)) to have a solution is that the SDE (3.14]) admits a solution.
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We are now going to state an existence result for the FBSDE system (3.10|) that char-
acterizes optimal trading strategies in terms of the functions ¢i(x) = g/,(( )) and pa(x) =

UB (@)U (2)[2
G @)

Proposition 3.9. Assume that the functions 1 and @2 are bounded and Lipschitz contin-
uwous. Then the FBSDE

U'(Xs+Ys t U'(Xs+Ys
Xt:l' fO ( slﬂ’(Xi—&—Y))_FZS) dWs_fo <03W+ZS> -Gsds

(3.15)

_ T T( 112U (X AY)U (Xs4Y5)[2 2 U (X+Y5)
Yi=H— [} ZsdW; — |, <2|95| U7 (Xs+Y2))3 + 6] U7 (Xs+Ys)

+ Zs-05)ds

admits a solution (X,Y, Z) in S*(R) x S?(R) x H?(RY) such that B[|U(X7 + H)|] < oo and
E[|U' (X7 + H)|?] < oo.

Proof. Let m in R. Consider the following SDE
P =x+m— / Os1 (P )dWs — / —10s|%pa(P™)ds, t € [0,T).

Since this SDE has Lipschitz coefficients the existence and uniqueness of a solution in S?(R)
is guaranteed (see for example [23, V.3. Lemma 1]). Next, consider the BSDE

T T 1
v — H—/ Zmaw, _/ (-21942@2(13;”) 10,201 (P™) +Z§”-65> ds.  (3.16)
t t

We denote its driver by f(s,p, 2) := —%|05>02(p) + |0s|%¢1(p) + 2 - 0,. Using the regularity
properties of 1 and @9 and the fact that 8 is bounded, there exists a constant K > 0 such
that

£ (s,p,2)| < K(1+z])

and the constant K depends only on «j,ay and on |||/, thus in particular K does not
depend on m. Since the driver f is Lipschitz in z, there exists a unique pair of adapted
processes (Y™, Z™) in S?(R) x H?*(R?) which solves (3.16). In addition, |¥;"| < K holds P-
a.s. for all t in [0,T']. We recall that this constant K does not depend on m, thus |Y;"| < K.
Using usual arguments we can show that the map m — Yj" is continuous. Even if this
procedure is somehow standard, we reprove this fact here to make the paper self-contained.
Fix m,m’ in R with m # m/. We set §Y; := Y;* — Y™ 6%, := Z" — Z". By it
follows that (dY,dZ2) is solution to the Lipschitz BSDE:

T T
§Y, =0— / 5 ZsdW, — / (0502 + h(s))ds
t t

with h(s) := 3052 (p2(P™) — ©2(PT)) + 1042 (01 (P™) — 1 (P™)). Using classical a priori
estimates for Lipschitz growth BSDEs (see for example [16, Lemma 2.2]) we get that:

T
6|2 < E[ sup [%i[2] < CE [/ ]h(s)|2ds] |
t€[0,T] 0

14



The boundedness of 8 and the Lipschitz assumption on ¢; and on ¢y immediately imply
that

sup |P/" — P |?

T T
E [/ ]h(s)\zds] < CE U P — P;"’Pds] < CE
0 0 t€[0,7]

Combining the inequalities above with classical estimates on Lipschitz SDEs (see for example
[23, Estimate (***) in the proof of Theorem V.7.37]) we finally get that

8Y5]2 < Clm — P

which concludes the proof by letting m’ tending to m. This conjunction with m — Yj"
being bounded yields that there exists an element m* € R such that YJ® = m*. Setting

X" =P" Y™, tel0,T),

it is straightforward to check that (X™ , Y™ Z™") satisfies (3.15). Moreover, we have
X™ ¢ S%(R) since Y™ is bounded and since P™" € S?(R). Next, note that E[|U’(X7 +
Yr)|?] < oo since U'(X7 + Yr) = U'(x + m)E(—0 - W). Now using the concavity of U, it
holds that

U(x) <U'(0)x+U(0), -U(z)<-U'(x)r—U(0), VreR.

Consequently,
E[|U(X7 + H)|| < E[[U(0)] [X7 + H| + [U(0)]] + E[[U" (X7 + H)(X7 + H)| + [U(0)]] < oc.

|

4 Utility functions on the positive half-line

In this section we study utility functions U : Rt — R defined on the positive half-line.
Again, we assume that U is strictly increasing and strictly concave.

In the previous section we have derived a FBSDE characterization of the optimal strat-
egy for the utility maximization problem . The key observation was that there exists a
stochastic process Y such that U'(X™ +Y) is a martingale. However if U is only defined
on the positive half-line, it is not clear a priori that the expression U'(X ™ 4 Y) makes
sense. We could generalize this approach by looking for a function ® such that ®(X7,Y;)
is a martingale and such that ®(X%,Yr) = U'(X% + H). When H = 0, it turns out that
a good choice of function ® is ®(z,y) := U'(x) exp(y) since the system we obtain coincides
(up to a non-linear transformation) with the one obtained by Peng in [22], Section 4] using
the maximum principle. Note that the system of Peng is not formulated as a FBSDE but
rather as a system of equations: one for the wealth process whose dynamics depend on the
strategy and one adjoint equation, but a reformulation of this system of equation allows to
get a FBSDE (details are given in Section [5.1]).
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In the previous section, m denoted the total amount of money invested into the stock (the
number of shares being 7/ 5’) Now we denote by 7 the proportion of wealth invested in
the i-th stock S’. Once again we denote by II* the set of admissible strategies with initial
capital z which is now defined by

T
" .= {7? Q0 x [0,T] = R%, 7 is predictable, E {/ \WS\st] < oo} . (4.1)
0
The associated wealth process is given by
t
X[ = x—i—/ T XTdS?, te[0,T].
0

Again, we extend 7 to R? via 7 := (7!,...,7%,0,...,0) and make the convention that we
write 7 instead of 7. Thus, we have

X[ =€ (/ mde‘) , teo,T].
0 t

From now one we consider a positive Fpr-measurable random variable H. We furthermore
need to impose the following assumptions on U.

(H3) U : R" — R is three times differentiable, strictly increasing and concave

(H4) We say that assumption (H4) holds for an element 7* in II*, if
(i) E[XF U'(XF + H)P’] < oo

(ii) the sequence of random variables

1 * * 1 * * *
<(X;3 tee _ XT )/ U'(XF + H+r(XE ™ — XT ))dr)
€ 0 €€(0,1)

is uniformly integrable;
(iii)
1

SO X7 — &

2
lim sup E =0,
£=0¢el0,1]

where d¢;, = m;&dSH + p X[ dS}H, t€[0,T], and SUPye(o,7] E[|&]%] < .

(H5) There exists a constant ¢ > 0 such that % < cforall z € RT.
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4.1 Characterization and verification: incomplete markets
Note that in condition (H4), if U’(0) < oo or if H > a > 0 is satisfied, then (iii) implies (ii).

Theorem 4.1. Assume that (H3) holds and that H is a positive random variable belonging
to L*(Q, Fr,P). Let ™ be an optimal solution to satisfying E[|U(XF + H)|] < oo
and which satisfies assumption (Hj). Then there exists a predictable process Y with Yr =
log(U'(XF + H)) —log(U'(XX")) such that X™ U'(X™ )exp(Y) is a martingale and

w = rpiixry Gt s€DTL i=Lidy
where Z; := (ﬂyﬁ/l)t" - d<Y£/d>t>

Proof. As in the proof of Theorem we prove the existence of Y such that X™ U’(X™ ) exp(Y)
is a martingale with Y7 = log(U' (X% + H)) —log(U'(X7")). Consequently, U’ (X% + H) =
U'(XF ) exp(Yr). By (H4), the process

o = E[XF U(XF + H)|F)]

is a square integrable martingale. In addition it is the unique solution to the BSDE
* * T
ap = XT U (XT + H) —/ BsdWs, t € 0,T],
t

where 3 is a square integrable predictable process with values in R?. We set Y := log(a) —
log(U"(X™)) —log(X™ ). As in the proof of Theorem Ito’s formula implies that

T "
Bs  U"(XT)
Y, =Yy — 2 s Xt k| dW
T /[a i) e e

T 2 " m
_/ |:_1’BS| . <U (Xs )XW*TF*_'_W;) 02—[
t

2 |a3|2

X |2 nexT* 2 3)(yr* *|2
JEEmE (e voa) | P,
2 U(X3) U'(X3) 2
Setting A
gi= Pl T ynxr )+ UN(XT), i=1,....d (4.2)
t ay U/(Xtﬂ*) t t t ) LA A :
we get that
T T 11U U"(XT") e
Y, = Yr— | Zadw, - VXS ) | xm ez = (7 gty (XS ) e e
= |- 2 T i - @ (G )

U//( )

— S X nt|? — 2| Z)2 | ds, t T).
G AT P = 3120 ds. e o]

We now derive the characterization of 7* in terms of U’ and Y and Z. We employ an
argument put forth in [22] and then substitute the Hamiltonian by a BSDE. Fix = € II”.

17



Since the latter is a convex set, for p := m — 7*, the 7#* 4 €p is an admissible strategy for
every € € (0,1). We have

1 * *
(UK 4 H) —UKXF + ) =

]. * * 1 * * *
Lxm+er _ xz )/ U/(XE + H 4+ r(X5 0 — XE))dr.
€ 0

Since 7* is optimal we find
1 * * 1 * * *
E|=(X] ™ - X7 )/ U'(XE + H+r(X} T — X5))dr| <0, Ve>0. (4.3)
€ 0

Now let £ be defined as
dgy = (& + p XTSI, te[0,T).

By (H4), we can apply Lebesgue’s dominated convergence theorem in inequality (4.3|) which,
possibly passing to a subsequence, yields

* ]_ * * 1 * * *
ElgrU'(XF + H)] = in E |Z(X] * - XF) /0 U'(XT + H o+ (X5 — XT)dr ||

Combined with (4.3)), it leads to
E[r (X2 W/ (XF)XE exp(Yr)] = E[erU' (X5 + H)] <0, Vrell® (4.4)

We now restrict consideration to a particular class of processes 7, that is, we choose p to be
a bounded predictable process and we define 7 := p + 7* which is admissible strategy since
it is square integrable. The integration by parts formula for continuous semimartingales
implies that

t t
GO = [ Wit [pe 0% = p s, te 0.7)
0 0
Another application of integration by parts to a = U/(X™ ) X™ exp(Y) and £(X™ )~ yields
&rU' (X3 + Yr) = &p(XF)7'U'(XF ) XF exp(Yr)
T T
= / gt(Xtﬂ— )_ldOét + / oztptthH
0 0
T * * * *
b [ pexp (YO XF - UK )2+ ) + U)X wde. (45)
0

We now intend to take the expectation in the above relation. To this end, we need the
following moment estimates. Using that p is bounded, we have
2]

t t
E[ sup [& (X7 )1!2]=E[sup /pdef+/ (ps - 02 — ps - 73)ds
0 0

te[0,T] t€[0,T]
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2

< CE | sup sup

t 2

/PdesH /|/78' s = s Telds ]

te[0,T] 1/0 t€[0,T
T 2
SC’( [/ |ps| ds]-i—E ‘/ ps - 07 ds / Ps - Tads ])
0
T
SC(l—i—E[/ ’71':2d8:|><00, (4.6)
0

where we have used Doob’s inequality. Consequently, we get

+E

Eér(XF ) azl] < Bllar|)2E]er(XF )12 < o,

which follows from the Cauchy-Schwarz inequality. With p being bounded, we get for some
generic constant C' > 0

T T
E [/ |asps|2ds] <CE {/ |as|2ds] < 0.
0 0

Hence fo aprdW/t is a square integrable martingale. Next, let (Th)n>1 be a localizing
sequence for the local martingale [; & (X7 )~ 'doy. Then we have

/0 " e (XT ) doy / (X ) Vday| .

To apply Lebesgue’s dominated convergence theorem and show that E { fOT (X )*1dat} =

1/2]

/2
< CE sup}\stP!(X?*)‘lF] E [(o)7]"/?

< sup
t€[0,T]

0, we need to prove E [supte[O’T] )fg ft(Xt’r*)*ldatH < oo:

E | sup
te[0,7]

T *
/ E(XF ) doy|| < CE \ | taiee ),

te[0,T

< 00,

where we have used the estimate (4.6)). Thus, by (4.5) it follows that

?|

and from (4.4)), it holds that for every 7 in II* such that p is bounded, we get

T
/ peexp(Ye) X[ - (U'(XT)(Z]* +6]') + U"(X?*)Xf*ﬂf)dtu <00
0

T
E / prexp(Y)XT - (U/(XF)(ZH + 61) + U"(XT)XT w)dt | < 0.
0

Substituting p with —p in the previous inequality, we obtain for every p

T
B / peexp(Y) X[ - (U' (X7 )20+ 07 + U"(XT) X[ wf)dt| =0, (47)
0
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Now let A; := U'(X[ )(Z{t + 6}t) + U"(X] )X m} and let py(w) := 14,()>0- Recall that
we have dP @ dt-a.s. exp(Y;) X7 > 0. Plugging p into ([£.7) yields

A(w) <0, dP®dt — a.e.
Similarly choosing pi(w) := 14,(w)<0, We find

A(w) =0, dP ® dt — a.e.
Thus, we achieve

o UXT)

n = vy G, e T, =1

Let us now deal with converse implication.

Theorem 4.2. Assume (H3) and (H5). Let (X,Y, Z) be an adapted solution of the FBSDE

— fy G (ZH 4 AW — [ R (22 + 07 0ds,

U/ (Xp+H T UG (X,)U' (X5 (4.8)
Y; = log (W) - ftT [(|Z§i oM ( _ %W) _ %|Zs|2} ds
— [F Zgaw,

such that B[|U(XF +H)|] < oo, Z is an element of H2(R?) and the positive local martingale
XU'(X)exp(Y) is a true martingale.

*0 - U/(XS)

s -——m(zé+9§)a se€[0,T], i=1,....d

is an optimal solution to the optimization problem (2.2)).
Proof. We first note that 7* € II” since by the fact that Z is in H?(R?), there is a constant

C > 0 such that . .
E U |7rf|2dt} <CE U |Zﬁ+ezf|2dt] < 0.
0 0

Now let m be an element of II*. Let D := U'(X)exp(Y). Applying Itd’s formula and
plugging in the expression of 7*, we find that

dD; = Dy(—0,dW]t + Z, dWP), Dy =U'(z)exp(Yp),
hence,

Dy = U'(x) exp(Yp)E (/MW’H /'stWf), te 0,17, (4.9)

which is a positive local martingale. Now fix 7 in II*. By definition of X™ and of D, the
product formula implies that X™D satisfies

DX™ = zDo&((x — 0) - WH + 2. WO).
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Hence, X™D is a supermartingale and so E[DyX7] < Dgr. By assumption, X™ D =
XU'(X)exp(Y) is a true martingale so E[D7 X7 = Dox. Finally combining the facts
above, recalling that Dy = U’ (Xf,i* + H) and using the concavity of U, we obtain

E[U(X%+ H) - U(XY + H)] <E[U/(XF + H) (X} - X5)] <0. (4.10)

O

Remark 4.3. In the previous proof, if we apply integration by parts formula to D =
U'(X)exp(Y) and X™ — X", we get

U(X™) exp(Y)(X™ — X™) = / (XT — X[ )dDy +/ Dy(m XT — mf XT )dWilt,
0 0

thus U'(X™) exp(Y)(X™ — X™) is a local martingale for every admissible strategy 7.

Remark 4.4. Note that using the reqularity assumptions of the FBSDE (4.8)), we derived
that D := U'(X™ ) exp(Y) is a true martingale

Dy =U'(z) exp(Yo)€ (=0 - W + 29 . wO).

4.2 Characterization and verification: complete markets

We adopt the setting and notations of Section [ with d; = d = 1 and H = 0. In the
complete case we can give sufficient conditions for the existence of a solution to the system
(4.8). To this end, note the following remark.

Remark 4.5. Similar to Remark we can use (4.8)) to characterize further the martingale
U'(X™Yexp(Y): applying It6’s formula to U'(X™ ) exp(Y) gives rise to

U'(X[ ) exp(Yy) = U'(z) exp(Yy) — /0 U'(X) exp(Yy)0sd W,

hence, we have
U'(XT ) exp(Y;) = U'(z) exp(Yo)E(—0 - W), t€[0,T). (4.11)

This observation allows to prove the existence of (4.8) under a condition on the risk

. . Z / (3) / .
aversion coefficient —Y7. Let ¢(z) := % and @a(z) = 1 — %W We will
now give sufficient condition for the system (4.8]) to exhibit a solution. We begin with the

following remark.

Remark 4.6. Note that if po is constant then the system above decouples. An elementary
analysis shows that this happens if and only is U is the exponential, power, log or quadratic

(mean-variance hedging) function. If U(x) = — exp(—aqz) — exp(—aaz) then ¢o is bounded
and Lipschitz and if U(x) := % + % then @a is a bounded function.
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Theorem 4.7. Assume that s is a continuous bounded function. Then there exists an
adapted solution (X,Y, Z) in S’ (R%) x S%(R) x H2(RY) to the FBSDE

t U'(Xs t U'(Xs)
Xt =T — 0 ﬁ){s))(zs + 0 U//( Z + 95)95033
(4.12)

T Gl (x s
Y, =0— [T Zaw, - [T [|Z + 0,2 (1 - EW) - %IZﬂ ds.

Moreover, E[|U(X7)|] < oo and E[|U'(X7)|?] < .
Proof. Fix m > 0 and consider the BSDE

m=0- [ 1z e (O 0 epmigt-0- Wi exp-¥i) - 3122
= i s s| P2 X )explm t €XP t 5 s S

T
- / ZdW.
t

Since 2 is bounded, the driver of the BSDE above in (Y™, Z™) can be bounded uniformly
in m, hence [12] yields a pair (Y™, Z™) € S*(R) x H?(R) solution to this equation with
|Y™| < C where C' does not depend on m and Z - W is a BMO-martingale. In addition
(once again using standard arguments like in the proof of Proposition we have that
m + YJ" is continuous. Thus there exists an element m* > 0 such that YJ" = m*. Now
applying It6’s formula to

XM= (U') 71U (x) exp(m*)E(—6 - W) exp(~=Y™)),

we check that (X™, Y™ Z™") satisfies (.12)). It remains to show that E[|U(X7)|] < oc.
From the concavity of U we have that

E[|U(X)[] < U (0)[E[Xz]] + [U(0)] + E[JU"(X) Xz ] + [U(0)].

Since X = z&(— U/(,())(Z—i— 0) - W), —% < kforz € Rand (Z+6) -W is a
BMO-martingale, X is a true martingale, and thus E[X7] = x. Similarly we have that
XpU'(Xr) = XrU'(Xr) exp(Yr) = 2U'(x) exp(Yo)E((— sy (Z + 0) — 0) - W) and so
XU'(X)exp(Y) is a true martingale. This hence proves E[| XU’ (X7)|] < oc. O

5 Links to other approaches

In this section we link our approach to characterizing optimal investment strategies to two
other approaches based on the stochastic maximum principle and duality theory, respec-
tively.

5.1 Stochastic maximum principle

This section links our approach in the complete market setting to the approach using the
stochastic maximum principle. As we are interested only in the link, we will only give
a formal derivation. In particular, we suppose here that U and U~! are smooth enough
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with bounded derivatives. Let us consider the complete market case with dy = d = 1 for
simplicity and H = 0 and recall that in this setting, the wealth process is given by

t t
X[ = ;v—l—/ T dW —I—/ mshsds, t €10,T].
0 0
We consider J(7) := E[U(XF)] and set X7 := U(X]). Ito’s formula yields
- . - 1 .
dX[ = U'(U~Y(X]))mdW; + [U’(U’l(Xf))mHt + iU”(U’l(Xf))hrt\Q] dt

and J(m) = E[XZ]. Applying the maximum principle technique described in [3] (see also
[22) Section 4]), we introduce the adjoint equation to get

AX7 = U'(UHED)mdWs + U0 X)mby + S0 (O K|l at, XF = Ua),
—dpe = | (% (U IO+ S5O ED)ml?) po+ ke (U (X)) dt + koW, pr = 1.

(5.1)
We now introduce the corresponding Hamiltonian, defined as

H(t,p,k,m) := p[U' (U (XT))mbs + %U”(U_I(Xf))lﬂtIQ] +kU'(UH(XT))m.

A formal maximization gives

Plugging this into (5.1)) yields

aXy = WP W X)) (& +0) [awi - § (& - 6) @t , X =U (@),

2 o - (5.2)
dpy = — (1% + 9t> Dt {—1 + %%(U_I(Xf))] dt + kedWy, pr =1

We now relate this system with (4.12)) using a Cole-Hopf type transformation. First we plug
7 into (5.2)) and obtain

AX7" = ~Fo(XF) | + 0] (Wi + 0ar), XF" =,

k 2 LUBU o (5-3)
dpy = — (p*f + Qt) Dt [—1 + §W(Xt )} dt + kedWy, pr = 1.
Next consider the system
dX[" = —ZH(XT)(Ze + 0,)(dW; + 0dt), XT' = =,
(5.4)

(3) ¥ ! ¥
a¥i= |7+ 00 - YOI — 42 ar 4z, v =0,

Setting pr := exp(V;), k := Zp and X := X, It6’s formula implies that (p,k) is a solution
to ((5.3)).
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5.2 BSDE solution via convex duality methods

Let us now turn to a very important link of our approach with the convex duality theory.
We have seen in Sections [3land [4] that our approach relies on choosing a process Y such that
the quantities U'(X™ +Y) and X™ U'(X™ )exp(Y), respectively, are martingales. In fact,
these martingales are not any martingales. For instance in case of a utility function on the
whole real line, U'(X™ +Y) is exactly U'(z + Yo)&(—0 - WH + UL(X™ + V)29 - WO). So
in the complete case it is exactly the martingale under which the price is itself a martingale.
For utility functions defined on the positive half line this leads directly to duality theory,
since it is known from the original paper by Kramkov and Schachermayer ([13]) that (under
some growth-type condition on U) the optimal wealth process X ™ and the stochastic pro-
cess Y* solution to the so-called dual-problem are such that the stochastic process X™ Y*
is a martingale. In addition, with our notations, Kramkov and Schachermayer prove that
Y* has the form Y* = Y;E(—0 - W" + M) where M is a martingale orthogonal to W7,
Recall that in our case X™ U’(X™ ) exp(Y) is a martingale and from (4.9), we have proved
that D := U'(X™ )exp(Y) is exactly of the form DoE(—0- W 4 ZO . W), in other words
Y* = D and the Z° component appearing in the solution of our FBSDE exactly represents
the orthogonal part in the dual optimizer of Kramkov and Schachermayer theory. Obviously,
this needs to be derived more formally. This is the goal of this section.

The aim of this section is to derive a solution of the forward-backward equation (4.12))
by means of the results from the convex duality approach to . We denote by II' the
set of admissible strategies with initial capital one unit of currency. In the case of zero
endowment H = 0, the solution to the concave optimization problem is achieved by
formulating and solving the following dual problem: denoting the convex conjugate of the
concave function U by

Viy):= sup {U(z) — 2y}, y>0,

where dX[ = X[ m dgt, o =« >0, and defining a family of nonnegative semimartingales
t

via
Y= {Y >0:Yy=1, X™Y is a supermartingale for every 7 € Hl},
the primal problem ([2.2) is solved by solving instead the dual convex optimization problem

v(y) = }}'Tneny[V(yYT)}, y > 0. (5.5)

If this dual problem admits a unique solution Y7;: € ), then the primal problem (2.2)) with
H = 0 also yields a unique solution

. ~

* * dS
X7 —x—i—/ X 30
0 S

T
= x—l—/ adSs
0

= I(yY;j)7

s
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with the corresponding optimal control 7* = ;ﬁ . Here we have I = (U')"! and z =

- (y)ﬂ The case of bounded terminal endowment H is dealt with in [5], where instead of
(5.5) the following dual problem is considered

v(y) = 1/iT]fleny[V(?JYT) +yYrH], y>0.

The case of general integrable H has been studied in [10], using the original dual problem
but a slight different choice of the domain ). A ubiquitous property of the con-
vex duality method is that once the primal and the dual optimizers are obtained, their
product X™ Y* is a nonnegative true martingale (hence uniformly integrable), see [13] for
a economic interpretation. In the context of utility maximization with bounded random
endowments, this martingale property of X™ Y* is pointed out in [5, Remark 4.6]. This
martingale property of X™ Y* constitutes the first main ingredient for deriving a solution
for the forward-backward equation . A second main ingredient is constituted by the
characterization of the dual domain ). Note in the continuous process setting, ) is the
family of all non-negative supermartingales (see e.g. [13, 10]). According to a well known
result, every nonnegative cadlag supermartingale ¥ € ) admits a unique multiplicative
decomposition
Y =AM

where A is a predictable, non-increasing process such that Ay = 1 and M is cadlag lo-
cal martingale. However, [I5] characterize the elements of ¥ € ) by the multiplicative
decomposition

Y = AS(—0" - WH + K- w9), (5.6)

where A is a predictable non-increasing process such that Ay = 1 and K € HZ (R%) (see

[15, Proposition 3.2]). Using that the Fenchel-Legendre transform V' is strictly decreasing,
[15, Corollary 3.3] shows that the dual optimizer is a (continuous) local martingale and
admits the representation

YV =¢(-0" - wh+ K- wO) (5.7)

for a uniquely determined K* € HZ (R%). If v(y) = E[V(ijf)} < 00, then we can check

that the optimal K* actually belongs to H?(R). This is done in the following lemma whose
proof is in the same spirit as in [I4, Lemma 3.2]

Lemma 5.1. If for some y > 0, it holds that

o= BV ) <o

we have

0= i F e W)

i.e. the optimal K* minimizing v(y) can be assumed to belong to H?(R%).

*This is equivalent to u'(z) = y where u(z) = sup, E[U(XF + H)|. The differentiability of both v(y) and
u(z) are shown in [5].
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Proof. We introduce the family of stopping times
7 =inf {t >0: /t (10¥)? + |KZ|*)ds > n}, n € N.
Let y > 0, then we have 0
o(y) =E[V(yer(— 0" W+ k" wO))]
—E[E[V(yer(— 0" W+ K" WO))|Fon]
> B[V (y&m (= 0" W+ K- wO))],

where the last line follows by Jensen’s inequality. Continuing the last line and recalling that
V(y) is a strictly convex function, we have

n n

v(y) ZE[V(yexp(/OT (—egfdwng;de))exp(—;/oT (’9f|2+|K§|2)d8))}
>V <E[yexp (/OTn (- oHaw it + K:dWSO)) exp (— ;/OTH (‘92”2 + |K:|2)d8)}>

>V (yew (E[—i/;n (62 + 15 P)as]) )

where Jensen’s inequality has been used twice. By continuity of V' and of the exponential
function, it follows from the monotone convergence theorem that

v(y) > lim V(exp ( — ;E{/OTTL (1672 + |K§|2)ng)

n—oo

= V(exp ( - ;E[/OT (|QZ{|2 + |K:|2)dsD)

Since v(y) < oo and V (exp(—00)) = V(0) = U(o0) = oo, it follows that
T
E[/ (\92{|2+]K;‘|2)ds} < .
0
We deduce that K* € H?(R%). O

Now using that X™ Y* is a true martingale and that the dual optimizer Y* is a local
martingale satisfying (5.7), we get the following result.

Theorem 5.2. Let H be a non-negative bounded random endowment and assume that the
xU//(x)

coefficient of relative risk aversion — 0 ) satisfies
. aU" (z)
limsup | —— < 00. 5.8

Then there exists xg > 0 such that for all x > xg the coupled FBSDE has a solution
(X,Y,Z) such that Xg = x. In addition, X is the optimal wealth of the problem and
the dual optimizer Y* associated with it is given by Y* = U'(X)exp(Y) (so that yY;: =
U(Xr+H)).
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Proof. The existence of z¢g > 0 such that for every = > zy the quantity

u(@) = sup E[U(X] + H)] =E[U(X] + H)]

is finite has been shown [5]. We set X* := X™ . Also recall that we have y = u/(z) > 0 for
x > xo and that we have

E [yX}Yif} = zy.

Moreover, yY} = U'(X} + H). We define the true martingale a = yX*Y*. We set
Y :=log(a) — log(X*) —log(U’'(X*)). We have that

Q¢
Y, =1 _—
LT <X£‘U’(X£*)>

= log A0
U'(Xt)

= log(y) +log(Y;") — log(U'(X7).

Recall that by definition of X* and Y* we have that

AY; = Y7 (—07tawt + K;awP)

and
dX} = X7 (npdWit + mjoftdt) .
Hence
1
4Ys = 0P AW + Kid W = S0 + |7 )
U”(X*) * yok * Yk
B U/(X;) (m X7 W + mp X[ 0] dt)
1 (3) XU (X*) — " x* 2
_7U ( t)U( t) (U( t)) |7T:X£k|2dt
2 (U(X7))?
We define:

U"(X]) s yrs

H . H
Zt = —Ht — mﬂ't t

so that 7} X = —(Z]t + 92{)%7 and
t

z° = K.
Then
1
dY, = Z1aw ]t + zPdwP — 5(|92ﬂ2 + |K}|?)dt
1 (3) XAOU(XF) — X2 | ZH - aH 121U (X)) |12
n ez{(ZtHwﬁ)_fU ( t)U(,t)* ;U( )27+ f,’ IUg )l dt
2 (U'(X7)) U (X}
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dt.

= ZMtawlt + Z28awP + 2 (X
t

1UGHXHU (X 1
|zﬁ+e?\2<1— Ll t))—2|zﬁ|2

Finally note that by construction Y = log (%) Hence, (X,Y, 7)) = (X*,Y,Z) is a

solution to (4.8) and
yY* =U'(X)exp(Y).
O
U// (x)
U'(x)
and the risk tolerance as ﬁ%’f) We say that U(x) has hyperbolic absolute risk aversion

(HARA) if and only if its risk tolerance m is linear in x. More precisely, it can be

shown that a utility function U(z) is HARA if and only if

11—~/ ax Y azr
Ulx :7( —|—b) , +b>0,
) v M-y L—n

Let us recall that the absolute risk aversion of U(x) is defined as ARA(z) := —

for given real numbers v, a,b € R.

Corollary 5.3. Assume that U(x) is HARA. Then there ezists a constant k € R such that
the backward equation from (4.8)) can be written as

o (UX5+ H) g VSR Y H g2

U/<X* +H) T T
= log ,Ti* —/ ZsdW —/ g(s, Zs)ds.
(=7 (X3 )- , 952
Proof. Notice that for the risk tolerance

1 U (x)

1@ = Ram = U@

it holds that

’

N U () UG ()
fz)=-1+ @R

Since U(x) being HARA implies that f is linear in z, it follows that there exist constants
¢,d € R such that f'(x) = cx + d. Hence the BSDE from (4.8) can also be written as

U(X:h+H) r T, 1 1.,
Y, — 1 T - Zs . — _7282 - = X* Z'H H |2
=tog (e )~ [z [ (= G e (G g X e s
_ U' (X7 + H) g Trol o H . gH|2
= o8 (s )= | zaw— [ (=512 +wiZl+ 6247 s,
fOI“/iZ%—%C. O
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Obviously the driver of the BSDE (5.9)), g(s, z), satisfies the quadratic growth condition
i
o(5,2)| < o+ 1J2P

for suitably chosen real numbers «,y > 0. In this setting [4, Theorem 2] yields the following
result.

Corollary 5.4. If £ = log (%) satisfies E[ewgq < 00, then the BSDE (5.9) admits
T

a solution (Y, Z) such that Y is continuous and Z € H? (R?).

loc

5.3 The power case with general endowment

We finally deal with an open question in mathematical Finance namely the case of power
utility with general endowment. We know from duality theory that an optimal solution
exists but we would like to prove that the strategy is smooth (i.e. square integrable) and
to characterize it in terms of the solution to an equation (for instance a FBSDE). We will
use definitions and notations of Section Let U(z) := £ with v a fixed parameter in
(0,1). Let H be a positive bounded Fr-measurable random variable where we recall that
(Ft)iejo, 1s the filtration generated by W = (WH, WO). We recall that we denote by II*

the set of admissible strategies with initial capital  which is now defined by
T
I .= {77 Q1 x [0,7] = R%, 7 is predictable, E [/ \Ws\2ds] < oo} (5.10)
0

where 7%,i = 1, ..., d; denotes the proportion of wealth invested in the stock. The associated
wealth process is given by

t
Xr :—x—l—/ T XTdS?, te[0,T].
0

Again, we extend 7 to R? via 7 := (7',...,7%,0,...,0) and make the convention that we
write 7 instead of 7. Thus, we have

X[ =z€ (/ wrdS;iL‘> , teo,T).
0 t

Note that this setting covers the case of a purely orthogonal endowment of the form H :=
(;5(5’7(? ) where ¢ is positive. Now we can go in the analysis of the problem:
XL+ H)Y
sup E [(TH] '
mell®

(5.11)

Indeed, what is only known in that case is that an optimal strategy exists ([10]) but in a
much larger space that I1”, in particular it is not proved that the optimal strategy is square
integrable. About the characterization of this optimal strategy one can write the Hamilton-
Jacobi-Bellman PDE in the Markovian case but no results allow us to solve it. We believe
that combining the duality theory, BSDEs techniques and our approach we could show first
that the optimal strategy belongs to the space II* and that we will give a characterization
of it in terms of a FBSDE. Let us be more precise.
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Theorem 5.5. There exists xg > 0 such that for every x > xq, the system
X; *x—i—ft 7)(3(2 +0 )dWH+f0 9%7& 1 020 s

B (5.12)

}Q:(y—l)log(l—i—%) ft ZsdWy — j; ( 71)|Z?Ll R - 2|Zs|2>d8

admits an adapted solution (X,Y,Z). If in addition Z™ = (Z',..., Z%) is in H2(R%), then

; 1
e S (ZP 0, i=1,...,d (5.13)

is the optimal solution to the mazximization problem (j5.11]).

Proof. First note that the system is exactly the system ED with U(z) = % Hence
from Theorem [5.2] there exists zg > 0 such that the system (5.12)) admits a solution (X,Y, Z)
when z > xo. We fix, x > ¢ and consider the associated solution (X,Y, Z) (that is Xo = ).
In addition, we know from Theorem that X = X*. Hence 7* is given by . It just
remains to prove that 7* is in IT*, which is a direct consequence of the fact that Z is in
H2(RY). |

Remark 5.6. Note that since we know that the dual optimizer Y* is given by Y* =
U'(X)exp(Y) it is clear that XU'(X)exp(Y) is a true martingale. Hence the square inte-
grability of Z implies the condition of Theorem .' E[(X7+ H)"] < co. Finally notice that
79 is in H2(R%) by Lemma .

So the only element missing in the proof is indeed to show that Z* is in H?(R%) (nat-
urally, since the process 7* is integrable with respect to S* and so it is in HZ(R%)). This
question requires a deeper analysis of the system and is currently investigated by the authors.
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