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Abstract. We consider a dynamical system describing the motion of a particle
in a double well potential with a periodic perturbation of very small frequency,
and an additive stochastic perturbation of amplitude ε. It is in stochastic
resonance if the solution trajectories amplify the small periodic perturbation
in a ‘best possible way’. Systems of this type first appeared in simple energy
balance models designed for a qualitative explanation of global glacial cycles.
Large deviations theory provides a lower bound for the proportion of the
amplitude and the logarithm of the period above which quasi-deterministic
periodic behavior can be observed. However, to obtain optimality, one has
to measure periodicity with a measure of quality of tuning such as spectral
power amplification favored in the physical literature. In a situation where
the potential switches discontinuously between two spatially antisymmetric
double well states we encounter a surprise. Contrary to physical intuition, the
stochastic resonance pattern is not correctly given by the reduced dynamics
described by a two state Markov chain with periodic hopping rates between
the potential minima which mimic the large (spatial) scale motion of the
diffusion. Only if small scale fluctuations inside the potential wells where the
diffusion spends most of its time are carefully eliminated, the Markov chain
gives the correct picture.

1. Background and paradigm

The paradigm of stochastic resonance (SR) emerged from papers by C. Nicolis
[15] and Benzi et al. [2, 3, 4] which were devoted to the mathematical explana-
tion of the phenomenon of glacial cycles. The model they created is based on the
following observations. Modern measurement techniques allow to determine con-
centrations of an oxygen isotope in deep sea core sediments which in turn provide
rough estimates of the global mean temperature of the earth at the time they were
deposited. This way at least seven changes between ‘cold’ and ‘warm’ periods were
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detected during approximately the last 700,000 years. They occur abruptly and
with roughly the same period of about 105 years. The quoted papers aimed at
suggesting a simple mathematical model to account for this deterministic-looking
periodicity.

The proposed model just appeals to conservation of radiative energy and
supposes that the earth’s temperature T satisfies a simple energy-balance equation
(for an extended review see [11]), i.e. the instant change of the global temperature
is proportional to the difference between incoming and outgoing radiative energy:

c
dT (t)
dt

= Q(t)(1− a(T (t)))− σT (t)4, c > 0. (1.1)

In the simplest case considered here it is assumed that the total energy flux emitted
by the earth is given by the Stefan–Boltzmann law which in fact is valid only for
a black body radiator.

The absorbed energy depends on two factors. The global solar function Q(t)
describes the flux of the solar energy which reaches the earth at time t. Assuming
that the solar activity is a constant Q0, the function Q depends on the distance
between the earth and the sun as well as on the inclination of the earth’s axis, and
due to the gravitational influence of Jupiter exhibits a slow periodic variation of a
period of about 105 years. The variation is estimated to be 0.1% of Q0. Thus we
put

Q(t) = Q0 − b sinωt, b ≈ 0.001Q0, ω ≈ (2π105)−1[yr−1].

On the other hand, not all the solar radiation reaching the atmosphere is absorbed:
the proportion of absorbed radiation is determined by the earth’s albedo a which
depends locally on the earth’s average surface temperature T . The simple albedo
model used here appears in the papers by Budyko [5] and Sellers [18], see Fig. 1
(l.). a(T ) is chosen to be a constant close to 1 for low temperatures T ≤ T . In this
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Fig. 1. Earth’s albedo (l.) and incoming and outgoing radiative
energies (r.).

temperature regime all surface water is supposed to be frozen and to cover a big
portion of the planet by a bright ice layer making the reflection ratio relatively
high. For high temperatures T ≥ T the green-brown vegetation results in a low
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reflection ratio. In the regime between T and T the function a(T ) is interpolated
linearly.

Thus, the right hand side of (1.1) is a difference of two functions, see Fig. 1
(r.). For appropriate values of parameters the dynamical system (1.1) has two
metastable equilibrium states T1 and T3 separated by the unstable state T2. The
lower metastable state T1 is interpreted as describing ice age temparatures whereas
T3 determines warm ages.

This model of climate has major shortcomings and therefore cannot picture
reality. Indeed, solutions of (1.1) converge to either T1 or T3 and oscillate with pe-
riods of 105 years with relatively small amplitudes, due to the smallness of b. Most
importantly, however, the typically observed spontaneous and rapid transitions
between ‘cold’ and ‘warm’ states are impossible.

To overcome this difficulty C. Nicolis and Benzi et al. added a noise term to
the energy-balance equation (1.1) and obtained the following simple SDE for the
global temperature:

c
dT (t)
dt

= Q(t)(1 − a(T (t)))− σT (t)4 +
√
εẆt, c > 0, (1.2)

whereW is a standard one-dimensional Brownian motion and ε > 0. In this setting,
transitions between meta-stable states become possible, and — most importantly
— transition times are small (of the order 102 years) and much more realistic.

In the one-dimensional setting of the system (1.2) one can always represent
the drift term as a gradient in the variable T of some potential function U , i.e. we
can find U such that

−∂U(T, t)
∂T

= Q(t)(1− a(T (t)))− σT (t)4.

Of course, the potential depends on time. Fig. 2 shows the incoming and
outgoing radiation, their difference, and the corresponding potential function at
times when the solar constant takes its minimum (left column) and maximum
(right column). In terms of the potential U , equation (1.2) describes the dynamics
of an overdamped Brownian particle in a double well potential, where the minima
of the potential wells correspond to the ‘cold’ and ‘warm’ global temperatures. The
depths of the potential wells vary periodically in time, and the left well is deeper
for approximately 5× 104 years. Clearly, this periodic and deterministic variation
of the wells’ depths is the most important feature of the potential U .

To catch the essentials of the effect and at the same time to simplify the
problem we will work with a time-space asymmetric double well potential. In the
strip (x, t) ∈ R × [0, 1) it is defined by the formula

U(x, t) =

{
U1(x), t ∈ [0, 1

2 ),
U2(x) = U1(−x), t ∈ [12 , 1).

(1.3)

It is periodically extended for all times t by the relation U(·, t) = U(·, t + 1), see
Fig. 3. We assume that the potential has two local minima at ±1 and a local
maximum at 0, that U1(−1) = −V

2 , U1(1) = − v
2 , 2

3 <
v
V < 1, and U1(0) = 0. We
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Fig. 2. The drifts of (1.2) and the corresponding potentials at
times when the solar constant takes its minimum (l.) and maxi-
mum (r.).
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Fig. 3. Time-periodic potential U .

also suppose that the extrema of U are not degenerate, i.e. the curvatures at these
points do not vanish.

A trajectory of a Brownian particle in this potential is described by the SDE

dXε,T
t = −U ′(Xε,T

t ,
t

T
) dt+

√
ε dWt, Xε,T

0 = x ∈ R, (1.4)

where ε > 0 is the noise intensity, and T > 0 the period.
The problem of finding an intensity characterizing stochastic resonance now

consists in determining an optimal tuning ε = ε(T ), i.e. the noise intensity for
which the trajectories Xε,T look ‘as periodic as possible’. Of course, in these terms
stochastic resonance is a rather unprecise concept. To make it precise at least
requires measuring periodicity in diffusion trajectories.
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2. Freidlin’s approach

Using large deviations theory, M. Freidlin [8] explains periodicity as a quasi-
deterministic property of diffusion trajectories for very large period lengths.

Consider, for example, a Brownian particle in the time homogeneous double
well potential U1 described by the SDE

dXε
t = −U ′1(Xε

t ) dt+
√
ε dWt. (2.1)

For small ε, this stochastic system can be considered as a small white noise pertur-
bation of the deterministic dynamical system ẋ = −U ′1(x). The Freidlin-Wentzell
theory of large deviations [9] allows to study asymptotic properties of (2.1) as
ε → 0 in terms of the geometric properties of the potential U1. It is intuitively
clear that for small noise intensities the sample paths of (2.1) spend most of the
time in small neighborhoods of the meta-stable states ±1. Jumps between the
wells occur, but very rarely. The probability of these transitions can be estimated
in terms of the so-called quasipotential which measures the work to be done by
the diffusion in order to travel between points in the potential landscape. Let, for
instance, Xε

0 = −1 and x belong to the left well. Then the quasipotential V (−1, x)
can be found explicitly and equals 2(U1(x) − U1(−1)) and thus twice the height
of the potential barrier between −1 and x. If x belongs to the right well and
0 < x ≤ 1, then V (−1, x) = 2(U1(0)−U1(−1)). Only the way ‘up’ in the potential
landscape contributes to the quasipotential; the way ‘down’ requires no work and
is free. Quasipotentials are defined for rather general classes of stochastic systems
by means of action functionals, for details see [9].

Let us define the first entrance time

τεy = inf{t ≥ 0 : Xε
t = y}.

Then the quasipotential at x and y determines the exponential order of τεy if the
diffusion starts in x (under the law Px) in the limit of small noise, see [9, 8].

Theorem 2.1 (‘transition law’). For all δ > 0 the following holds:

lim
ε↓0

Px(e
1
ε (V (x,y)−δ) < τεy < e

1
ε (V (x,y)+δ)) = 1.

The most important statement of the theorem is that the system (2.1) has
two exponentially different intrinsic time scales: the exit time from the left well
is of the order eV/ε whereas the exit time from the right well of the order ev/ε.
This results in the following observation: if we consider the trajectories of (2.1) on
the exponentially long time intervals Tε ∝ eλ/ε, then for 0 < λ < v the trajectory
typically does not leave its initial well, and for λ > v it spends most of its time
near −1 (in probability). In other words, on the different time scales the system
(2.1) has different meta-stable states.

This description of meta-stable behaviour can be transferred to the time in-
homogeneous system (1.4). Let the period T = Tε be such that limε↓0 ε logTε =
λ > 0. Then for λ < v the diffusion does not have enough time to leave even the
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shallow well during one half period, and therefore, as in the time homogeneous
case, does not leave its initial well. However, if λ > v, a new effect appears.

Theorem 2.2 (Freidlin, [8]). Let the process Xε,T satisfy (1.4), and

lim
ε↓0

ε logTε > v. (2.2)

Then for all A > 0 and δ > 0 the following holds true:

Λ{t ∈ [0, A] : |Xε,T
Tεt

− φ(t)| > δ} → 0

in Px-probability as ε→ 0, where Λ{·} denotes Lebesgue measure on R, and

φ(t) =

{
−1, t (mod 1) ∈ [0, 1

2 ),
1, t (mod 1) ∈ [ 12 , 1),

is the coordinate of the global minimum of U(·, t), see Fig. 4.
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Fig. 4. On time intervals satisfying condition (2.2) the diffusion
Xε,T is close to the deterministic periodic function φ.

Theorem 2.2 suggests a measure of periodicity of diffusion trajectories: take
the Lebesgue measure of those times the trajectories spend outside of a δ-tube
around the deterministic discontinuous periodic function φ. Condition (2.2) on
period Tε and noise intensity ε provides a family of tunings, without, however,
suggesting an optimal one to determine the resonance point. This is illustrated by
Fig. 4 (r.) which clearly suggests that for large Tε excursions to the ‘wrong’ well
are not very long but frequent and destroy a periodic picture.

3. Spectral power amplification

The coefficient of spectral power amplification (SPA) is one of the physicists’ fa-
vorite measures to measure periodicity of random trajectories, see e.g. [4, 14, 10,
1, 19]. For the diffusion (1.4) it is defined by

ηX(ε, T ) =
∣∣∣∣∫ 1

0

Eµ(X
ε,T
Ts ) · e2πis ds

∣∣∣∣2 . (3.1)
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The function ηX having noise intensity and the period of time variation of the
potential as arguments has a clear physical meaning. It shows how much energy
is carried by the averaged path of the diffusion with noise amplitude ε on the
frequency 2π

T . The expectation Eµ indicates that averages are taken with respect
to the time-periodic equilibrium measure of Xε,T . This will be explained in detail
later.

Fig. 5 borrowed from [1] where Ω corresponds to our 2π
T and D to the dif-

fusion intensity ε shows that physicists expect a local maximum of the function
ε 7→ ηX(ε, ·). The random paths have their strongest periodic component at the
value of ε for which the maximum is taken. In fact, Fig. 5 depicts not the SPA
coefficient of the diffusion itself, but of its so-called ‘effective dynamics’. This ‘ef-
fective dynamics’ of the diffusion in a double well potential is a two-state Markov
chain living in ±1 which reflects only the interwell dynamics of the diffusion while
it neglects fluctuations inside the wells. It is a priori believed in the physical lit-
erature that the ‘effective dynamics’ adequately describes the properties of the
diffusion in the limit of small noise.

10−2 10−1 100

D

10−1

100

101

102

η

Ω=0.01
Ω=0.1
Ω=0.5.
Ω=1.0

Fig. 5. SPA coefficient as a function of noise amplitude has a
well pronounced maximum depending at the frequency of periodic
perturbation [1].

To determine the ‘optimal tuning’ or stochastic resonance point if periodic
tuning is measured by SPA means to find the argument ε = ε(T ) of a local maxi-
mum of ε 7→ ηX(ε, ·).

The key to the solution of this problem lies in determining the time-dependent
invariant density µ of (Xε,T

Tt )t≥0. From now on we follow [17] and [13]. Although the
diffusion is not time homogeneous, by enlarging its state space we can consider a
two-dimensional time homogeneous Markov process (Xε,T

Tt , t (mod 1)) which pos-
sesses an invariant law in the usual sense. By definition we identify the time-
dependent equilibrium density µ of (Xε,T

Tt )t≥0 with the invariant density of the
two-dimensional process. Indeed, with respect to µ and for fixed t, the law of
the real random variable Xε,T

Tt has the density µ(·, t (mod 1)). The invariant den-
sity µ is a positive solution of the forward Kolmogorov (Fokker–Planck) equation
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A∗ε,Tµ = 0, where

A∗ε,T · = − 1
T

∂

∂t
·+ε

2
∂2

∂x2
·+ ∂

∂x

(
· ∂
∂x
U

)
is the formal adjoint of the infinitesimal generator of the two-dimensional diffusion.
Moreover, from the time periodicity and time-space antisymmetry of the potential
U (1.3) one concludes that µ(x, t) = µ(−x, t+ 1

2 ) and µ(x, t) = µ(x, t+1), (x, t) ∈
R × R+ .

This results in the following boundary-value problem used to determine µ.
It is enough to solve the Fokker–Planck equation A∗ε,Tµ = 0 in the strip (x, t) ∈
R × [0, 1

2 ] with boundary condition µ(x, 0) = µ(−x, 1
2 ), x ∈ R.

4. The spectral gap

We have assumed in (1.3) that the time dependent potential U is a step function
of the time variable. In the region (x, t) ∈ R × (0, 1

2 ) it is identical to a time
independent double well potential U1, and therefore the Fokker–Planck equation
turns into a one-dimensional parabolic PDE

1
T

∂

∂t
µ(x, t) =

ε

2
∂2

∂x2
µ(x, t) +

∂

∂x

(
µ(x, t)

∂

∂x
U1(x)

)
. (4.1)

Let L∗ε denote the second order differential operator appearing on the right hand
side of (4.1).

To determine µ we shall use the Fourier method of separation of variables
which consists in expanding the solution of (4.1) into a Fourier series with respect
to the system of eigenfunctions of the operator L∗ε. It turns out that under the con-
dition that U1 is smooth and increases ‘fast enough’ at infinity (for example, as fast
as x4), the operator L∗ε is essentially self-adjoint in L2(R, e

2U1
ε dx), its spectrum is

discrete and non-positive, and the corresponding eigenspaces are one-dimensional.
Denoting by ‖ · ‖ and 〈·, ·〉 the norm and the inner product in L2(R, e

2U1
ε dx) we

consider the following formal Floquet type expansion

µ(x, t) =
∞∑
k=0

ak
Ψk(x)
‖Ψk‖ e

−Tλkt, (x, t) ∈ R × [0, 1
2 ], (4.2)

where {−λk, Ψk

‖Ψk‖}k≥0 is the orthonormal basis corresponding to the spectral de-
composition of L∗ε, where λ0 < λ1 < λ2 < · · · , and the Fourier coefficients ak are
obtained from the boundary condition µ(x, 0) = µ(−x, 1

2 ), x ∈ R.
Here is the key observation opening the route towards finding local maxima

of the SPA coefficient. The terms in the sum (4.2) decay in time exponentially
fast with rates λk, and therefore the terms corresponding to larger eigenvalues
contribute less than the ones belonging to the low lying eigenvalues. This under-
lines their key importance. Fortunately, in the case of a double well potential the
following theorem holds.
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Theorem 4.1 (‘spectral gap’). In the limit of small noise, the following asymptotics
holds:

λ0 = λ0(ε) = 0, and Ψ0 = e−
2U1

ε ,

λ1 = λ1(ε) =
1
2π

√
U ′′1 (1)|U ′′1 (0)| · e−v/ε(1 +O(ε)),

λ2 = λ2(ε) ≥ C > 0 uniformly in ε.

The result of Theorem 4.1 plays a crucial role in our analysis. There is a spec-
tral gap between the first eigenvalue and the rest of the spectrum. Consequently,
only the first two terms of (4.2) can have an essential contribution to the SPA
coefficient ηX .

5. Asymptotics of the SPA coefficient

The following theorem gives the asymptotics of the first two Fourier coefficients
a0 and a1.

Theorem 5.1.

a0 = ‖Ψ0‖,

a1 =
‖Ψ1‖
‖Ψ0‖2

· 〈Ψ0(−·),Ψ1〉
‖Ψ1‖2 − e−

1
2Tλ1〈Ψ1(−·),Ψ1〉

+ r

where r vanishes in the limit of small noise and for T ≥ exp {(v + δ)/ε}, δ being
positive and sufficiently small.

Recall the definition (3.1) of the SPA coefficient. Denote

SX(ε, T ) =
∫ 1

2

0

EµX
ε,T
Ts · e2πis ds. (5.1)

Then we identify ηX = 4|SX |2.
Theorem 5.2. Let T ≥ exp {(v + δ)/ε} for δ positive and sufficiently small. Then
the following expansion for SX holds in the small noise limit ε→ 0

SX =
1
πi
b0 +

1
πi− 1

2λ1T
b1 + r1

where the rest term r1 tends to zero and the coefficients are given by

b0 =
∫
y e−

2U1(y)
ε dy∫

e−
2U1(y)

ε dy
,

b1 = −1 + e−
1
2Tλ1

2
·
∫
yΨ1(y) dy∫
e−

2U1(y)
ε dy

· 〈Ψ0(−·),Ψ1〉
‖Ψ1‖2 − e−

1
2Tλ1〈Ψ1(−·),Ψ1〉

.
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Finally,

ηX = b20
4
π2

(λ1T )2

4π2 + (λ1T )2
+R. (5.2)

where R tends to zero with ε.

Let us now study the resonance behaviour of the SPA coefficient ηX , i.e. in-
vestigate whether it has a local maximum in ε. We formulate the following Lemma
which is obtained by application of Laplace’s method of asymptotic expansions of
singular integrals, see [7, 16] or also [17, 13].

Lemma 5.3 (‘Laplace’s method’). In the small noise limit, the following holds true:

b0 = −1− 1
4
U

(3)
1 (−1)
U ′′1 (−1)2

ε+O(ε2),

b1 = −1 +O(ε),

and consequently

b20 = 1 +
1
2
U

(3)
1 (−1)
U ′′1 (−1)2

ε+O(ε2), (5.3)

(b0 − b1)2 = O(ε2).

Now we can formulate our main theorem.

Theorem 5.4. Let us fix δ positive and sufficiently small and ∆ > v + δ. Let also
U1(x)− 2U1(−x) < v+V for all x ∈ R (no strong asymmetry!). Then for T →∞
and ε from the domain

v + δ

logT
≤ ε ≤ ∆

logT
(5.4)

the following asymptotic expansion for the SPA coefficient holds:

ηX(ε, T ) =
4
π2

(
1 +

1
2
U

(3)
1 (−1)
U ′′1 (−1)2

ε

)
+O

(
1

log2 T

)
.

This result has the following surprising consequences.

Corollary 5.5. For T →∞ and ε ∈ [ v+δlog T ,
∆

log T ] the SPA coefficient is a decreasing

function of ε if U (3)
1 (−1) < 0 and an increasing function of ε if U (3)

1 (−1) > 0.

Thus, the SPA coefficient as quality measure for tuning shows no resonance
in a domain above Freidlin’s threshold for quasi-deterministic periodicity (Theo-
rem 2.2). This contradicts the physical intuition for the ‘effective dynamics’. The
reason for this surprising phenomenon can only be hidden in the intrawell be-
haviour of the diffusion neglected when passing to the reduced Markov chain.
We return to this question later. Let us next study mathematically the ‘effective
dynamics’ of the diffusion (1.4).
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6. The ‘effective dynamics’: two-state Markov chain

The idea of approximation of diffusions in potential landscapes by appropriate
finite state Markov chains in the context of stochastic resonance was suggested
by Eckmann and Thomas [6], and C. Nicolis [15], and developed by McNamara
and Wiesenfeld [14]. In this section we follow [17, 13]. The discrete time case was
studied in [12].

In order to catch the main features of the interwell hoppings of the diffusion
(1.4) we consider the time inhomogeneous Markov chain Y ε,T living on the dif-
fusion’s meta-stable states ±1. The infinitesimal generator of Y ε,T is periodic in
time and is given by

Qε,T (t) =



(
−ϕ ϕ

ψ −ψ

)
, t

T (mod 1) ∈ [0, 1
2 ),(

−ψ ψ

ϕ −ϕ

)
, t

T (mod 1) ∈ [12 , 1).

The transition rates ϕ and ψ which are responsible for the similarity of the two
processes are chosen to be exponentially small in ε:

ϕ =
1
2π

√
U ′′1 (−1)|U ′′1 (0)| · e−V/ε and ψ =

1
2π

√
U ′′1 (1)|U ′′1 (0)| · e−v/ε.

To exponential order they correspond (as they should) to the inverses of the
Kramers’ transition times (see Theorem 2.1). The invariant measure of Y ε,TTt can
be obtained as a solution of a forward Kolmogorov equation and is given by

ν−(t) =
ψ

ϕ+ ψ
+
ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2 (ϕ+ψ)Tt

,

ν+(t) =
ϕ

ϕ+ ψ
− ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2 (ϕ+ψ)Tt

, t ∈ [0, 1
2 ],

and ν±(t) = ν∓(t+ 1
2 ) for t ≥ 0.

We define the SPA coefficient ηY for the Markov chain Y ε,T analogously to
(3.1). In the much simpler setting given it can be found explicitly.

Theorem 6.1. For all ε > 0 and T > 0 the following holds:

ηY (ε, T ) =
4
π2

T 2(ϕ− ψ)2

4π2 + T 2(ϕ + ψ)2
. (6.1)

Compare (6.1) with (5.2). Since (ϕ ± ψ)2 ≈ λ2
1 in the limit of small ε, the

formulae for ηX and ηY differ only in the ‘geometric’ pre-factor b20 and the asymp-
totically negligible rest term R.

The exact formula (6.1) allows to study the local maxima of ηY as a function
of noise intensity for large periods T .
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Theorem 6.2. In the limit T →∞ the function ε 7→ ηY (ε, T ) has a local maximum
at

ε(T ) ≈ v + V

2
1

logT
.

The ‘resonance’ behaviours of ηX and ηY are quite different. Whereas the
diffusion’s SPA has no extremum for small ε, the Markov chain’s always has. What
can be responsible for this discrepancy? Note that the Markov chain mimicks only
the interwell dynamics of the diffusion. Thus, the SPA coefficient ηY measures only
the spectral energy contributed by interwell jumps. On the other hand, ηX also
counts the numerous intrawell fluctuations of the diffusion. These fluctuations
have small energy. But since the diffusion spends most of its time near ±1 the
local asymmetries of the potential at these points become important and destroy
optimal tuning.

To underpin this heuristics mathematically, let us now make the idea of ne-
glecting the diffusion’s intrawell fluctuations precise. For example, we cut off those
among them which have not enough energy to reach half the height of the potential
barrier between the wells. Consider the cut-off function g defined by

g(x) =


−1, x ∈ [x1, x2],
1, x ∈ [y1, y2],
x, otherwise,

where x1 < −1 < x2 < 0 and 0 < y1 < 1 < y2 are such that U1(x1) = U1(x2) =
−V

4 and U1(y1) = U1(y2) = − v
4 , see Fig. 6. Now we study the modified SPA

−1 1 x

g(x)

−1

1

x1 x2 y1 y2

Fig. 6. Function g designed to cut off diffusion’s intrawell dynamics.

coefficient of a diffusion defined by

η̃X(ε, T ) =
∣∣∣∣∫ 1

0

Eµ

[
g(Xε,T

Ts )
]
e2πis ds

∣∣∣∣2 .
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Following the steps of Section 5 we obtain a formula for η̃X which is quite
similar to (5.2) and (6.1):

η̃X(ε, T ) = b̃20
4
π2

(λ1T )2

4π2 + (λ1T )2
+ R̃,

where R̃ is a small rest term, and

b̃20 =

(∫
g(y)e−

2U1(y)
ε dy∫

e−
2U1(y)

ε dy

)2

= 1− 4

√
U ′′1 (−1)
U ′′1 (1)

e−
V−v

ε (1 +O(ε))

(compare to (5.3)).
The modified geometric pre-factor b̃20 is essentially smaller than its counter-

part b20. This has crucial influence on the SPA coefficient η̃X : in the limit of large
period and small noise its behaviour now reminds of ηY .

Theorem 6.3. Let the assumptions of Theorem 5.4 hold. Then for any γ > 1 in
the limit T →∞ the function ε 7→ η̃X(ε, T ) has a local maximum on[

1
γ

v + V

2
1

logT
, γ
v + V

2
1

logT

]
.

In other words, the optimal tuning for the measure of goodness η̃X exists and is
given approximately by

ε(T ) ≈ v + V

2
1

logT
.
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