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Abstract. When managing energy or weather related risk often only imper-
fect hedging instruments are available. In the first part we illustrate problems
arising with imperfect hedging by studying a toy model. We consider an air-
line’s problem with covering income risk due to fluctuating kerosine prices
by investing into futures written on heating oil with closely correlated price
dynamics. In the second part we outline recent results on exponential utility
based cross hedging concepts. They highlight in a generalization of the Black-
Scholes delta hedge formula to incomplete markets. Its derivation is based on
a purely stochastic approach of utility maximization. It interprets stochastic
control problems in the BSDE language, and profits from the power of the
stochastic calculus of variations.
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Introduction

In recent years many financial instruments have been created which serve the pur-
pose of transferring exogenous risk to capital markets in concepts of securitization.
For instance in 1999 the Chicago Mercantile Exchange introduced weather futures
contracts, the payoffs of which are based on average temperatures at specified lo-
cations. Another example are catastrophe futures based on an insurance loss index
regulated by an independent agency.

The risk arising in hedging derivatives of this type, and equally in using them
as hedging instruments, is impossible to perfectly replicate, since the underlying
risk process carries independent uncertainty. To come close to a replication, in
practice one often looks for a tradable asset that is well correlated to the non-
tradable underlying of the derivative, and uses it to cross hedge the underlying
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risk. Since the correlation usually differs from one, a non-hedgeable basis risk
remains.

In Section 1 of this paper, we will illustrate typical problems related to hedg-
ing the basis risk in a particular setting of cross hedging. We will consider the
situation of an airline company facing the risk of increasing kerosine prices. It
might cross hedge fluctuations in the kerosine price dynamics by holding heating
oil futures the price evolution of which is closely correlated. Our analysis of the
assessment of the problem the airline company faces starts with the intuitive ap-
proach of hedging the basis risk by minimizing the variance of the hedging error
in a simple Gaussian setting. This approach, however, presents a counter-intuitive
feature: though the correlation between the hedged asset and the hedging instru-
ment may be very close to one, the percentage of the hedging error in units of the
standard deviation of the uncertainty to be hedged is rather large. This calls for
more efficient concepts of replicating the basis risk which in particular take into
account its downside component.

In Section 2 we will give an overview of some recent work on utility based
concepts of cross hedging. We consider models in which agents exposed to some ex-
ogenous risk generated by a non-homogeneous diffusion process buy or sell a finan-
cial derivative to set off a portion of it to a financial market with assets correlated
to the risk index. We present explicit hedging strategies that optimize the expected
exponential utility of an agent holding a portfolio of such derivatives. To this end
we will establish some structure and smoothness properties of indifference prices
such as the Markov property and differentiability with respect to the underlyings.
Once these properties are established, we can explicitly describe the optimal hedg-
ing strategies in terms of the price gradient and correlation coefficients. This way
we obtain a generalization of the classical delta hedge of the Black-Scholes model.
The analytical tool for deriving the crucial smoothness properties of strategies and
prices is provided by a BSDE based approach (see [8]), which can be seen as the
probabilistic counterpart of the usually employed control theoretic methods whose
more analytical touch finds its expression in the Hamilton-Jacobi-Bellman PDE
(see for example [3, 4, 6, 7, 12, 13]). The BSDE approach culminates in a descrip-
tion of strategies and prices in terms of the solutions of tailor made BSDE with
drivers of sub-quadratic growth, derived by applying the martingale optimality
principle in a utility maximization or risk minimization context.

1. Hedging with residual risk

1.1. Imperfect hedging instruments

A hedging instrument is often unable to perfectly replicate the risk or uncertainty
of the asset it is supposed to hedge. More precisely, the possible risky scenarios
of its evolution cannot be mapped one-to-one to possible scenarios of hedging. In
the context of hedging with futures on financial markets, the difference between
the spot price of a risky asset and the price of the futures contract used to hedge
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it is called basis. More generally, we may consider the basis to be given by the
difference between the price of the asset to be hedged and the price of the hedging
instrument. That is why residual risk is frequently also referred to as basis risk.

A prominent example for financial derivatives that may entail residual risk
are basket options. Basket options are written on stock market indices, for example
the Dow Jones. In practice they are often hedged by trading some, but not all of its
underlyings. Consequently they cannot be perfectly replicated, and there remains
a basis risk.

Managing weather risk also often involves basis risk. Weather securities are
highly, but in general not perfectly correlated with the risk the security holder
bears. For example temperature derivatives may be used to hedge variations in
the demand of heating oil. But the demand of heating oil may at least weakly
depend on uncertainties not caused by weather and temperature fluctuations.

Hedging with futures provides the generic situation in which basis risk arises.
In simple terms, a futures contract is an agreement to deliver (or to pay in cash
the value of) a specified amount of a commodity, for example crude oil, on a future
date at a price specified already today. To ensure their liquidity, futures are highly
standardized, and as a consequence do not perfectly correlate with the risk the
futures’ holder bears. For example there may be a mismatch between the expiration
date of the future and the date on which the futures’ holder sells his commodity.
Or the commodity underlying the future may not be exactly the commodity whose
price has to be hedged.

One might be tempted to think that as the correlation between asset and
hedging instrument increases, the significance of treating the related basis risk
shrinks at the same pace. The example studied in the following subsection shows
that this conjecture is surprisingly false, and that it is very important to take basis
risk into account, even if this correlation is very high.

1.2. Case study: hedging jet fuel price fluctuations with heating oil futures

The revenues of airline companies strongly depend on the jet fuel spot price.
Futures provide protection against price fluctuations. However, no futures on jet
fuel are traded in Europe and the US. Heating oil and jet fuel prices are highly
correlated (see Figure 1), and therefore in practice airlines buy heating oil futures
to protect themselves against rising jet fuel spot prices. To display the role of high
correlation in treating basis risk in a simple setting, let us assume that the daily
price changes of jet fuel is given by a sequence of i.i.d. square integrable random
variables (AJ;);>1. Similarly, assume the daily heating oil price changes (AH;);>1
are i.i.d. and square integrable, and that AH; is independent of AJ, whenever
i # k. Let 0% = Var(AJ;) and 0% = Var(AH,). Figure 1 shows the daily spot
price per Gallon, from January 2006 to December 2007, of No. 2 Heating Oil
and Kerosene-Type Jet Fuel delivered at New York Harbor. The sample standard
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FiGure 1. Daily spot prices.

deviation! of the price changes during this time period is given by

o7~ 3,9986 and oy ~ 3,8353.
Recall that the correlation between two random variables X and Y is defined by
cov(X,Y)

corr(X,Y) = ———,
( ) var(X)var(Y)

and let p = corr(AH;, AJ;). The empirical correlation between jet fuel and heating
oil price changes, or more precisely the Pearson correlation coefficient?, is given
by

5~ 0,896.

1.2.1. The minimum variance hedge ratio. The airline aims at hedging increasing
fuel prices by buying heating oil futures. Suppose that it wants to hedge the price
for N; Gallons of jet fuel at a future date T'. We assume that there exists a heating
oil futures contract with matching delivery date T', and with a size of Ny Gallons.
Let K be the price at time 0 of a heating oil futures contract. How many units of
futures a shall the airline buy so that the variance of its fuel costs at time T are
minimal?

1The sample standard deviation of a sample x1,...,%, of length n € N is defined as s =

ﬁ S (s — (% 7—11;))?. Notice that 52 is an unbiased estimator of the variance.

2The Pearson correlation coefficient, also known as sample correlation coefficient, is defined by
p= N3 TiYi—D i Ti D Ui )
Vi 22— (22 /n X, 27— (5, 2:)2
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Let Jr and Hp denote the spot price at time T of jet fuel and heating oil,
respectively. Notice that at time T the value of one futures contract is equal to
Ny - Hp. The airline’s fuel costs amount to (NjJr —a(NgHp — K)), the variance
of which is given by

E [(NJJT — a(NgHrp — K) — E[N;Jp — a(Ng Hy — K)])ﬂ
= T(N303 —2aNj;Nypojog + a2N1210'?{).

The variance is minimal if the airline holds
Ny o;

*

a

= Nu "o

units of the future. The first factor, IJ\\;—ZI, adjusts the units of the futures to the
quantity of jet fuel needed. The second factor,
o
h = pija
OH
is referred to as minimum variance hedge ratio (see Hull [9, Chapter 4]), and
determines the proportion of the jet fuel price risk that should be transferred to

heating oil futures in order to minimize the variance of revenue fluctuations.

1.2.2. The hedging error. So far we have seen how many of the highly correlated
heating oil futures an airline has to hold, in order to minimize the variance of its
fuel expenses. Let us next discuss the hedging error or basis risk at time 7. We
will argue that although the correlation is 90%, the airline bears a high residual
risk. To demonstrate this we assume in addition that the daily price changes of jet
fuel and heating oil are normally distributed. Using the fact that two uncorrelated
Gaussian random variables are independent, we can decompose the daily price
changes of jet fuel into

AJi = pﬂAHz + 1- PQNi’ { > 17
OH

where N; is independent of A H;, and normally distributed with variance Var(V;) =
2
o5.
By the hedging error at time 7" > 0, when holding a futures, we mean the
difference

error(a) = NJ(JT — JQ) — CLNH(HT — Ho)

By holding a* = JJ\\;—; X p

Gallon, is given by

= futures, the hedging error at time 7" > 0, in Cent per

[ed

T
error = Z V1 —p2N;.
i=1

Notice that the standard deviation of the error is given by

V1= p2VToy ~0.443VTo,.
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The standard deviation of the jet fuel price at time T' equals v/To ;. This means
that although the correlation between the prices of jet fuel and heating oil is almost
90%, only 56% of the standard deviation of the jet fuel price uncertainty can be
hedged!

The conclusions we can draw from this case study are the following.

1. The hedge ratio provides a simple strategy to minimize the variance of price
uncertainty. It is a static hedge, and depends only on the volatilities and the
correlation of the processes.

2. Even if the correlation is very high, there remains a considerably high hedging
error! If the correlation was as high as 98%, the standard deviation of the basis
would still represent 19% of the total risk! The link between the correlation
and the percentage contribution of the basis to the total risk is depicted in
Figure 2.

Correlation and Basis Risk
T

Stdev. bhasis/ Stdev. total risk

!
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p Correlation

FIGURE 2. Basis risk in dependence of the correlation.

It clearly exhibits the following phenomenon. If the correlation is high,
then a small change in the correlation leads to a large change in the percentage
of basis risk relative to total risk. Conversely, if the correlation is low, a small
change in the correlation leads to essentially no change in the percentage of
basis risk relative to total risk.
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2. A utility-based approach to hedging with basis risk

In this section, we shall sketch a utility based purely probabilistic approach of
hedging the basis risk in a more sophisticated model for price processes of assets
and hedging instruments. As an alternative to the intuitive and straightforward
concept of minimizing the variance of the hedging cost discussed in Section 1,
we shall minimize the expected loss of different hedging scenarios if revenues are
measured with an exponential utility function. This way, we take into account
the essential downside risk of the basis. Our approach provides optimal hedging
strategies if the risk and the hedging instrument have non-linear payoffs. It allows
to derive an explicit formula for the utility indifference price and the derivative
hedge of a product designed to cross hedge the basis risk, generalizing the delta
hedging formula in the solution of the Merton-Scholes problem to the setting of
incomplete markets. The formula clarifies the role of correlation in hedging, and
describes the reduction rate of risk by cross hedging. The method used to derive
it translates the underlying optimization problem by martingale optimality into
the language of backward stochastic differential equations (BSDE). It profits from
stochastic calculus of variations (Malliavin’s calculus), since the extension of the
delta hedge formula is based on sensitivity of the BSDE providing the optimal
hedges to system parameters such as initial states of a risk index process. In more
formal terms, we shall investigate the following model.

2.1. The model

Let d € N and let W be a d-dimensional Brownian motion on a probability space
(Q, F, P). We denote by (F;)>0 the P-completion of the filtration generated by W.
Risk sources, for instance jet fuel price or temperature processes, will be described
as diffusion processes with dynamics

th = b(t,Rt)dt—|-0'(t,Rt)th, (21)

where b : [0, 7] x R™ — R™ and o : [0, 7] x R™ — R™*9 are measurable functions.
Throughout we assume that there exists a C' € Ry such that for all ¢ € [0,7] and

x, ' € R™, denoting by | - | the norm in finite dimensional Euclidean spaces,
(R1) [b(t,x) — b(t, ") + |o(t,x) —o(t,2')] < Clx—2a|,
b(t, z)| + |o(t, )] < O+ =)

Suppose that an economic agent has expenses at time 7' > 0 of the form F(Rr),
where F' : R™ — R is a bounded and measurable function. At time ¢ € [0, 7], the
expected payoff of F'(Rr), conditioned on R; = r, is given by F (Ré‘f), where R*"
is the solution of the SDE

Ri”’:r—i-/ b(u,ngr)du—i—/ o(u, RE"YAW,, s € [t,T).
¢ ¢

We assume that there exists a financial market on which k risky assets - such as
heating oil futures or weather derivatives - are traded that may be correlated to
the risk source. We further assume that there exists a non-risky asset, use it as
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numeraire and suppose that the prices of the risky assets in units of the numeraire
evolve according to the SDE

dS; = Sj(ai(t, Re)dt + Bi(t, Ry)dWy), i=1,....k,

where «;(t,r) is the ith component of a measurable and vector-valued map « :
[0,T] x R™ — R* and B;(t,r) is the ith row of a measurable and matrix-valued
map 3 : [0,T] x R™ — Rk*4 Notice that W is the same R?%-dimensional Brownian
motion as the one driving the risk source (2.1), and hence the correlation between
the risk and the tradable assets is determined by the matrices o and S.

In order to exclude arbitrage opportunities in the financial market we assume
d > k. For technical reasons we suppose that

(M1) « is bounded,
(M2) there exist constants 0 < e < K such that eI}, < (8(¢t,r)8*(t,r)) < KIj for
all (¢,7) € [0,T] x R™,

where 0* denotes the transpose of 3, and I is the k-dimensional unit matrix. If
M and N are two square matrices of identical dimension, then we write N < M if
the difference M — N is positive definite. (M2) implies that the symmetric matrix
B6* is invertible. Moreover, the Moore-Penrose pseudoinverse of the matrix 3 is
given by

64’ — ﬂ*(ﬂﬂ*)fl c Rka.
Notice that 37 is the right inverse of 3, i. e.

BBT = I.
The market price of risk will be denoted by
9= 08Ta=p"(66")""ta

The properties (M1) and (M2) imply that ¢ is uniformly bounded everywhere.

Suppose that our economic agent aims at reducing his risk exposure F(Rr)
by investing in the financial market. In order to determine an optimal hedge,
we assume that the agent’s preferences are described by the exponential utility
function

U(z)=—e", zeR,

where n > 0 describes the risk aversion. By an investment strategy, or simply
strategy, we mean any predictable process A = (A%);<;<x with values in R* (row

vectors) such that the integral process fot A dSS;‘ is defined for all ¢ € {1,...,k}.

We interpret A as the value of the portfolio fraction invested into asset number 4.

In what follows it will be convenient to embed the strategies into R¢, the space
of uncertainties. To this end let C(t,7) = {zB(t,r) : x € Rk}, (t,7) € [0,T] x R™.
We denote by p; = A\¢3; the image of any investment process A with respect to 3.
For any image strategy p = A3 we interpret

t k t kK d t
/ps(ﬁsds—i—dWS):Z/ AgagdHZZ/ ALY AW
0 =1 /0 0

i=1 j=1
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as the increase of wealth up to time ¢. Moreover, the wealth at time ¢, conditioned
on z at time s and Rs =7, s <t < T, is given by

t
X =t [ pu(0(u, B+ i)
S

For (t,r) € [0,T] x R™ let A"" be the set of all predictable processes p with
values in R? such that E ftT |ps|?ds < oo. The square integrability guarantees that
there is no arbitrage (see Remark 2 in [8]). If p € A", then we say that p is
admissible on [t,T)].

The value function is defined as

VF(z) = sup{ BU(X%"*P—F(R%")) : p € A", p, € C(s, RO") for all s € [0,T]}.

Frequently we will need the conditional version of the value function given by

T
VE(t,r, ) = sup{ EU (2 + / ps(9sds + dW,) — F(RE)) -
t

pe€ A" p, € C(s,RY7) for all s € [t,T]}.

We recall briefly the Dynamic Programming or Bellman’s Principle (for more
details see f.ex. [5] and [11]). If one follows an optimal strategy up to a stopping
time 7, the strategy will remain optimal, even by taking into account incoming
new information. Mathematically, this may be expressed as follows. For all (s,r) €
[0,T] x R™, 2 € R*, and stopping times 7 with values in [s, T, we have

VE(s,r,x) =supE {VF (T, RS x —|—/ Pu(Fudu + qu))] ) (2.2)
p s

If V¥ is a continuous function satisfying Bellman’s principle (2.2), and if there

exists an optimal strategy p°P* such that

VvE©,r,z)=E {VF (T, RO & +/ PoP (0 du + qu))] ,
0

then VF (¢, RO", X"} is a martingale. Moreover, if VF € C122, then Ito’s
formula implies that V¥ satisfies the associated HJB partial differential equation.

The standard approach of finding V¥ and the optimal control p°P! is based
on verification: Solve the HJB equation, and then show that the solution coincides
with the value function V' ( Verification Theorem).

We don’t work with the verification method here, but follow a purely proba-
bilistic approach based on the martingale optimality of the process V¥ (t, R? o
X?’T’x’popt),t € [0, T)]. Notice that V¥ (-, RO X%7™:P) is a supermartingale for any
choice of p, and a martingale iff p is optimal. Moreover, the process satisfies the
boundary condition VF(T, RY", X3:""P) = U(X2""P — F(Ry")).

This motivates us to make the risky income F (R%T) dynamic, by finding a
process (Yi):epo, 1) that solves a BSDE with terminal condition Y7 = F(R%T), such
that
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o (U(XP"™P —Y;))o<i<r is a supermartingale for all p € A,

opt
o (UXI""P" _Y;))o<i<r is a martingale for at least one p°P' € A.

2.2. Solving the control problem with BSDEs
The orthogonal projection of a vector z € R¢ onto the subspace C = {x3 : x € R}
is given by
He(z) =2 B*(B6%)7'.

Notice that this can be deduced from the fact that I1% = Ilc. In terms of the
pseudoinverse, the projection operator may be written as llg(z) = z 7 8.

Moreover, given an image strategy p with values in R?, the associated original
strategy A with values in R¥ is given by

>\t = ptﬁJr(ta ')a te [Oa T] (23)

Indeed, we have pfT = A\351T = A\

The distance of a vector z € R? to the linear subspacet C will be defined as
dist(z,C) = min{|z — u| : uw € C}.

Let f:]0,7] x R™ x R? — R be the generator defined by

1 . 1., 1
f(syrz) = §ndlst2(z + 519 (s,7),C(s,7)) — 29(s,7) — %|19(s77‘)|2. (2.4)

Notice that f is a generator with sub-quadratic growth in z, for which there exists
a well established theory (see Kobylanski [10]). Let us recall some notation needed
to formulate its results. For p > 1 and n € N we denote by HP(R™) the set of all

P
R™-valued predictable processes ( such that F ( fol |(t|2dt) * < 00, and by SP the

set of all R-valued predictable processes § satisfying E (SUPse[o,l] |58|p> < o0. By

S we denote the set of all essentially bounded R-valued predictable processes.

Recall that we assumed the payoff function F' and the market price of risk
¥ to be bounded. According to one of the central results of the theory of BSDE
with generators of sub-quadratic growth, there exists a unique solution (Y, Z2) €
S>®(R) x H?(R?) of the BSDE

T T
Y, :F(R%’“)—/t stWS+/t F(s, RV, Z,)ds. (2.5)

Lemma 2.1. For every locally square integrable and (F;)-predictable p, U(X%"%P —
Y) is a local supermartingale. Moreover, if for (t,r) € [0,T] x R™ we take p; =
e pory (Ze + %ﬁ*(t, R)™)), then U(X%™%P —Y) is a local martingale.

Proof. For all (s,7) € [0,T] x R™, p € R¥ and 2z € R? let
1
h(S,’/‘,Z,p) = _pﬂé + 577|p - Z|2a

and notice that

min h(s7r7 Z,p) = f(s77‘7 Z), (2.6)
peC(s,r)
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where the maximum is attained at p = o (2 + %19*(5, ).

Now let p be a locally square integrable and (F;)-predictable process. To
simplify notation we use the abbreviation X? = X%™%P An application of Ito’s
formula to U(XP? —Y) yields for ¢ € [0, 7]

S

UXY=Y) = U(x—YOH/OtU/(X”—Ys)(ps—Zs)dWs

+ / U'(XP — Yo )(pata + f(5, Z,))ds
0

1 [t
+§/ U" (X = Y,)(Ips|? = 2ps 25 + | Zs|*)ds.
0
Moreover, we may write
UX?-Y;) = U(x—Yp)+ local martingale (2.7)

+ /t U\(XP —Y,)(f(s, RO, Z,) — h(s,ps, Zs))ds  (2.8)
0

Equation (2.6) implies that the bounded variation process in (2.8) is decreasing and
hence that U(XP —Y) is a local supermartingale. By choosing p; = HC(1t R?,'V')(Zt +

%ﬂ*(t, RY™), (t,r) € [0,T] x R™ the integrand in (2.8) vanishes, and therefore in
this case U(XP —Y) is a local martingale. O

With the help of Lemma 2.1 we can express the maximal expected utility
VF(r) and the optimal investment strategy in terms of the solution of (2.5).

Theorem 2.2. The value function satisfies
VE(@)=U(z - Y),

and there exists an optimal image strategy p, given by
1 *
pe =g pory (Ze+ o (t, R)")), te0,T].

From (2.3) we immediately obtain the following expression for the optimal
investment strategy.

Corollary 2.3. The optimal strategy 7 is given by
T 1 * *\ — ™
T = Zt6+ (th% ) + ;O& (ﬁﬂ ) ! (th% )7 te [O7T]

We remark that Theorem 2.2 can be generalized to the situation where the
constraint sets C' are arbitrary closed sets (see [8]).

Proof of Theorem 2.2. Fort € [0,T] let p; = Il pory(Ze+ %19* (t, RY"™)). Accord-
ing to the preceding lemma there exists a sequence of stopping time 7, converging
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to T, a.s. such that for all n > 1, the stopped process U(G_%/\T" —YAr,) is a
martingale. Now observe that

' P D
UXP-Y) = etdo2g <—77/ <p5 —(Zs+ =)+ ) dWs) .

0 n n
The definition of p implies that |p| < |Z]| + %||19||00, and hence for every stopping
time 7 we have fTT Ip|2ds < fTT |Zs|?ds + T%HﬁHgo This means that (p- W) is
a BMO martingale (for further details see [8]). This further yields that {U(X} —
Y,) : p stopping time with values in [0,7]} is uniformly integrable, and hence
p € A. Moreover, lim,, EU(X",, — Y.\, )= EU(X? —Y), from which we deduce
EU(XY —Yr) = EU(z — Yp).

Note that for all p € A we have
EU(GY —Yr) < EU(Gh - Yo) = EU(x — Yy),

which shows that p is indeed the optimal image strategy. Finally, it follows that
VE,r,z) = EU(x — Yp). O
2.3. Indifference price and optimal hedge

The optimal strategy m can be decomposed into the sum of a pure investment
strategy and a pure hedging component. In order to describe the pure hedging
component, we shall consider the utility maximization problem with and without
the additional obligation F' (R%T), compute the optimal strategies in both cases,

and then take their difference. So let (Y7, Zt) € §°(R)@H2(R?) be the solution
of the BSDE with generator f, defined as in (2.4), but terminal condition equal
to 0,

T T
Yir = —/ Zbrdw, —|—/ flu, RL . ZET)du, s € [t,T).
From Theorem 2.2 we obtain that
VOt,z,r) = —e_”(x_yfm), (t,7) € [0,T] x R™, z € R¥,
and the optimal strategy 7 on [t, T] satisfies
~ P 1
70(s,RL7) = HC(S’RQ.T)[Z?T + 519(5, R, selt,T).

The presence of the derivative F(Rr) leads to a change in the optimal strategy
from 7 to m. More precisely, let (Y" Z%") be unique solution of the BSDE

T T
Y = F(RE) — / ZLT AW, + / flu, Ry, Z5")du, s € [t, T].

Theorem 2.2 implies
VEt a,r) = —efn(xfyf«t’r),

and the optimal strategy m on [t, T] satisfies

1
7TS/B(Sa Ri’r) = HC(s,Ré’T) [Zz’r + 579(57 Ri’r)}’ s € [ta T]
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The Markov property of our risk process R guarantees that the optimal strategies
depend only on time and the actual value of R.

Lemma 2.4. There exist measurable deterministic functions v and U, defined on
[0,T] x R™ and taking values in RY, such that for (t,r) € [0,T] x R™, the
optimal strategies, conditioned on Ry = r, are given by 7" = v(s, RL™) and
7bT =v(s, RL") for all s € [t,T).

Proof. See Theorem 5.13 in [2]. O

Next we define for all (¢,7) € [0,T] x R™
A(t,r) =v(t,r) —v(t,r).
Then the optimal investment 7 satisfies
w(t,r) =7(t,r) + AL, 7).

T represents a pure investment part, and A is the part of the strategy that com-
pensates the random obligation F(R}"). We therefore call A optimal hedge.
Since HC(S RYT) is a linear operator, the optimal hedge satisfies

As, RE) =g o [27 = 207 = (287 = 207 ) (8 (55°) (s, L"),

which will be further simplified in the subsequent section.

It turns out that the optimal hedge A is closely related to the indifference
price of the obligation F'(Ry). As usual, we mean by indifference price the amout
of money p € R such that the economic agent is indifferent between having F'(Rr)
in his portfolio or receiving the riskless payment p.

The difference between 7 and 7 measures the diversifying impact of F(Rr),
also called diversification pressure. We will see that we can express the diversifi-
cation pressure in terms of a price sensitivity multiplied with the hedge ratio we
encountered already in Section 1. To this end define for all (¢,r) € [0,7] x R™,

p(t77") _ Yit,r _ i}tt,’l’.
It turns out that p(t,r) is the indifference price of F(RY").

Theorem 2.5. For (t,r) € [0,T] xR™ the quantity p(t,r) represents the indifference
price of F(RY"), i.e.
VF(ta €T, T) = Vo(t7 T — p(tv T)v T)'

Proof. Let x € R* (t,r) € [0,T] x R™ be given. Recall that VI (x,t,r) =
—e @Y and VO(x,t,7) = —e @Y Setting VE (, z,1) = VO(t, 2 —p(t, r),
r), immediately gives the result. U
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2.4. Delta hedging

If we impose stronger smoothness conditions on the coefficients of the index process
R and the function F', then we can show that the price function p is differentiable
in r, and we can obtain an explicit representation of the optimal hedge in terms of
the price gradient. To this end we need to introduce the following class of functions.

Definition 2.6. Let n, p > 1. We denote by B™*P the set of all
functions h : [0,7] x R™ — R"*?  (t,z) +—  h(t,x), differen-
tiable in =z, for which there exists a constant C > 0 such that

, | on(t, h(t,
SUP (¢ 2)e[0, 7] xR™ Z:’;l ‘78(;) < C, for all t € [0,T] we have sup,cgm ‘1Sr‘z|)| <,
and x — w is Lipschitz continuous with Lipschitz constant C'.

We will assume that the coefficients of the index diffusion satisfy in addition
to (R1) the following two conditions

(R2) 0 € Bmxd pc Bmx1,
(R3) F is a bounded and twice differentiable function such that

“ 0 1 & 0?
1xd * 1x1
VF-0c€B and ; 1 bi(t,r) - F(r)+ 3 i; 1[00’ Jaj (£, 7) - TjF(T) eB ™.

Theorem 2.7. Suppose that (R1), (R2) and (R3) are satisfied. Besides, suppose that
the volatility matriz B and the drift density o are bounded, Lipschitz continuous
in v, differentiable in v and that for all1 < ¢ <k, 1 < j < d the derivatives V,3;;
and V,«; are also Lipschitz continuous in r. Then the optimal hedge satisfies, for

all (t,r) € [0,T] x R™,
A(t,r) =V,p ot (7).

Proof. Under conditions (R1)-(R3) we can show that the solution processes (Y, Z)
resp. (}7, Z ) are differentiable with respect to the initial states of the index process,
and that Z resp. Z is the Malliavin trace of Y’ resp. Y. This smoothness transfers
to p via its representations by means of the BSDE solutions. The identification of
the control processes Z resp. A by the Malliavin traces of Y resp. Y then directly
relates A with Vp. For details see [1] and [2]. O

The matrix ¢37(t,7) can be interpreted as hedge ratio. To illustrate this,
letk:mzl,d:2,az(a 0),ﬁ:(71 Y2 ).Thentheriskprocess
is driven by the martingale M = [, a(s,7)dW], and the financial asset by N =
Jo (i (t, 7)dWE + 72 (t, 7)dW?). The instantaneous correlation between the driving
martingales M and N at time ¢, conditioned on the risk process to be r, is given

by
_ dE(MNy — MyNy) _ 7
VAE((M, M);)\/JdE((N,N);) /7% +3

p(t,r) (t,r)
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The volatility of the risk source is volag = a, and the one of the financial asset is
volag = \/7% + 5. Now observe that

vola, R

Uﬂ*(ﬁﬁ*)il(tﬂa) =p (t,?"),

volag

which, in accordance with Section 1, we call again hedge ratio. In dimension 1 we
may thus reformulate Theorem 2.7 as follows.

Theorem 2.8. Let k =m =1, d = 2. Then the optimal hedge is equal to the hedge
ratio h multiplied with the sensitivity of the indifference price with respect to the
risk source, i.e.
op
A=—-h
or
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