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October 4, 2011

Abstract

In this paper we deal with the utility maximization problem with a general utility
function. We derive a new approach in which we reduce the utility maximization prob-
lem with general utility to the study of a fully-coupled Forward-Backward Stochastic
Differential Equation (FBSDE).
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1 Introduction

One of the most commonly studied topic in mathematical finance (and applied probably) is
the problem of maximizing expected terminal utility from trading in a financial market. In
such a situation, the stochastic control problem is of the form

V (0, x) := sup
π∈A

E[U(Xπ
T +H)] (1.1)

for a real-valued function U , where A denotes the set of admissible trading strategies, T <∞
is the terminal time, Xπ

T is the wealth of the agent when he follows the strategy π ∈ A and his
initial capital at the initial time zero is x > 0, and H is a liability that the agent must deliver
at the terminal time. One is typically interested in establishing existence and uniqueness
of optimal solutions and in characterizing optimal strategies and the value function V (t, x)
which is defined as

V (t, x) := sup
π∈A

E[U(Xπ
t,T +H)|Ft].
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Here Xt,T denotes the wealth of the agent when the investment period is [t, T ] and where
the filtration (Ft)t∈[0,T ] defines the flow of information.

The question of existence of an optimal strategy π∗ can essentially be addressed using convex
duality. The convex duality approach is originally due to Bismut [2] with its modern form
dating back to Kramkov and Schachermayer [13]. For instance, given some growth condition
on U or related quantities (such as the asymptotic elasticity condition for utilities defined on
the half line) existence of an optimal strategy is guaranteed under mild regularity conditions
on the liability and convexity assumptions on the set of admissible trading strategies (see
e.g. [1] for details). However, the duality method is not constructive and does not allow for
a characterization of optimal strategies and value functions.

One approach to simultaneously characterize optimal trading strategies and utilities uses the
theory of forward-backward stochastic differential equations (FBSDE). When the filtration
is generated by a standard Wiener process W and if either U(x) := − exp(−αx) for some
α > 0 and H ∈ L2, or U(x) := xγ

γ for γ ∈ (0, 1) or U(x) = lnx and H = 0, it has been shown
by Hu, Imkeller and Müller [9] that the control problem (1.1) can essentially be reduced to
solving a BSDE of the form

Yt = H −
∫ T

t
ZsdWs −

∫ T

t
f(s, Zs)ds, t ∈ [0, T ], (1.2)

where the driver f(t, z) is a predictable process of quadratic growth in the z-variable. Their
results have since been extended beyond the Brownian framework and to more general utility
optimization problems with complete and incomplete information in, e.g., [8], [19], [20], [21]
and [17]. The method used in [9] and essentially all other papers relies on the martingale
optimality principle and can essentially only be applied to the standard cases mentioned
above (exponential with general endowment and power, respectively logarithmic, with zero
endowment). This is due to a particular “separation of variables” property enjoyed by the
classical utility functions: their value function can be decomposed as V (t, x) = g(x)Vt where
g is a deterministic function and V is an adapted process. As a result, optimal future trading
strategies are independent of current wealth levels.

More generally, there has recently been an increasing interest in dynamic translation in-
variant utility functions. A utility function is called translation invariant if a cash amount
added to a financial position increases the utility by that amount and hence optimal trad-
ing strategies are wealth-independent1. Although the property of translation invariance
renders the utility optimization problem mathematically tractable, independence of the
trading strategies on wealth is rather unsatisfactory from an economic point of view. In
[18] the authors derive a verification theorem for optimal trading strategies for more gen-
eral utility functions when H = 0. More precisely, given a general utility function U and
assuming that there exists an optimal strategy regular enough such that the value function
enjoys some regularity properties in (t, x), it is shown that there exists a predictable random
field (ϕ(t, x))(t,x)∈[0,T ]×(0,∞) such that the pair (V, ϕ) is solution to the following backward

1It has been shown by [6] that essentially all such utility functions can be represented in terms of a BSDE
of the form 1.2.
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stochastic partial differential equation (BSPDE) of the form:

V (t, x) = U(x)−
∫ T

t
ϕ(s, x)dWs −

∫ T

t

|ϕx(s, x)|2

Vxx(s, x)
ds, t ∈ [0, T ] (1.3)

where ϕx denotes the partial derivative of ϕ with respect to x and Vxx the second partial
derivative of V with respect to the same variable. The optimal strategy π∗ can then be
obtained from (V, ϕ). Unfortunately, the BSPDE-theory is still in its infancy and to the
best of our knowledge the non-linearities arising in (1.3) cannot be handled except in the
classical cases mentioned above where once again one benefits of the “separation of variables”
(see [11]). Moreover, the utility function U only appears in the terminal condition which
is not very handy. In that sense this is exactly the same situation as the Hamilton-Jacobi-
Bellman equation where U only appears as a terminal condition but not in the equation
itself.

In this paper we propose a new approach to solving the optimization problem (1.1) for
a larger class of utility function and characterize the optimal strategy π∗ in terms of a
fully-coupled FBSDE-system. The optimal strategy is then a function of the current wealth
and of the solution to the backward component of the system. In addition, the driver of
the backward part is given in terms of the utility function and its derivatives. This adds
enough structure to the optimization problem to deal with fairly general utilities functions,
at least when the market is complete. We also derive the FBSDE system for the power
case with general (non-hedgeable) liabilities; to the best of our knowledge we are the first
to characterize optimal strategies for power utilities with general liabilities. Finally, we link
our approach to the well established approaches using convex dual theory and stochastic
maximum principles.

The remainder of this paper is organized as follows. In Section 2 we introduce our financial
market model. In Section 3 we first derive a verification theorem in terms of a FBSDE
for utilities defined on the real line along with a converse result, that is, we show that a
solution to the FBSDE allows to construct the optimal strategy. Section 4 is devoted to
the same question but for utilities defined on the positive half line. In Section 5 we relate
our approach to the stochastic maximum principle obtained by Peng [22] and the standard
duality approach. We use the duality-BSDE link to show that the FBSDE associated with
the problem of maximizing power utility with general positive endowment has a solution.

2 Preliminaries

We consider a financial market which consists of one bond S0 with interest rate zero and of
d ≥ 1 stocks given by

dS̃it := S̃itdW
i
t + S̃itθ

i
tdt, i ∈ {1, . . . , d}

where W is a standard Brownian motion on Rd defined on a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P), (Ft)t∈[0,T ] is the filtration generated by W , and θ := (θ1, . . . , θd) is

a predictable bounded process with values in Rd. Since we assume the process θ to be
bounded, Girsanov’s theorem implies that the set of equivalent local martingale measures
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(i.e. probability measures under which S̃ is a local martingale) is not empty, and thus
according to the classical literature (see e.g. [7]), arbitrage opportunities are excluded in
our model. For simplicity throughout we write

dSit :=
dS̃it
S̃it

.

We denote by α ·β the inner product in Rd of vectors α and β and by | · | the usual associated
L2-norm on Rd. In all the paper C will denote a generic constant which can differ from line
to line. We also define the following spaces:

S2(Rd) :=

{
β : Ω× [0, T ]→ Rd, predictable, E[ sup

t∈[0,T ]
|βt|2] <∞

}
,

H2(Rd) :=

{
β : Ω× [0, T ]→ Rd, predictable, E

[∫ T

0
|βt|2dt

]
<∞

}
.

Since the market price of risk θ is assumed to be bounded, the stochastic process

E(−θ ·W )t := exp

(
−
∫ t

0
θsdWs −

1

2

∫ t

0
|θs|2ds

)
has finite moments of order p for any p > 0. We assume d1 + d2 = d and that the
agent can invest in the assets S̃1, . . . , S̃d1 while the stocks S̃d1+1, . . . , S̃d2 cannot be in-
vested into. Denote SH := (S1, . . . , Sd1 , 0 . . . , 0), WH := (W 1, . . . ,W d1 , 0 . . . , 0), WO :=
(0, . . . , 0,W d1+1, . . . ,W d2), and θH := (θ1, . . . , θd1 , 0 . . . , 0) (the notation H refers to “hedge-
able” and O to “orthogonal”). We define the set Πx of admissible strategies with initial
capital x > 0 as

Πx :=

{
π : Ω× [0, T ]→ Rd1 , E

[∫ T

0
|πt|2dt

]
<∞, π is self-financing

}
(2.1)

where for π in Πx the associated wealth process Xπ is defined as

Xπ
t := x+

∫ t

0
πrdS

H
r = x+

d1∑
i=1

∫ t

0
πirdS

i
r, t ∈ [0, T ].

Every π in Πx is extended to an Rd-valued process by

π̃ := (π1, . . . , πd1 , 0, . . . , 0).

In the following, we will always write π in place of π̃, i.e. π is an Rd-valued process where
the last d2 components are zero. Moreover, we consider a utility function U : I → R where
I is an interval of R such that U is strictly increasing and strictly concave. We seek for a
strategy π∗ in Πx satisfying E[U(Xπ∗

T +H)] <∞ such that

π∗ = argmaxπ∈Πx, E[|U(Xπ
T+H)|]<∞ {E[U(Xπ

T +H)]} (2.2)

where H is a random variable in L2(Ω,FT ,P) such that the expression above makes sense.
We concretize on sufficient conditions in the subsequent sections.
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3 Utilities defined on the real line

In this section we consider a utility function U : R→ R defined on the whole real line. We
assume that U is strictly increasing and strictly concave and that the agent is endowed with
a claim H ∈ L2(Ω,FT ,P). We introduce the following conditions.

(H1) U : R→ R is three times differentiable

(H2) We say that condition (H2) holds for an element π∗ in Πx, if E[|U ′(Xπ∗
T +H)|2] <∞

and if for every bounded predictable process h : [0, T ]→ R, the family of random variables(∫ T

0
hrdS

H
r

∫ 1

0
U ′
(
Xπ∗
T +H + εr

∫ T

0
hrdS

H
r

)
dr

)
ε∈(0,1)

is uniformly integrable.

Before presenting the first main result of this section, we prove that condition (H2) is
satisfied for every strategy π∗ such that E[|U ′(Xπ∗

T +H)|] <∞ when one has an exponential
growth condition on the marginal utility of the form:

U ′(x+ y) ≤ C
(
1 + U ′(x)

)
(1 + exp(αy)) for some α ∈ R.

Indeed, let G :=
∫ T

0 hrdS
H
r and d > 0. We will show that the quantity

q(d) := sup
ε∈(0,1)

E
[∣∣∣∣G∫ 1

0
U ′(Xπ∗

T +H + εrG)dr

∣∣∣∣1|G ∫ 1
0 U
′(Xπ∗

T +H+εrG)dr|>d

]
vanishes when d goes to infinity. For simplicity we write δε,d := 1|G ∫ 1

0 U
′(Xπ∗

T +H+εrG)dr|>d.
By the Cauchy-Schwarz inequality

q(d) ≤ sup
ε∈(0,1)

E
[
(1 + U ′(Xπ∗

T +H))

∣∣∣∣G(1 +

∫ 1

0
exp(αεrG))dr

∣∣∣∣ δε,d]

≤ CE
[
|U ′(Xπ∗

T +H)|2
]1/2

sup
ε∈(0,1)

E

[∣∣∣∣G∫ 1

0
exp(αεrG)dr

∣∣∣∣2 δε,d
]1/2

.

Since E
[
|U ′(Xπ∗

T +H)|2
]

is assumed to be finite we deduce from the inequality

exp(αζx) ≤ 1 + exp(αx) for all x ∈ R, 0 < ζ < 1

that

q(d) ≤ C sup
ε∈(0,1)

E
[
|G(2 + exp(αG))|2 δε,d

]1/2
.

Applying successively the Cauchy-Schwarz inequality and the Markov inequality, it holds
that

q(d) ≤ CE
[
|G(2 + exp(αG))|4

]1/4
sup
ε∈(0,1)

E[δε,d]
1/4
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≤ CE
[
|G(2 + exp(αG))|4

]1/4
d−1/4 sup

ε∈(0,1)
E
[
|G|
∫ 1

0
U ′(Xπ∗

T +H + εrG)dr

]1/4

≤ CE
[
|G(2 + exp(αG))|4

]1/4
d−1/4 E

[
|G(2 + exp(αG))|2

]1/8
.

Let p ≥ 2. Since h and θ are bounded it is clear that E
[
|G|2p

]
<∞ and

E [|G(2 + exp(αG))|p]

≤ E
[
|G|2p

]1/2 E [|2 + exp(αG)|2p
]1/2

≤ C
(

2 + E
[
|exp(αG)|2p

])1/2

= C

(
2 + E

[
exp

(∫ T

0
2pαhrdW

H
r −

1

2

∫ T

0
|2pαhr|2dr

)
exp

(
1

2

∫ T

0
|2pαhr|2 + 2pαhr · θrdr

)])1/2

≤ C.

Hence limd→∞ q(d) = 0 which proves the assertion.

3.1 Characterization and verification: incomplete markets

We are now ready to state and prove the first main result of this paper: a verification
theorem for optimal trading strategies.

Theorem 3.1. Assume that (H1) holds. Let π∗ ∈ Πx be an optimal solution to the problem
(2.2) which satisfies assumption (H2). Then there exists a predictable process Y with YT = H
such that U ′(Xπ∗ + Y ) is a martingale in L2(Ω,FT ,P) and

π∗
i

t = −θit
U ′(Xπ∗

t + Yt)

U ′′(Xπ∗
t + Yt)

− Zit , t ∈ [0, T ], i = 1, . . . , d1

where Zt := d〈Y,W 〉t
dt :=

(
d〈Y,W i〉t

dt , . . . , d〈Y,W
d〉t

dt

)
.

Proof. We first prove the existence of Y . Since E[|U ′(Xπ∗
T +H)|2] <∞, the stochastic process

α defined as αt := E[U ′(Xπ∗
T +H)|Ft], for t in [0, T ] is a square integrable martingale. Define

Yt := (U ′)−1(αt)−Xπ∗
t . Then Y is (Ft)t∈[0,T ]-predictable. Now Itô’s formula yields

Yt +Xπ∗
t = YT +Xπ∗

T −
∫ T

t

1

U ′′(U ′−1(αs))
dαs +

1

2

∫ T

t

U (3)(U ′−1(αs))

(U ′′(U ′−1(αs)))3
d〈α, α〉s. (3.1)

By definition, α is the unique solution of the zero driver BSDE

αt = U ′(Xπ∗
T + YT )−

∫ T

t
βsdWs, t ∈ [0, T ], (3.2)
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where β is a square integrable predictable process with valued in Rd. Plugging (3.2) into
(3.1) yields

Yt +Xπ∗
t =Xπ∗

T +H −
∫ T

t

1

U ′′(Xπ∗
s + Ys))

βsdWs +
1

2

∫ T

t

U (3)(Xπ∗
s + Ys)

(U ′′(Xπ∗
s + Ys))3

|βs|2ds.

Setting Z̃ := 1
U ′′(Xπ∗+Y ))

β, we have

Yt +Xπ∗
t =Xπ∗

T +H −
∫ T

t
Z̃sdWs +

1

2

∫ T

t

U (3)

U ′′
(Xπ∗

s + Ys)|Z̃s|2ds.

Now by putting Zi := Z̃i − π∗i, i = 1, . . . , d, we have shown that Y is a solution to the
BSDE

Yt = H −
∫ T

t
ZsdWs −

∫ T

t
f(s,Xπ∗

s , Ys, Zs)ds, t ∈ [0, T ], (3.3)

where f is given by

f(s,Xπ∗
s , Ys, Zs) := −1

2

U (3)

U ′′
(Xπ∗

s + Ys)|π∗s + Zs|2 − π∗s · θs. (3.4)

Finally, by construction we have U ′(Xπ∗
t + Yt) = αt, thus it is a martingale.

Now we deal with the characterization of the optimal strategy. To this end, let h :
[0, T ] → Rd1 be a bounded predictable process. We extend h into Rd by setting h̃ :=
(h1, . . . , hd1 , 0, . . . , 0) and use the convention that h̃ is again denoted by h. Thus for every
ε in (0, 1) the perturbed strategy π∗ + εh belongs to Πx. Since π∗ is optimal it is clear that
for every such h it holds that

l(h) := lim
ε→0

1

ε
E
[
U(x+

∫ T

0
(π∗r + εhr)dS

H
r + YT )− U(x+

∫ T

0
π∗rdS

H
r + YT )

]
≤ 0. (3.5)

Moreover we have

1

ε

(
U(x+

∫ T

0
(π∗r + εhr)dS

H
r + YT )− U(x+

∫ T

0
π∗rdS

H
r + YT )

)
=

∫ T

0
hrdS

H
r

∫ 1

0
U ′
(
Xπ∗
T + YT + θε

∫ T

0
hrdS

H
r

)
dθ.

Now using (H2), Lebesgue’s dominated convergence theorem implies that (3.5) can be rewrit-
ten as

E
[
U ′(Xπ∗

T + YT )

∫ T

0
hrdS

H
r

]
≤ 0 (3.6)

for every bounded predictable process h. Applying integration by parts to U ′(Xπ∗
s +Ys)s∈[0,T ]

and
(∫ s

0 hrdS
H
r

)
s∈[0,T ]

, we get

U ′(Xπ∗
T + YT )

∫ T

0
hrdS

H
r
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= U ′(x+ Y0)× 0 +

∫ T

0
U ′(Xπ∗

s + Ys)hsdS
H
s

+

∫ T

0

∫ s

0
hrdS

H
r U ′′(Xπ∗

s + Ys)
[
(π∗s + Zs)dW

H
s + (π∗s · θs + f(s,Xπ∗

s , Ys, Zs))ds
]

+
1

2

∫ T

0

∫ s

0
hrdS

H
r U (3)(Xπ∗

s + Ys)|π∗s + Zs|2ds

+

∫ T

0
U ′′(Xπ∗

s + Ys)hs · (π∗s + Zs)ds.

By definition of the driver f , the previous expression reduces to

U ′(Xπ∗
T + YT )

∫ T

0
hrdS

H
r

=

∫ T

0

(
U ′(Xπ∗

s + Ys)θs + U ′′(Xπ∗
s + Ys)(π

∗
s + Zs)

)
· hsds

+

∫ T

0

∫ s

0
hrdS

H
r U ′′(Xπ∗

s + Ys)(π
∗
s + Zs)dW

H
s +

∫ T

0
U ′(Xπ∗

s + Ys)hsdW
H
s . (3.7)

The next step would be to apply the conditional expectations in (3.7), however the two
terms on the second line of the right hand side are a priori only local martingales. We
start by showing that the first one is a uniformly integrable martingale. Indeed, from the
computations which have led to (3.3) we have that

U ′′(Xπ∗ + Y )(π∗ + Z) = β,

where we recall that β is the square integrable process appearing in (3.2). Using the BDG
inequality we get

E

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0

∫ r

0
hudS

H
u U ′′(Xπ∗

r + Yr)(π
∗
r + Zr)dW

H
r

∣∣∣∣
]

≤ CE

∣∣∣∣∣
∫ T

0

∣∣∣∣∫ s

0
hrdS

H
r

∣∣∣∣2 |βs|2ds
∣∣∣∣∣
1/2


≤ CE

( sup
s∈[0,T ]

∣∣∣∣∫ s

0
hrdS

H
r

∣∣∣∣2
)1/2(∫ T

0
|βs|2ds

)1/2
 .

Young’s inequality furthermore yields

E

( sup
s∈[0,T ]

∣∣∣∣∫ s

0
hrdS

H
r

∣∣∣∣2
)1/2(∫ T

0
|βs|2ds

)1/2


≤ CE

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0
hrdS

H
r

∣∣∣∣2
]

+ CE
[∫ T

0
|βs|2ds

]
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≤ C

(
1 + E

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0
hrdW

H
r

∣∣∣∣2
])

where we have used that h and θ are bounded. Applying once again the BDG inequality,
we obtain

E

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0
hrdW

H
r

∣∣∣∣2
]
≤ 4E

[∫ T

0
|hr|2dr

]
<∞.

Putting together the previous steps, we have that

E

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0

∫ r

0
hudS

H
u U ′′(Xπ∗

r + Yr)(π
∗
r + Zr)dW

H
r

∣∣∣∣
]
<∞,

thus we get

E
[∫ T

0

∫ s

0
hrdS

H
r U ′′(Xπ∗

s + Ys)(π
∗
s + Zs)dW

H
s

]
= 0.

Note that
(∫ t

0 U
′(Xπ∗

s + Ys)hsdW
H
s

)
t∈[0,T ]

is a square integrable martingale. Indeed

U ′(Xπ∗ + Y ) = α is a square integrable martingale and thus

E
[∫ T

0

∣∣∣U ′(Xπ∗
s + Ys)hs

∣∣∣2 ds] <∞.
Similarly,

E
[∣∣∣∣U ′(Xπ∗

T + YT )

∫ T

t
hrdS

H
r

∣∣∣∣] <∞.
Taking expectation in (3.7) we obtain for every n ≥ 1 that

E
[
U ′(Xπ∗

T + YT )

∫ T

0
hrdS

H
r

]
= E

[∫ T

0

(
U ′(Xπ∗

s + Ys)θs + U ′′(Xπ∗
s + Ys)(π

∗
s + Zs)

)
· hsds

]
, (3.8)

which in conjunction with (3.6) leads to

E
[∫ T

0

(
U ′(Xπ∗

s + Ys)θs + U ′′(Xπ∗
s + Ys)(π

∗
s + Zs)

)
· hsds

]
≤ 0

for every bounded predictable process h. Replacing h by −h, we get

E
[∫ T

0

(
U ′(Xπ∗

s + Ys)θs + U ′′(Xπ∗
s + Ys)(π

∗
s + Zs)

)
· hsds

]
= 0. (3.9)

Now fix i in {1, . . . , d1}. Let Ais := U ′(Xπ∗
s + Ys)θs + U ′′(Xπ∗

s + Ys)(π
∗i
s + Zis) and hs :=

(0, . . . , 0,1Ais>0, 0, . . . , 0) where the non-vanishing component is the i-th component. From
(3.9) we get that

E
[∫ T

0
1Ais>0[U ′(Xπ∗

s + Ys)θ
i
s + U ′′(Xπ∗

s + Ys)(π
∗i
s + Zis)]ds

]
= 0.
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Hence, Ai ≤ 0, dP ⊗ dt − a.e.. Similarly by choosing hs = (0, . . . , 0,1Ais<0, 0, . . . , 0) we
deduce that

U ′(Xπ∗ + Y )θi + U ′′(Xπ∗ + Yt)(π
∗i
t + Zit) = 0, dP⊗ dt− a.e.

This concludes the proof since i ∈ {1, . . . , d1} is arbitrary. 2

The verification theorem above can also be expressed in terms of a fully-coupled Forward-
Backward system.

Theorem 3.2. Under the assumptions of Theorem 3.1, the optimal strategy π∗ for (2.2) is
given by

π∗
i

t = −θit
U ′(Xt + Yt)

U ′′(Xt + Yt)
− Zit , t ∈ [0, T ], i = 1, . . . , d1,

where (X,Y, Z) ∈ R× R× Rd is a triple of adapted processes which solves the FBSDE

Xt = x−
∫ t

0

(
θs

U ′(Xs+Ys)
U ′′(Xs+Ys)

+ Zs

)
dWHs −

∫ t
0

(
θs

U ′(Xs+Ys)
U ′′(Xs+Ys)

+ Zs

)
· θHs ds

Yt = H −
∫ T
t ZsdWs −

∫ T
t

[
−1

2 |θ
H
s |2

U(3)(Xs+Ys)|U
′
(Xs+Ys)|2

(U ′′(Xs+Ys))3

+|θHs |2
U
′
(Xs+Ys)

U ′′(Xs+Ys)
+ Zs · θHs − 1

2 |Z
O
s |2U

(3)

U ′′ (Xs + Ys)

]
ds,

(3.10)

with the notation Z = (Z1, . . . , Zd1︸ ︷︷ ︸
=:ZH

, Zd1+1, . . . , Zd︸ ︷︷ ︸
=:ZO

). In addition, the optimal wealth process

Xπ∗ is equal to X.

Proof. From Theorem 3.1 we know that the optimal strategy is given by

π∗
i

t = −θit
U ′(Xπ∗

t + Yt)

U ′′(Xπ∗
t + Yt)

− Zit , t ∈ [0, T ], i ∈ {1, . . . , d1}

where (Y,Z) is a solution to the BSDE (3.3) with driver f like in (3.4). Now plugging the
expression of π∗ in relation (3.4) yields

Xπ∗
t = x−

∫ t
0

(
θs

U ′(Xπ∗
s +Ys)

U ′′(Xπ∗
s +Ys)

+ Zs

)
dWHs −

∫ t
0

(
θs

U ′(Xπ∗
s +Ys)

U ′′(Xπ∗
s +Ys)

+ Zs

)
· θHs ds

Yt = H −
∫ T
t ZsdWs −

∫ T
t

[
−1

2 |θ
H
s |2

U(3)(Xπ∗
s +Ys)|U

′
(Xπ∗

s +Ys)|2
(U ′′(Xπ∗

s +Ys))3

+|θHs |2
U
′
(Xπ∗

s +Ys)

U ′′(Xπ∗
s +Ys)

+ Zs · θHs − 1
2 |Z
O
s |2U

(3)

U ′′ (Xπ∗
s + Ys)

]
ds.

(3.11)

Recalling that Xπ := x +
∫ ·

0 πs(dW
H
s + θHs ds) for any admissible strategy π, we get the

forward part of the FBSDE. 2

Remark 3.3. Using Itô’s formula and the FBSDE (3.10), we have that

U ′(X + Y ) = U ′(x+ Y0) +

∫ ·
0
−θHs U ′(Xs + Ys)dW

H
s +

∫ ·
0
U ′′(Xs + Ys)Z

O
s dW

O
s .
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Remark 3.4. Note that using the system (3.10), for α := U ′(Xπ∗+Y ), integration by parts
yields for every t in [0, T ]

U ′(Xπ∗
t + Yt)(X

π
t −Xπ∗

t )

=

∫ t

0
(Xπ

s −Xπ∗
s )dαs +

∫ t

0
αs(πs − π∗s)dWHs

+

∫ t

0

(
αsθ
H
s + U ′′(Xπ∗

s + Ys)(Z
H
s + π∗s)

)
· (πs − π∗s)ds

=

∫ t

0
(Xπ

s −Xπ∗
s )dαs +

∫ t

0
αs(πs − π∗s)dWHs

showing that U ′(Xπ∗ + Y )(Xπ −Xπ∗) is a local martingale for every π in Πx.

The converse implication of Theorems 3.1 and 3.2 constitutes the second main result.

Theorem 3.5. Let (H1) be satisfied for U . Let (X,Y, Z) be a triple of predictable processes
which solves the FBSDE (3.10) satisfying: Z is in H2(Rd), E[|U(XT+H)|] <∞, E[|U ′(XT+
H)|2] < ∞, and U ′(X + Y ) is a positive martingale. Moreover, assume that there exists a
constant κ > 0 such that

− U
′(x)

U ′′(x)
≤ κ

for all x ∈ R. Then

π∗
i

t := − U
′(Xt + Yt)

U ′′(Xt + Yt)
θit − Zit , t ∈ [0, T ], i ∈ {1, . . . , d1},

is an optimal solution of the optimization problem (2.2).

Proof. Note first that by definition of π∗, X = Xπ∗ . Since the risk tolerance − U ′(x)
U ′′(x) is

bounded and since Z is in H2(Rd), we immediately get E
[∫ T

0 |π
∗
s |2ds

]
<∞, thus, π ∈ Πx. By

assumption, U ′(X + Y ) is a positive continuous martingale, hence there exists a continuous
local martingale L such that U ′(X + Y ) = E(L). And we know from Remark 3.3 that

L = log(U ′(x+ Y0)) +

∫ ·
0
−θHs dWHs +

∫ ·
0

U ′′(Xs + Ys)

U ′(Xs + Ys)
ZOs dW

O
s .

Define the probability measure Q ∼ P by

dQ
dP

:=
U ′(XT +H)

E[U ′(XT +H)]
.

Girsanov’s theorem implies that W̃ := W̃H+W̃O = (W 1 +θ1 ·dt, . . . ,W d1 +θd1 ·dt,W d1+1−
U ′′(X+Y )
U ′(X+Y ) Z

d1+1 ·dt, . . . ,W d2−U ′′(X+Y )
U ′(X+Y ) Z

d2 ·dt) is a standard Brownian motion under Q. Thus

Xπ is a local martingale under Q for every π in Πx. Now fix π in Πx with E[|U(Xπ
T +H)|] <

∞. Let (τn)n be a localizing sequence for the local martingale Xπ − Xπ∗ . Since U is a
concave, we have

U(Xπ
T +H)− U(Xπ∗

T +H) ≤ U ′(Xπ∗
T +H)(Xπ

T −Xπ∗
T ). (3.12)

11



Taking expectations in (3.12) we get

E[U(Xπ
T +H)− U(Xπ∗

T +H)]

E[U ′(XT +H)]
≤ EQ[Xπ

T −Xπ∗
T ]

= EQ

[
lim
n→∞

∫ T∧τn

0
(πs − π∗s)dW̃Hs

]
= lim

n→∞
EQ

[∫ T∧τn

0
(πs − π∗s)dW̃Hs

]
= 0,

which eventually follows as a consequence of Lebesgue’s dominated convergence theorem.
To this end we prove that

EQ

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
(πs − π∗s)dW̃Hs

∣∣∣∣
]
<∞.

Indeed the BDG inequality and the Cauchy-Schwarz inequality imply that

EQ

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
(πs − π∗s)dW̃Hs

∣∣∣∣
]

≤ CEQ

(∫ T

0
|πs − π∗s |2ds

) 1
2


= CE

 U ′(XT +H)

E[U ′(XT +H)]

(∫ T

0
|πs − π∗s |2ds

) 1
2


≤ CE

[∣∣∣∣ U ′(XT +H)

E[U ′(XT +H)]

∣∣∣∣2
] 1

2

E
[∫ T

0
|πs − π∗s |2ds

] 1
2

<∞.

2

We have proved in Theorem 3.2 that if (2.2) exhibits an optimal strategy π∗ ∈ Πx, then
there exists an adapted solution to the FBSDE (3.10). As a byproduct we showed the
optimization procedure singles out a “pricing measure” under which the asset prices and
marginal utilities are martingales. In that sense, the process Y captures the impact of future
trading gains on the agent’s marginal utilities. If we assume additional conditions on the
utility function U , we get the following regularity properties of the solution (X,Y, Z).

Proposition 3.6. Assume that for H ∈ L∞(Ω,FT ,P) and that the FBSDE (3.10) admits
an adapted solution (X,Y, Z) such that Y is bounded. Let

ϕ1(x) :=
U ′(x)

U ′′(x)
, ϕ2(x) :=

U (3)(x)|U ′(x)|2

(U ′′(x))3
, ϕ3(x) :=

U (3)(x)

U ′′(x)
, x ∈ R.

Assume that U is such that ϕi, i = 1, 2, 3 are bounded and Lipschitz continuous functions.
Then (X,Y, Z) is the unique solution of (3.10) in S2(R) × S∞(R) × H2(Rd). In addition,
Z ·W is a BMO-martingale.
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Proof. Let (X,Y, Z) be a solution to (3.10) such that Y is bounded. Then, using the
usual theory on quadratic growth BSDEs (see for example [20, Theorem 2.5 and Lemma
3.1]) we have only from the backward part of the FBSDE that Z is in H2(Rd) and that
Z ·W is a BMO-martingale. In addition there exists a unique solution to the backward
component in this space for a given process X. Now the previous regularity properties
of the processes (Y,Z) imply that X is in S2(R). We turn to the uniqueness of the X
process. Assume that there exists another solution (X ′, Y ′, Z ′) of (3.10). Hence, Theorem

3.5 implies that π∗
′

:= − U ′(X′+Y ′)
U ′′(X′+Y ′)θ

i + Z ′i, i ∈ {1, . . . , d1} is an optimal solution to our

original problem (2.2) and X ′ is the optimal wealth process. However, by strict concavity
of U and by convexity of Πx the optimal strategy has to be unique. So X and X ′ are
the wealth processes of the same optimal strategy, thus, they have to coincide (for instance
XT = X ′T , P− a.s.) which implies (Y ′, Z ′) = (Y,Z). 2

In the complete case we are able to construct the solution (X,Y, Z). This is the subject
of the following Section.

3.2 Characterization and verification: complete markets

In this section we consider the benchmark case of a complete market. We assume d = 1 for
simplicity. H denotes a square integrable random variable measurable with respect to the
Brownian motion W .

In the complete case we can give sufficient conditions for the existence of a solution to
the system (3.10). Our construction relies on the following remark.

Remark 3.7. Using (3.10) the martingale U ′(Xπ∗+Y ) becomes more explicit, because Itô’s
formula applied to U ′(Xπ∗ + Y ) yields

U ′(Xπ∗
t + Yt) = U ′(x+ Y0) +

∫ t

0
U ′′(Xπ∗

s + Ys)(π
∗
s + Zs)dWs

= U ′(x+ Y0)−
∫ t

0
U ′(Xπ∗

s + Ys)θsdWs,

where we have replaced π∗ by its characterization in terms of (X,Y, Z) from Theorem 3.1.
Hence,

U ′(Xπ∗
t + Yt) = U ′(x+ Y0)E(−θ ·W )t, t ∈ [0, T ]. (3.13)

This remark will allow us to prove existence of a solution to the system (3.10) under
a condition on the risk aversion coefficient −U ′′

U ′ of U . To this end, we give a sufficient
condition on U for the system (3.10) to exhibit a solution. We have the following remark.

Remark 3.8. If (X,Y, Z) is an adapted solution to the system (3.10), then P := X + Y is
solution of the forward SDE

Pt = x+ Y0 −
∫ t

0
θs
U ′(Ps)

U ′′(Ps)
dWs −

∫ t

0

1

2
|θs|2

U (3)(Ps)|U
′
(Ps)|2

(U ′′(Ps))3
ds, t ∈ [0, T ]. (3.14)

In addition, if (X,Y, Z) is in S2(R) × S2(R) × H2(Rd), then P ∈ S2(R). Thus a necessary
condition for the FBSDE (3.10) to have a solution is that the SDE (3.14) admits a solution.
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We are now going to state an existence result for the FBSDE system (3.10) that char-

acterizes optimal trading strategies in terms of the functions ϕ1(x) = U ′(x)
U ′′(x) and ϕ2(x) =

U(3)(x)|U ′ (x)|2
(U ′′(x))3

.

Proposition 3.9. Assume that the functions ϕ1 and ϕ2 are bounded and Lipschitz contin-
uous. Then the FBSDE

Xt = x−
∫ t

0

(
θs

U ′(Xs+Ys)
U ′′(Xs+Ys)

+ Zs

)
dWs −

∫ t
0

(
θs

U ′(Xs+Ys)
U ′′(Xs+Ys)

+ Zs

)
· θsds

Yt = H −
∫ T
t ZsdWs −

∫ T
t

(
−1

2 |θs|
2U

(3)(Xs+Ys)|U
′
(Xs+Ys)|2

(U ′′(Xs+Ys))3
+ |θs|2 U

′
(Xs+Ys)

U ′′(Xs+Ys)

+ Zs · θs) ds

(3.15)

admits a solution (X,Y, Z) in S2(R)× S2(R)×H2(Rd) such that E[|U(XT +H)|] <∞ and
E[|U ′(XT +H)|2] <∞.

Proof. Let m in R. Consider the following SDE

Pmt = x+m−
∫ t

0
θsϕ1(Pms )dWs −

∫ t

0

1

2
|θs|2ϕ2(Pms )ds, t ∈ [0, T ].

Since this SDE has Lipschitz coefficients the existence and uniqueness of a solution in S2(R)
is guaranteed (see for example [23, V.3. Lemma 1]). Next, consider the BSDE

Y m
t = H −

∫ T

t
Zms dWs −

∫ T

t

(
−1

2
|θs|2ϕ2(Pms ) + |θs|2ϕ1(Pms ) + Zms · θs

)
ds. (3.16)

We denote its driver by f(s, p, z) := −1
2 |θs|

2ϕ2(p) + |θs|2ϕ1(p) + z · θs. Using the regularity
properties of ϕ1 and ϕ2 and the fact that θ is bounded, there exists a constant K > 0 such
that

|f(s, p, z)| ≤ K(1 + |z|)

and the constant K depends only on α1, α2 and on ‖θ‖∞, thus in particular K does not
depend on m. Since the driver f is Lipschitz in z, there exists a unique pair of adapted
processes (Y m, Zm) in S2(R)×H2(Rd) which solves (3.16). In addition, |Y m

t | ≤ K holds P-
a.s. for all t in [0, T ]. We recall that this constant K does not depend on m, thus |Y m

0 | ≤ K.
Using usual arguments we can show that the map m 7→ Y m

0 is continuous. Even if this
procedure is somehow standard, we reprove this fact here to make the paper self-contained.
Fix m,m′ in R with m 6= m′. We set δYt := Y m

t − Y m′
t , δZt := Zmt − Zm

′
t . By (3.16) it

follows that (δY, δZ) is solution to the Lipschitz BSDE:

δYt = 0−
∫ T

t
δZsdWs −

∫ T

t
(θsδZs + h(s))ds

with h(s) := 1
2 |θs|

2(ϕ2(Pms )− ϕ2(Pm
′

s )) + |θs|2(ϕ1(Pms )− ϕ1(Pm
′

s )). Using classical a priori
estimates for Lipschitz growth BSDEs (see for example [16, Lemma 2.2]) we get that:

|δY0|2 ≤ E[ sup
t∈[0,T ]

|δYt|2] ≤ CE
[∫ T

0
|h(s)|2ds

]
.
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The boundedness of θ and the Lipschitz assumption on ϕ1 and on ϕ2 immediately imply
that

E
[∫ T

0
|h(s)|2ds

]
≤ CE

[∫ T

0
|Pms − Pm

′
s |2ds

]
≤ CE

[
sup
t∈[0,T ]

|Pmt − Pm
′

t |2
]
.

Combining the inequalities above with classical estimates on Lipschitz SDEs (see for example
[23, Estimate (***) in the proof of Theorem V.7.37]) we finally get that

|δY0|2 ≤ C|m−m′|2

which concludes the proof by letting m′ tending to m. This conjunction with m 7→ Y m
0

being bounded yields that there exists an element m∗ ∈ R such that Y m∗
0 = m∗. Setting

Xm∗
t := Pm

∗
t − Y m∗

t , t ∈ [0, T ],

it is straightforward to check that (Xm∗ , Y m∗ , Zm
∗
) satisfies (3.15). Moreover, we have

Xm∗ ∈ S2(R) since Y m∗ is bounded and since Pm
∗ ∈ S2(R). Next, note that E[|U ′(XT +

YT )|2] < ∞ since U ′(XT + YT ) = U ′(x + m)E(−θ ·W ). Now using the concavity of U , it
holds that

U(x) ≤ U ′(0)x+ U(0), −U(x) ≤ −U ′(x)x− U(0), ∀x ∈ R.

Consequently,

E[|U(XT +H)|] ≤ E[|U ′(0)| |XT +H|+ |U(0)|] + E[|U ′(XT +H)(XT +H)|+ |U(0)|] <∞.

2

4 Utility functions on the positive half-line

In this section we study utility functions U : R+ → R defined on the positive half-line.
Again, we assume that U is strictly increasing and strictly concave.

In the previous section we have derived a FBSDE characterization of the optimal strat-
egy for the utility maximization problem (2.2). The key observation was that there exists a
stochastic process Y such that U ′(Xπ∗ + Y ) is a martingale. However if U is only defined
on the positive half-line, it is not clear a priori that the expression U ′(Xπ∗ + Y ) makes
sense. We could generalize this approach by looking for a function Φ such that Φ(Xπ∗

t , Yt)
is a martingale and such that Φ(Xπ∗

T , YT ) = U ′(Xπ∗
T +H). When H = 0, it turns out that

a good choice of function Φ is Φ(x, y) := U ′(x) exp(y) since the system we obtain coincides
(up to a non-linear transformation) with the one obtained by Peng in [22, Section 4] using
the maximum principle. Note that the system of Peng is not formulated as a FBSDE but
rather as a system of equations: one for the wealth process whose dynamics depend on the
strategy and one adjoint equation, but a reformulation of this system of equation allows to
get a FBSDE (details are given in Section 5.1).
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In the previous section, π denoted the total amount of money invested into the stock (the
number of shares being π/S̃). Now we denote by πi the proportion of wealth invested in
the i-th stock Si. Once again we denote by Πx the set of admissible strategies with initial
capital x which is now defined by

Πx :=

{
π : Ω× [0, T ]→ Rd1 , π is predictable, E

[∫ T

0
|πs|2ds

]
<∞

}
. (4.1)

The associated wealth process is given by

Xπ
t := x+

∫ t

0
πsX

π
s dS

H
s , t ∈ [0, T ].

Again, we extend π to Rd via π̃ := (π1, . . . , πd1 , 0, . . . , 0) and make the convention that we
write π instead of π̃. Thus, we have

Xπ
t = xE

(∫ ·
0
πrdS

H
r

)
t

, t ∈ [0, T ].

From now one we consider a positive FT -measurable random variable H. We furthermore
need to impose the following assumptions on U .

(H3) U : R+ → R is three times differentiable, strictly increasing and concave

(H4) We say that assumption (H4) holds for an element π∗ in Πx, if

(i) E[|Xπ∗
T U ′(Xπ∗

T +H)|2] <∞;

(ii) the sequence of random variables(
1

ε
(Xπ∗+ερ

T −Xπ∗
T )

∫ 1

0
U ′(Xπ∗

T +H + r(Xπ∗+ερ
T −Xπ∗

T ))dr

)
ε∈(0,1)

is uniformly integrable;

(iii)

lim
ε→0

sup
t∈[0,T ]

E

[∣∣∣∣1ε (Xπ∗+ερ
t −Xπ∗

t )− ξt
∣∣∣∣2
]

= 0,

where dξt = π∗t ξtdS
H
t + ρtX

π∗
t dSHt , t ∈ [0, T ], and supt∈[0,T ] E[|ξt|2] <∞.

(H5) There exists a constant c > 0 such that −U
′(x)

xU ′′(x) ≤ c for all x ∈ R+.
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4.1 Characterization and verification: incomplete markets

Note that in condition (H4), if U ′(0) <∞ or if H ≥ a > 0 is satisfied, then (iii) implies (ii).

Theorem 4.1. Assume that (H3) holds and that H is a positive random variable belonging
to L2(Ω,FT ,P). Let π∗ be an optimal solution to (2.2) satisfying E[|U(Xπ∗

T + H)|] < ∞
and which satisfies assumption (H4). Then there exists a predictable process Y with YT =
log(U ′(Xπ∗

T +H))− log(U ′(Xπ∗
T )) such that Xπ∗U ′(Xπ∗) exp(Y ) is a martingale and

π∗
i

s = − U ′(Xπ∗
s )

Xπ∗
s U ′′(Xπ∗

s )
(Zis + θis), s ∈ [0, T ], i = 1, . . . , d1,

where Zt :=
(
d〈Y,W 1〉t

dt , . . . , d〈Y,W
d〉t

dt

)
.

Proof. As in the proof of Theorem 3.1, we prove the existence of Y such thatXπ∗U ′(Xπ∗) exp(Y )
is a martingale with YT = log(U ′(Xπ∗

T +H))− log(U ′(Xπ∗
T )). Consequently, U ′(Xπ∗

T +H) =
U ′(Xπ∗

T ) exp(YT ). By (H4), the process

αt := E[Xπ∗
T U ′(Xπ∗

T +H)|Ft]

is a square integrable martingale. In addition it is the unique solution to the BSDE

αt = Xπ∗
T U ′(Xπ∗

T +H)−
∫ T

t
βsdWs, t ∈ [0, T ],

where β is a square integrable predictable process with values in Rd. We set Y := log(α)−
log(U ′(Xπ∗))− log(Xπ∗). As in the proof of Theorem 3.1, Itô’s formula implies that

Yt = YT −
∫ T

t

[
βs
αs
− U ′′(Xπ∗

s )

U ′(Xπ∗
s )

Xπ∗
s π∗s − π∗s

]
dWs

−
∫ T

t

[
− 1

2

|βs|2

|αs|2
−
(
U ′′(Xπ∗

s )

U ′(Xπ∗
s )

Xπ∗
s π∗s + π∗s

)
· θHs

+
|Xπ∗

s π∗s |2

2

(∣∣∣∣U ′′(Xπ∗
s )

U ′(Xπ∗
s )

∣∣∣∣2 − U (3)(Xπ∗
s )

U ′(Xπ∗
s )

)
+
|π∗s |2

2

]
ds.

Setting

Zit =
βit
αt
− π∗t
U ′(Xπ∗

t )
(Xπ∗

t U ′′(Xπ∗
t ) + U ′(Xπ∗

t )), i = 1, . . . , d, (4.2)

we get that

Yt = YT −
∫ T

t
ZsdWs −

∫ T

t

[
− 1

2

U (3)(Xπ∗
s )

U ′(Xπ∗
s )
|Xπ∗

s π∗s |2 − (ZHs + θHs ) ·
(
U ′′(Xπ∗

s )

U ′(Xπ∗
s )

Xπ∗
s π∗s + π∗s

)
−U

′′(Xπ∗
s )

U ′(Xπ∗
s )

Xπ∗
s |π∗s |2 −

1

2
|Zs|2

]
ds, t ∈ [0, T ].

We now derive the characterization of π∗ in terms of U ′ and Y and Z. We employ an
argument put forth in [22] and then substitute the Hamiltonian by a BSDE. Fix π ∈ Πx.
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Since the latter is a convex set, for ρ := π − π∗, the π∗ + ερ is an admissible strategy for
every ε ∈ (0, 1). We have

1

ε
(U(Xπ∗+ερ

T +H)− U(Xπ∗
T +H)) =

1

ε
(Xπ∗+ερ

T −Xπ∗
T )

∫ 1

0
U ′(Xπ∗

T +H + r(Xπ∗+ερ
T −Xπ∗

T ))dr.

Since π∗ is optimal we find

E
[

1

ε
(Xπ∗+ερ

T −Xπ∗
T )

∫ 1

0
U ′(Xπ∗

T +H + r(Xπ∗+ερ
T −Xπ∗

T ))dr

]
≤ 0, ∀ε > 0. (4.3)

Now let ξ be defined as

dξt = (π∗t ξt + ρtX
π∗
t )dSHt , t ∈ [0, T ].

By (H4), we can apply Lebesgue’s dominated convergence theorem in inequality (4.3) which,
possibly passing to a subsequence, yields

E[ξTU
′(Xπ∗

T +H)] = lim
ε→0

E
[

1

ε
(Xπ∗+ερ

T −Xπ∗
T )

∫ 1

0
U ′(Xπ∗

T +H + r(Xπ∗+ερ
T −Xπ∗

T ))dr

]
.

Combined with (4.3), it leads to

E[ξT (Xπ∗
T )−1U ′(Xπ∗

T )Xπ∗
T exp(YT )] = E[ξTU

′(Xπ∗
T +H)] ≤ 0, ∀π ∈ Πx. (4.4)

We now restrict consideration to a particular class of processes π, that is, we choose ρ to be
a bounded predictable process and we define π := ρ+ π∗ which is admissible strategy since
it is square integrable. The integration by parts formula for continuous semimartingales
implies that

ξt(X
π∗
t )−1 =

∫ t

0
ρsdW

H
s +

∫ t

0
[ρs · θHs − ρs · π∗s ]ds, t ∈ [0, T ].

Another application of integration by parts to α = U ′(Xπ∗)Xπ∗ exp(Y ) and ξ(Xπ∗)−1 yields

ξTU
′(Xπ∗

T + YT ) = ξT (Xπ∗
T )−1U ′(Xπ∗

T )Xπ∗
T exp(YT )

=

∫ T

0
ξt(X

π∗
t )−1dαt +

∫ T

0
αtρtdW

H
t

+

∫ T

0
ρt exp(Yt)X

π∗
t · (U ′(Xπ∗

t )(ZHt + θHt ) + U ′′(Xπ∗
t )Xπ∗

t π∗t )dt. (4.5)

We now intend to take the expectation in the above relation. To this end, we need the
following moment estimates. Using that ρ is bounded, we have

E[ sup
t∈[0,T ]

|ξt(Xπ∗
t )−1|2] = E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
ρsdW

H
s +

∫ t

0
(ρs · θHs − ρs · π∗s)ds

∣∣∣∣2
]
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≤ CE

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
ρsdW

H
s

∣∣∣∣2
]

+ E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
|ρs · θHs − ρs · π∗s |ds

∣∣∣∣2
]

≤ C

(
E
[∫ T

0
|ρs|2ds

]
+ E

[∣∣∣∣∫ T

0
ρs · θHs ds

∣∣∣∣2
]

+ E

[∣∣∣∣∫ T

0
ρs · π∗sds

∣∣∣∣2
])

≤ C
(

1 + E
[∫ T

0
|π∗s |2ds

])
<∞, (4.6)

where we have used Doob’s inequality. Consequently, we get

E[|ξT (Xπ∗
T )−1αT |] ≤ E[|αT |2]1/2E[||ξT (Xπ∗

T )−1|2]1/2 <∞,

which follows from the Cauchy-Schwarz inequality. With ρ being bounded, we get for some
generic constant C > 0

E
[∫ T

0
|αsρs|2ds

]
≤ CE

[∫ T

0
|αs|2ds

]
<∞.

Hence
∫ ·

0 αtρtdW
H
t is a square integrable martingale. Next, let (τn)n≥1 be a localizing

sequence for the local martingale
∫ ·

0 ξt(X
π∗
t )−1dαt. Then we have∣∣∣∣∫ τn

0
ξt(X

π∗
t )−1dαt

∣∣∣∣ ≤ sup
t∈[0,T ]

∣∣∣∣∫ t

0
ξt(X

π∗
t )−1dαt

∣∣∣∣ .
To apply Lebesgue’s dominated convergence theorem and show that E

[∫ T
0 ξt(X

π∗
t )−1dαt

]
=

0, we need to prove E
[
supt∈[0,T ]

∣∣∣∫ t0 ξt(Xπ∗
t )−1dαt

∣∣∣] <∞:

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
ξt(X

π∗
t )−1dαt

∣∣∣∣
]
≤ CE

[∣∣∣∣∫ T

0
|ξt|2|(Xπ∗

t )−1|2d〈α〉t
∣∣∣∣1/2
]

≤ CE

[
sup
t∈[0,T ]

|ξt|2|(Xπ∗
t )−1|2

]1/2

E [〈α〉T ]1/2

<∞,

where we have used the estimate (4.6). Thus, by (4.5) it follows that

E
[∣∣∣∣∫ T

0
ρt exp(Yt)X

π∗
t · (U ′(Xπ∗

t )(ZHt + θHt ) + U ′′(Xπ∗
t )Xπ∗

t π∗t )dt

∣∣∣∣] <∞,
and from (4.4), it holds that for every π in Πx such that ρ is bounded, we get

E
[∫ T

0
ρt exp(Yt)X

π∗
t · (U ′(Xπ∗

t )(ZHt + θHt ) + U ′′(Xπ∗
t )Xπ∗

t π∗t )dt

]
≤ 0.

Substituting ρ with −ρ in the previous inequality, we obtain for every ρ

E
[∫ T

0
ρt exp(Yt)X

π∗
t · (U ′(Xπ∗

t )(ZHt + θHt ) + U ′′(Xπ∗
t )Xπ∗

t π∗t )dt

]
= 0. (4.7)
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Now let At := U ′(Xπ∗
t )(ZHt + θHt ) + U ′′(Xπ∗

t )Xπ∗
t π∗t and let ρt(ω) := 1At(ω)>0. Recall that

we have dP⊗ dt-a.s. exp(Yt)X
π∗
t > 0. Plugging ρ into (4.7) yields

At(ω) ≤ 0, dP⊗ dt− a.e.

Similarly choosing ρt(ω) := 1At(ω)<0, we find

At(ω) = 0, dP⊗ dt− a.e.

Thus, we achieve

π∗
i

t = − U ′(Xπ∗
t )

Xπ∗
t U ′′(Xπ∗

t )
(Zit + θit), ∀t ∈ [0, T ], i = 1, . . . , d1.

2

Let us now deal with converse implication.

Theorem 4.2. Assume (H3) and (H5). Let (X,Y, Z) be an adapted solution of the FBSDE


Xt = x−

∫ t
0
U ′(Xs)
U ′′(Xs)

(ZHs + θHs )dWHs −
∫ t

0
U ′(Xs)
U ′′(Xs)

(ZHs + θHs )θsds,

Yt = log
(
U ′(XT+H)
U ′(XT )

)
−
∫ T
t

[
(|ZHs + θHs |2)

(
1− 1

2
U(3)(Xs)U ′(Xs)
|U ′′(Xs)|2

)
− 1

2 |Zs|
2
]
ds

−
∫ T
t ZsdWs

(4.8)

such that E[|U(Xπ∗
T +H)|] <∞, Z is an element of H2(Rd) and the positive local martingale

XU ′(X) exp(Y ) is a true martingale.

π∗
i

t := − U ′(Xs)

XsU ′′(Xs)
(Zis + θis), s ∈ [0, T ], i = 1, . . . , d1

is an optimal solution to the optimization problem (2.2).

Proof. We first note that π∗ ∈ Πx since by the fact that Z is in H2(Rd), there is a constant
C > 0 such that

E
[∫ T

0
|π∗t |2dt

]
≤ C E

[∫ T

0
|ZHt + θHt |2dt

]
<∞.

Now let π be an element of Πx. Let D := U ′(X) exp(Y ). Applying Itô’s formula and
plugging in the expression of π∗, we find that

dDt = Dt(−θtdWHt + ZtdW
O
t ), D0 = U ′(x) exp(Y0),

hence,

Dt = U ′(x) exp(Y0)E
(
−
∫ ·

0
θsdW

H
s +

∫ ·
0
ZsdW

O
s

)
t

, t ∈ [0, T ], (4.9)

which is a positive local martingale. Now fix π in Πx. By definition of Xπ and of D, the
product formula implies that XπD satisfies

DXπ = xD0E((π − θ) ·WH + Z ·WO).
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Hence, XπD is a supermartingale and so E[DTX
π
T ] ≤ D0x. By assumption, Xπ∗D =

XU ′(X) exp(Y ) is a true martingale so E[DTX
π∗
T ] = D0x. Finally combining the facts

above, recalling that DT = U ′(Xπ∗
T +H) and using the concavity of U , we obtain

E[U(Xπ
T +H)− U(Xπ∗

T +H)] ≤ E[U ′(Xπ∗
T +H)(Xπ

T −Xπ∗
T )] ≤ 0. (4.10)

2

Remark 4.3. In the previous proof, if we apply integration by parts formula to D =
U ′(X) exp(Y ) and Xπ −Xπ∗, we get

U ′(Xπ) exp(Y )(Xπ −Xπ∗) =

∫ ·
0

(Xπ
t −Xπ∗

t )dDt +

∫ ·
0
Dt(πtX

π
t − π∗tXπ∗

t )dWHt ,

thus U ′(Xπ) exp(Y )(Xπ −Xπ∗) is a local martingale for every admissible strategy π.

Remark 4.4. Note that using the regularity assumptions of the FBSDE (4.8), we derived
that D := U ′(Xπ∗) exp(Y ) is a true martingale

Dt = U ′(x) exp(Y0)E
(
−θ ·WH + ZO ·WO

)
.

4.2 Characterization and verification: complete markets

We adopt the setting and notations of Section 4 with d1 = d = 1 and H = 0. In the
complete case we can give sufficient conditions for the existence of a solution to the system
(4.8). To this end, note the following remark.

Remark 4.5. Similar to Remark 4.4, we can use (4.8) to characterize further the martingale
U ′(Xπ∗) exp(Y ): applying Itô’s formula to U ′(Xπ∗) exp(Y ) gives rise to

U ′(Xπ∗
t ) exp(Yt) = U ′(x) exp(Y0)−

∫ t

0
U ′(Xs) exp(Ys)θsdWs,

hence, we have

U ′(Xπ∗
t ) exp(Yt) = U ′(x) exp(Y0)E(−θ ·W )t, t ∈ [0, T ]. (4.11)

This observation allows to prove the existence of (4.8) under a condition on the risk

aversion coefficient −U ′′

U ′ . Let ϕ1(x) := U ′(x)
U ′′(x) and ϕ2(x) := 1 − 1

2
U(3)(x)U ′(x)
|U ′′(x)|2 . We will

now give sufficient condition for the system (4.8) to exhibit a solution. We begin with the
following remark.

Remark 4.6. Note that if ϕ2 is constant then the system above decouples. An elementary
analysis shows that this happens if and only is U is the exponential, power, log or quadratic
(mean-variance hedging) function. If U(x) = − exp(−α1x)− exp(−α2x) then ϕ2 is bounded
and Lipschitz and if U(x) := xγ1

γ1
+ xγ2

γ2
then ϕ2 is a bounded function.
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Theorem 4.7. Assume that ϕ2 is a continuous bounded function. Then there exists an
adapted solution (X,Y, Z) in S2(Rd1)× S2(R)×H2(Rd) to the FBSDE

Xt = x−
∫ t

0
U ′(Xs)
U ′′(Xs)

(Zs + θs)dWs −
∫ t

0
U ′(Xs)
U ′′(Xs)

(Zs + θs)θsds

Yt = 0−
∫ T
t ZsdWs −

∫ T
t

[
|Zs + θs|2

(
1− 1

2
U(3)(Xs)U ′(Xs)
|U ′′(Xs)|2

)
− 1

2 |Zs|
2
]
ds.

(4.12)

Moreover, E[|U(XT )|] <∞ and E[|U ′(XT )|2] <∞.

Proof. Fix m > 0 and consider the BSDE

Y m
t = 0−

∫ T

t

[
|Zms + θs|2ϕ2

(
(U ′)−1(U ′(x) exp(m)E(−θ ·W )t exp(−Y m

t ))
)
− 1

2
|Zms |2ds

]
−
∫ T

t
Zms dWs.

Since ϕ2 is bounded, the driver of the BSDE above in (Y m, Zm) can be bounded uniformly
in m, hence [12] yields a pair (Y m, Zm) ∈ S2(R) × H2(R) solution to this equation with
|Y m| ≤ C where C does not depend on m and Z ·W is a BMO-martingale. In addition
(once again using standard arguments like in the proof of Proposition 3.9) we have that
m 7→ Y m

0 is continuous. Thus there exists an element m∗ > 0 such that Y m∗
0 = m∗. Now

applying Itô’s formula to

Xm∗ := (U ′)−1(U ′(x) exp(m∗)E(−θ ·W ) exp(−Y m)),

we check that (Xm∗ , Y m∗ , Zm
∗
) satisfies (4.12). It remains to show that E[|U(XT )|] < ∞.

From the concavity of U we have that

E[|U(XT )|] ≤ |U ′(0)|E[|XT |] + |U(0)|+ E[|U ′(XT )XT |] + |U(0)|.

Since X = xE(− U ′(X)
XU ′′(X)(Z + θ) · W ), − U ′(x)

xU ′′(x) ≤ κ for x ∈ R and (Z + θ) · W is a

BMO-martingale, X is a true martingale, and thus E[XT ] = x. Similarly we have that

XTU
′(XT ) = XTU

′(XT ) exp(YT ) = xU ′(x) exp(Y0)E((− U ′(X)
XU ′′(X)(Z + θ) − θ) · W ) and so

XU ′(X) exp(Y ) is a true martingale. This hence proves E[|XTU
′(XT )|] <∞. 2

5 Links to other approaches

In this section we link our approach to characterizing optimal investment strategies to two
other approaches based on the stochastic maximum principle and duality theory, respec-
tively.

5.1 Stochastic maximum principle

This section links our approach in the complete market setting to the approach using the
stochastic maximum principle. As we are interested only in the link, we will only give
a formal derivation. In particular, we suppose here that U and U−1 are smooth enough
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with bounded derivatives. Let us consider the complete market case with d1 = d = 1 for
simplicity and H = 0 and recall that in this setting, the wealth process is given by

Xπ
t = x+

∫ t

0
πsdWs +

∫ t

0
πsθsds, t ∈ [0, T ].

We consider J(π) := E[U(Xπ
T )] and set X̃π

t := U(Xπ
t ). Itô’s formula yields

dX̃π
t = U ′(U−1(X̃π

t ))πtdWt +
[
U ′(U−1(X̃π

t ))πtθt +
1

2
U ′′(U−1(X̃π

t ))|πt|2
]
dt

and J(π) = E[X̃π
T ]. Applying the maximum principle technique described in [3] (see also

[22, Section 4]), we introduce the adjoint equation to get dX̃π
t = U ′(U−1(X̃π

t ))πtdWt +
[
U ′(U−1(X̃π

t ))πtθt + 1
2U
′′(U−1(X̃π

t ))|πt|2
]
dt, X̃π

0 = U(x),

−dpt =
[ (

U ′′

U ′ (U
−1(X̃π

t ))θtπt + 1
2
U(3)

U ′′ (U−1(X̃π
t ))|πt|2

)
pt + kt

U ′′

U ′ (U
−1(X̃π

t ))πt

]
dt+ ktdWt, pT = 1.

(5.1)
We now introduce the corresponding Hamiltonian, defined as

H(t, p, k, π) := p[U ′(U−1(X̃π
t ))πtθt +

1

2
U ′′(U−1(X̃π

t ))|πt|2] + kU ′(U−1(X̃π
t ))πt.

A formal maximization gives

π∗t := − U
′

U ′′
(U−1(X̃π

t ))

[
kt
pt

+ θt

]
.

Plugging this into (5.1) yields dX̃π
t = − |U

′|2
U ′′ (U−1(X̃π

t ))
(
kt
pt

+ θt

) [
dWt − 1

2

(
kt
pt
− θt

)
dt
]
, X̃π

0 = U(x),

dpt = −
(
kt
pt

+ θt

)2
pt

[
−1 + 1

2
U(3)U ′

|U ′′|2 (U−1(X̃π
t ))
]
dt+ ktdWt, pT = 1

(5.2)

We now relate this system with (4.12) using a Cole-Hopf type transformation. First we plug
π∗ into (5.2) and obtain dXπ∗

t = − U ′

U ′′ (X
π∗
t )
[
kt
pt

+ θt

]
(dWt + θdt), Xπ∗

0 = x,

dpt = −
(
kt
pt

+ θt

)2
pt

[
−1 + 1

2
U(3)U′

|U ′′|2 (Xπ∗
t )
]
dt+ ktdWt, pT = 1.

(5.3)

Next consider the system dXπ∗
t = − U ′

U ′′ (X
π∗
t )(Zt + θt)(dWt + θdt), Xπ∗

0 = x,

dYt =

[
(Zt + θt)

2(1− 1
2
U(3)(Xπ∗

t )U ′(Xπ∗
t )

|U ′′|2(Xπ∗
t )

)− 1
2 |Zt|

2

]
dt+ ZtdWt, YT = 0.

(5.4)

Setting p̃T := exp(Yt), k̃ := Zp̃ and X̃ := X, Itô’s formula implies that (p̃, k̃) is a solution
to (5.3).
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5.2 BSDE solution via convex duality methods

Let us now turn to a very important link of our approach with the convex duality theory.
We have seen in Sections 3 and 4 that our approach relies on choosing a process Y such that
the quantities U ′(Xπ∗ + Y ) and Xπ∗U ′(Xπ∗) exp(Y ), respectively, are martingales. In fact,
these martingales are not any martingales. For instance in case of a utility function on the
whole real line, U ′(Xπ∗ + Y ) is exactly U ′(x+ Y0)E(−θ ·WH + U ′′

U ′ (X
π∗ + Y )ZO ·WO). So

in the complete case it is exactly the martingale under which the price is itself a martingale.
For utility functions defined on the positive half line this leads directly to duality theory,
since it is known from the original paper by Kramkov and Schachermayer ([13]) that (under
some growth-type condition on U) the optimal wealth process Xπ∗ and the stochastic pro-
cess Y ∗ solution to the so-called dual-problem are such that the stochastic process Xπ∗Y ∗

is a martingale. In addition, with our notations, Kramkov and Schachermayer prove that
Y ∗ has the form Y ∗ = Y ∗0 E(−θ ·WH + M) where M is a martingale orthogonal to WH.
Recall that in our case Xπ∗U ′(Xπ∗) exp(Y ) is a martingale and from (4.9), we have proved
that D := U ′(Xπ∗) exp(Y ) is exactly of the form D0E(−θ ·WH +ZO ·WO), in other words
Y ∗ = D and the ZO component appearing in the solution of our FBSDE exactly represents
the orthogonal part in the dual optimizer of Kramkov and Schachermayer theory. Obviously,
this needs to be derived more formally. This is the goal of this section.

The aim of this section is to derive a solution of the forward-backward equation (4.12)
by means of the results from the convex duality approach to (2.2). We denote by Π1 the
set of admissible strategies with initial capital one unit of currency. In the case of zero
endowment H = 0, the solution to the concave optimization problem (2.2) is achieved by
formulating and solving the following dual problem: denoting the convex conjugate of the
concave function U by

V (y) := sup
x>0

{
U(x)− xy

}
, y > 0,

where dXπ
t = Xπ

t πt
dS̃t
S̃t
, Xπ

0 = x > 0, and defining a family of nonnegative semimartingales

via

Y :=
{
Y ≥ 0 : Y0 = 1, XπY is a supermartingale for every π ∈ Π1

}
,

the primal problem (2.2) is solved by solving instead the dual convex optimization problem

v(y) = inf
YT∈Y

E
[
V (yYT )

]
, y > 0. (5.5)

If this dual problem admits a unique solution Y ∗T ∈ Y, then the primal problem (2.2) with
H = 0 also yields a unique solution

Xπ∗
T = x+

∫ T

0
Xπ∗
s π∗s

dS̃s

S̃s

= x+

∫ T

0
α∗sdSs

= I(yY ∗T ),
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with the corresponding optimal control π∗ = α∗S̃
Xπ∗ . Here we have I = (U ′)−1 and x =

−v′(y)2. The case of bounded terminal endowment H is dealt with in [5], where instead of
(5.5) the following dual problem is considered

v(y) = inf
YT∈Y

E
[
V (yYT ) + yYTH

]
, y > 0.

The case of general integrable H has been studied in [10], using the original dual problem
(5.5) but a slight different choice of the domain Y. A ubiquitous property of the con-
vex duality method is that once the primal and the dual optimizers are obtained, their
product Xπ∗Y ∗ is a nonnegative true martingale (hence uniformly integrable), see [13] for
a economic interpretation. In the context of utility maximization with bounded random
endowments, this martingale property of Xπ∗Y ∗ is pointed out in [5, Remark 4.6]. This
martingale property of Xπ∗Y ∗ constitutes the first main ingredient for deriving a solution
for the forward-backward equation (4.12). A second main ingredient is constituted by the
characterization of the dual domain Y. Note in the continuous process setting, Y is the
family of all non-negative supermartingales (see e.g. [13, 10]). According to a well known
result, every nonnegative càdlàg supermartingale Y ∈ Y admits a unique multiplicative
decomposition

Y = AM

where A is a predictable, non-increasing process such that A0 = 1 and M is càdlàg lo-
cal martingale. However, [15] characterize the elements of Y ∈ Y by the multiplicative
decomposition

Y = AE(−θH ·WH +K ·WO), (5.6)

where A is a predictable non-increasing process such that A0 = 1 and K ∈ H2
loc(Rd2) (see

[15, Proposition 3.2]). Using that the Fenchel-Legendre transform V is strictly decreasing,
[15, Corollary 3.3] shows that the dual optimizer is a (continuous) local martingale and
admits the representation

Y ∗ = E
(
− θH ·WH +K∗ ·WO

)
(5.7)

for a uniquely determined K∗ ∈ H2
loc(Rd2). If v(y) = E

[
V (yY ∗T )

]
< ∞, then we can check

that the optimal K∗ actually belongs to H2(Rd2). This is done in the following lemma whose
proof is in the same spirit as in [14, Lemma 3.2]

Lemma 5.1. If for some y > 0, it holds that

v(y) = inf
ν∈H2

loc(R
d2 )

E
[
V
(
yE
(
− θH ·WH + ν ·WO

))]
<∞,

we have

v(y) = inf
ν∈H2(Rd2 )

E
[
V
(
yE
(
− θH ·WH + ν ·WO

))]
,

i.e. the optimal K∗ minimizing v(y) can be assumed to belong to H2(Rd2).

2This is equivalent to u′(x) = y where u(x) = supπ E
[
U(Xπ

T +H)
]
. The differentiability of both v(y) and

u(x) are shown in [5].
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Proof. We introduce the family of stopping times

τn := inf
{
t > 0 :

∫ t

0

(
|θHs |2 + |K∗s |2

)
ds ≥ n

}
, n ∈ N.

Let y > 0, then we have

v(y) = E
[
V
(
yET

(
− θH ·WH +K∗ ·WO

))]
= E

[
E
[
V
(
yET

(
− θH ·WH +K∗ ·WO

))∣∣Fτn]]
≥ E

[
V
(
yEτn

(
− θH ·WH +K∗ ·WO

))]
,

where the last line follows by Jensen’s inequality. Continuing the last line and recalling that
V (y) is a strictly convex function, we have

v(y) ≥ E
[
V
(
y exp

( ∫ τn

0

(
− θHs dWHs +K∗sdW

O
s

))
exp

(
− 1

2

∫ τn

0

(
|θHs |2 + |K∗s |2

)
ds
))]

≥ V
(
E
[
y exp

( ∫ τn

0

(
− θHs dWHs +K∗sdW

O
s

))
exp

(
− 1

2

∫ τn

0

(
|θHs |2 + |K∗s |2

)
ds
)])

≥ V
(
y exp

(
E
[
− 1

2

∫ τn

0

(
|θHs |2 + |K∗s |2

)
ds
]))

,

where Jensen’s inequality has been used twice. By continuity of V and of the exponential
function, it follows from the monotone convergence theorem that

v(y) ≥ lim
n→∞

V
(

exp
(
− 1

2
E
[ ∫ τn

0

(
|θHs |2 + |K∗s |2

)
ds
]))

= V
(

exp
(
− 1

2
E
[ ∫ T

0

(
|θHs |2 + |K∗s |2

)
ds
]))

.

Since v(y) <∞ and V
(

exp(−∞)
)

= V (0) = U(∞) =∞, it follows that

E
[ ∫ T

0

(
|θHs |2 + |K∗s |2

)
ds
]
<∞.

We deduce that K∗ ∈ H2(Rd2). 2

Now using that Xπ∗Y ∗ is a true martingale and that the dual optimizer Y ∗ is a local
martingale satisfying (5.7), we get the following result.

Theorem 5.2. Let H be a non-negative bounded random endowment and assume that the

coefficient of relative risk aversion −xU
′′

(x)

U ′ (x)
satisfies

lim sup
x→∞

(
−xU

′′
(x)

U ′(x)

)
<∞. (5.8)

Then there exists x0 > 0 such that for all x > x0 the coupled FBSDE (4.8) has a solution
(X,Y, Z) such that X0 = x. In addition, X is the optimal wealth of the problem (2.2) and
the dual optimizer Y ∗ associated with it is given by Y ∗ = U ′(X) exp(Y ) (so that yY ∗T =
U ′(XT +H)).
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Proof. The existence of x0 > 0 such that for every x > x0 the quantity

u(x) = sup
π∈Πx

E
[
U
(
Xπ
T +H

)]
= E

[
U
(
Xπ∗
T +H

)]
is finite has been shown [5]. We set X∗ := Xπ∗ . Also recall that we have y = u′(x) > 0 for
x > x0 and that we have

E
[
yX∗TY

∗
T

]
= xy.

Moreover, yY ∗T = U ′(X∗T + H). We define the true martingale α := yX∗Y ∗. We set
Y := log(α)− log(X∗)− log(U ′(X∗)). We have that

Yt = log

(
αt

X∗t U
′(X∗t )

)
= log

(
yY ∗t

U ′(X∗t )

)
= log(y) + log(Y ∗t )− log(U ′(X∗t ).

Recall that by definition of X∗ and Y ∗ we have that

dY ∗t = Y ∗t
(
−θHt dWHt +K∗t dW

O
t

)
and

dX∗t = X∗t
(
π∗t dW

H
t + π∗t θ

H
t dt

)
.

Hence

dYt = −θHt dWHt +K∗t dW
O
t −

1

2
(|θHt |2 + |K∗t |2)dt

− U ′′(X∗t )

U ′(X∗t )
(π∗tX

∗
t dW

H
t + π∗tX

∗
t θ
H
t dt)

− 1

2

U (3)(X∗t )U ′(X∗t )− (U ′′(X∗t ))2

(U ′(X∗t ))2
|π∗tX∗t |2dt.

We define:

ZHt := −θHt −
U ′′(X∗t )

U ′(X∗t )
π∗tX

∗
t ,

so that π∗tX
∗
t = −(ZHt + θHt )

U ′(X∗t )
U ′′(X∗t ) , and

ZOt := K∗t .

Then

dYt = ZHt dW
H
t + ZOt dW

O
t −

1

2
(|θHt |2 + |K∗t |2)dt

+

[
θHt (ZHt + θHt )− 1

2

U (3)(X∗t )U ′(X∗t )− (U ′′(X∗t ))2

(U ′(X∗t ))2

|ZHt + θHt |2|U ′(X∗t )|2

|U ′′(X∗t )|2

]
dt
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= ZHt dW
H
t + ZOt dW

O
t +

[
|ZHt + θHt |2

(
1− 1

2

U (3)(X∗t )U ′(X∗t )

|U ′′(X∗t )|2

)
− 1

2
|ZHt |2

]
dt.

Finally note that by construction YT = log
(
U ′(X∗T+H)

U ′(XT ∗)

)
. Hence, (X,Y, Z) = (X∗, Y, Z) is a

solution to (4.8) and
yY ∗ = U ′(X) exp(Y ).

2

Let us recall that the absolute risk aversion of U(x) is defined as ARA(x) := −U
′′

(x)

U ′ (x)

and the risk tolerance as 1
ARA(x) . We say that U(x) has hyperbolic absolute risk aversion

(HARA) if and only if its risk tolerance 1
ARA(x) is linear in x. More precisely, it can be

shown that a utility function U(x) is HARA if and only if

U(x) =
1− γ
γ

( ax

1− γ
+ b
)γ
,

ax

1− γ
+ b > 0,

for given real numbers γ, a, b ∈ R.

Corollary 5.3. Assume that U(x) is HARA. Then there exists a constant κ ∈ R such that
the backward equation from (4.8) can be written as

Yt = log
(U ′(X∗T +H)

U ′(X∗T )

)
−
∫ T

t
ZsdWs −

∫ T

t

(
− 1

2
|Zs|2 + κ|ZHs + θHs |2

)
ds (5.9)

= log
(U ′(X∗T +H)

U ′(X∗T )

)
−
∫ T

t
ZsdWs −

∫ T

t
g(s, Zs)ds.

Proof. Notice that for the risk tolerance

f(x) :=
1

ARA(x)
= − U

′
(x)

U ′′(x)

it holds that

f
′
(x) = −1 +

U
′
(x)U (3)(x)

|U ′′(x)|2
.

Since U(x) being HARA implies that f is linear in x, it follows that there exist constants
c, d ∈ R such that f

′
(x) = cx+ d. Hence the BSDE from (4.8) can also be written as

Yt = log
(U ′(X∗T +H)

U ′(X∗T )

)
−
∫ T

t
ZsdWs −

∫ T

t

(
− 1

2
|Zs|2 +

(1

2
− 1

2
f
′
(X∗s )

)
|ZHs + θHs |2

)
ds

= log
(U ′(X∗T +H)

U ′(X∗T )

)
−
∫ T

t
ZsdWs −

∫ T

t

(
− 1

2
|Zs|2 + κ|ZHs + θHs |2

)
ds,

for κ = 1
2 −

1
2c. 2
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Obviously the driver of the BSDE (5.9), g(s, z), satisfies the quadratic growth condition

|g(s, z)| ≤ α+
γ

2
|z|2

for suitably chosen real numbers α, γ > 0. In this setting [4, Theorem 2] yields the following
result.

Corollary 5.4. If ξ = log
(
U
′
(X∗T+H)

U ′ (X∗T )

)
satisfies E

[
eγ|ξ|

]
<∞, then the BSDE (5.9) admits

a solution (Y, Z) such that Y is continuous and Z ∈ H2
loc(Rd).

5.3 The power case with general endowment

We finally deal with an open question in mathematical Finance namely the case of power
utility with general endowment. We know from duality theory that an optimal solution
exists but we would like to prove that the strategy is smooth (i.e. square integrable) and
to characterize it in terms of the solution to an equation (for instance a FBSDE). We will
use definitions and notations of Section 4. Let U(x) := xγ

γ with γ a fixed parameter in
(0, 1). Let H be a positive bounded FT -measurable random variable where we recall that
(Ft)t∈[0,T ] is the filtration generated by W = (WH,WO). We recall that we denote by Πx

the set of admissible strategies with initial capital x which is now defined by

Πx :=

{
π : Ω× [0, T ]→ Rd1 , π is predictable, E

[∫ T

0
|πs|2ds

]
<∞

}
(5.10)

where πi, i = 1, . . . , d1 denotes the proportion of wealth invested in the stock. The associated
wealth process is given by

Xπ
t := x+

∫ t

0
πsX

π
s dS

H
s , t ∈ [0, T ].

Again, we extend π to Rd via π̃ := (π1, . . . , πd1 , 0, . . . , 0) and make the convention that we
write π instead of π̃. Thus, we have

Xπ
t = xE

(∫ ·
0
πrdS

H
r

)
t

, t ∈ [0, T ].

Note that this setting covers the case of a purely orthogonal endowment of the form H :=
φ(SOT ) where φ is positive. Now we can go in the analysis of the problem:

sup
π∈Πx

E
[

(Xπ
T +H)γ

γ

]
. (5.11)

Indeed, what is only known in that case is that an optimal strategy exists ([10]) but in a
much larger space that Πx, in particular it is not proved that the optimal strategy is square
integrable. About the characterization of this optimal strategy one can write the Hamilton-
Jacobi-Bellman PDE in the Markovian case but no results allow us to solve it. We believe
that combining the duality theory, BSDEs techniques and our approach we could show first
that the optimal strategy belongs to the space Πx and that we will give a characterization
of it in terms of a FBSDE. Let us be more precise.
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Theorem 5.5. There exists x0 > 0 such that for every x > x0, the system
Xt = x+

∫ t
0
Xs(ZHs +θHs )

1−γ dWHs +
∫ t

0 θ
H
s
Xs(ZHs +θHs )

1−γ ds

Yt = (γ − 1) log
(

1 + H
XT

)
−
∫ T
t ZsdWs −

∫ T
t

(
γ

2(γ−1) |Z
H
s + θHs |2 − 1

2 |Zs|
2
)
ds

(5.12)

admits an adapted solution (X,Y, Z). If in addition ZH = (Z1, . . . , Zd1) is in H2(Rd1), then

π∗i :=
1

1− γ
(Zi + θi), i = 1, . . . , d1 (5.13)

is the optimal solution to the maximization problem (5.11).

Proof. First note that the system (5.12) is exactly the system (4.8) with U(x) = xγ

γ . Hence
from Theorem 5.2 there exists x0 > 0 such that the system (5.12) admits a solution (X,Y, Z)
when x > x0. We fix, x > x0 and consider the associated solution (X,Y, Z) (that is X0 = x).
In addition, we know from Theorem 5.2 that X = X∗. Hence π∗ is given by (5.13). It just
remains to prove that π∗ is in Πx, which is a direct consequence of the fact that Z is in
H2(Rd). 2

Remark 5.6. Note that since we know that the dual optimizer Y ∗ is given by Y ∗ =
U ′(X) exp(Y ) it is clear that XU ′(X) exp(Y ) is a true martingale. Hence the square inte-
grability of Z implies the condition of Theorem 4.2: E[(XT +H)γ ] <∞. Finally notice that
ZO is in H2(Rd2) by Lemma 5.1.

So the only element missing in the proof is indeed to show that ZH is in H2(Rd1) (nat-
urally, since the process π∗ is integrable with respect to SH and so it is in H2(Rd1)). This
question requires a deeper analysis of the system and is currently investigated by the authors.
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