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Abstract

We consider financial markets with agents exposed to external sources of risk
caused for example by short term climate events such as the South Pacific sea
surface temperature anomalies widely known under the name El Nino. Since
such risks cannot be hedged through investments on the capital market alone,
we face a typical example of an incomplete financial market. In order to make
this risk tradable, we use a financial market model in which an additional insur-
ance asset provides another possibility of investment besides the usual capital
market. Given one of many possible market prices of risk each agent can maxi-
mize his individual exponential utility from his income obtained from trading in
the capital market, the additional security, and his risk exposure function. Under
the equilibrium market clearing condition for the insurance security the market
price of risk is uniquely determined by a backward stochastic differential equa-
tion. We translate these stochastic equations via the Feynman-Kac formalism
into semi-linear parabolic partial differential equations. Numerical schemes are
available by which these semilinear pde can be simulated. We choose two simple
qualitatively interesting models to describe sea surface temperature, and with
an ENSO risk exposed fisher and farmer and a climate risk neutral bank three
model agents with simple risk exposure functions. By simulating the expected
appreciation price of risk trading, the optimal utility of the agents as a function
of temperature, and their optimal investment into the risk trading security we
obtain first insight into the dynamics of such a market in simple situations.
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Introduction

In this paper, we continue the treatment of control and dynamical hedging of risks
exterior to usual financial markets, which we started in [15]. In the latter paper we
designed a simple model for making market external risk tradable which is based on
the key ideas of market completion in a partial equilibrium. We proved the existence
of a unique partial equilibrium, in which all the agents were able to optimally trade
their individual exposure to the external risk.

Here we illustrate these theoretical results by a detailed study of a particular risk
source, created by the El Niño Southern Oscillation (ENSO). This risk source will
suggest a particular market consisting of agents exposed to ENSO risk. We shall use
numerical schemes to be detailed below, by means of which we simulate the performance
of the market of ENSO risk trading in some simple toy situations. This provides first
insight into the market dynamics and triggers further conceptual questions.

We first briefly explain this climate risk source. ENSO is understood as the randomly
periodic event of an anomalous rise of the sea surface temperature of the Eastern
Pacific just south of the equator near the American coast, striking in a random period
every 3-8 years around Christmas. Some of the widely known local climatic changes
it triggers are: an increased precipitation rate on the western hemisphere, while the
eastern hemisphere may suffer from draughts. These local climate changes have severe
economic consequences. Due to higher sea surface temperatures, catch rates for many
species of fish in South American countries drop significantly during ENSO years. At
the same time, for instance rice or cotton farming may be more profitable in usually
dry areas of the same countries, thanks to the wetter weather. So, while certain parts
of local economies suffer from ENSO, at the same time other parts may profit. This
leads us to conclude that economically the external risk source given by ENSO may
create different types of agents with complementary or at least negatively correlated
interests. It is not hard to figure out that the numerous globally felt climatic and
thus economical consequences generate a variety of agents exposed to the risk in very
different, often complementary ways. See for example Gaol and Manurung [13] and
Mizuno [26] for the dependence of catch numbers for big eye tuna in the South Java
sea waters on the ENSO cycle.

The model we propose to transfer this risk among affected agents is discussed in
detail in the companion paper [15]. In our climate risk example it takes the following
form. We consider an economy with a finite number of agents a ∈ I, represented for
instance by individual farmers or fishers, banks, or companies like insurance or even
reinsurance companies. Their common feature is their exposure to the risks caused by
ENSO. In order to describe this exposure in an analytically accessible way, we represent
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the climate (sea surface temperature) process K by simple low dimensional stochastic
differential equations suggested by the climate physics literature. The most common
used for the purpose of predictions of the event is based on an Ornstein-Uhlenbeck
process in dimension 15, where the dimensionality comes from statistical data fitting
(see Penland [27]). A 2-dimensional conceptual bi-stable model with intrinsic random
periodicity is obtained from a deterministic nonlinear equation coupling thermocline
depth and sea surface temperature perturbed by random noise representing trade wind
coupling at sea level (see Fang, Barcilon, Wang [1]). Another way to obtain the random
periodicity in a simple conceptual model is described by Battisti [4]. Here the delay
coupling to the state the randomly perturbed system experienced before it sent Kelvin
waves from the South American Pacific coast across the ocean, which were reflected
at the Japanese coast, is responsible for an intrinsic periodicity. In our simulations
we use two simple models consistent with these reduced models to describe K. In the
simplest one, K is a one-dimensional Ornstein-Uhlenbeck process. The more realistic
second one is given by a conceptual bi-stable diffusion model driven by a Brownian
motion with a time-periodic potential function which has two minima the depths of
which fluctuate periodically. The noise is implemented with intensities at which the
solution trajectories show some random periodicity which can be measured by means
of quality of periodic tuning notions (see [18], [17], [16]).

The agents composing our market are allowed to have three sources of income.
Firstly, they can trade on a stock market represented by a stock price process XS as
small traders - a hypothesis made for simplicity, which needs some further elaboration
in future work in view of the role big agents like re-insurers may play. Secondly, the
individual exposure of each agent a to climate risk is mathematically described by
some payoff functional Ha(K,XS) depending both on the climate process K and on
the stock price process XS. The risks represented by Ha cannot be hedged by the
stocks. For this reason we of course face a typical incomplete market. We complete
the market by constructing a special security XE, through which climate risk becomes
tradable and which therefore acts as the third source of income. Agents active on the
market may buy or sell individual amounts of this climate index according to their
random risk exposures. If a particular market price of risk θ is given, every agent is
able to price his share of risk to be traded. He will then choose an investment strategy
which optimizes the individual utility from his total income composed of his investment
both into the usual capital market and into the climate index, and of his random risky
income. There will be a unique market price of risk θ∗ for which a market equilibrium is
achieved, i.e. for which there is zero excess demand for the climate index. This pricing
rule is determined by the intervention of one of the main tools of stochastic control
theory in incomplete markets, backward stochastic differential equations (BSDE). For
details of this model and references to literature concerning our key techniques of
market completion, utility maximization, BSDE, and asset design see [15].

On the one side, typical toy agents we have in mind for our simulations will be just
a pair composed of a fisher and a (rice) farmer (f or r) subject to the hazard of ENSO,
and whose random income Hf (Hr) depends uniquely on the climate process K. They
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are given by some cumulative functional H of the form

H =

∫ T

0

φ(Ks)ds or H =

∫ T

0

φ(s,Ks, X
S(s))ds,

where φ is an individual bounded revenue function taking its maximum for example
at some low temperature kf close to the normal sea surface temperature in the case
of the fisher, or at some higher temperature kr in the case of the rice farmer. The
functions may in turn be relatively small at the corresponding opposite values kr resp.
kf . On the other side, there is a climate risk neutral agent such as a bank (b) whose
income Hb is a function of the stock market evolution alone. Trading climate risk for
these agents can be viewed in the following way. f wants to hedge fluctuations caused
by the external factor and signs a contract with b to transfer part of this risk. b’s
interest in the contract could be based on the wish to diversify its portfolio. The main
example of the global ENSO risk provides a number of further relevant risk functionals
for different, eventually complementary groups of agents treated in the mathematical
parts, but not in the simulations below. For example, the exposure to ENSO for a big
agent such as a re-insurance company i will be a functional of the type

H i = g(τ,Kτ ), or H i = g(τ,Kτ , X
S(τ)),

if τ is the time ENSO strikes, which is realized by some entrance time for the process K.

This choice of income functionals for model traders used for the simulations will im-
ply that the mathematical treatment is possible in the framework of forward-backward
stochastic differential equations of Markovian character. Since the numerical analysis
of BSDE is still in its infancy (see for example [6]) and no techniques at all are available
if - as in our case - the equation is only locally Lipschitz, we first transfer our stochas-
tic simulation problem into a problem of simulating non-linear PDE. In fact, via the
generalized Feynman-Kac formalism, BSDE are associated with systems of linear or
semi-linear parabolic partial differential equations. Their solutions exist in general in
the viscosity sense, much as in Chaumont [7]. In the concrete situations we consider,
they turn out to be classical. We will use newly developed numerical schemes for non-
linear PDE from [7] to approximate and simulate them for the Ornstein-Uhlenbeck or
bistable diffusion climate processes, and the risk functionals for fishers, farmers and
bank just described. Notably, we shall be able to simulate the expected price of XE

which indicates the cumulative appreciation of trading the external risk by the affected
agents, the temporal evolution of the optimal utility for the agents in dependence on
the level of the temperature process K, and the shape of the optimal investments of
the agents into XE. This way we obtain first information on the dynamics of such a
market which will, if not quantitatively, be of interest at least for qualitative issues.

The paper is organized as follows. In section 1 we give a more formal and detailed
account of our market model, including in particular the formal links to the theory
of semi-linear parabolic pde via generalized Feynman-Kac formulas, as well as proofs
for existence, uniqueness and regularity for the pde expressing the Markovian optimal
control problem derived from our utility maximization problems on completed mar-
kets under the equilibrium constraint. We shall also explain the concrete elementary
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models for temperature processes and risk functionals used in the simulations. Section
2 is devoted to exhibiting and explaining the numerical approximation schemes and
convergence results. In section 3 we present our simulation results for the optimal allo-
cation of risk given the particular temperature processes and risk exposure functionals
for fisher, farmer and bank, and interpret the findings intuitively.

1 Analytical versions of model equations and con-

crete examples

In this section we describe formally the equations governing our model. We start on
the stochastic side. In subsection 1.1 we shall recall our market model designed to
make external risk tradable, and the main conclusions from the conceptual companion
paper [15]. For its key ingredient, a nonlinear BSDE describing the equilibrium price of
external risk, no methods of numerical simulation are known. To make our equations
amenable to better known numerical techniques, we make use of a translation technique
from BSDE to PDE theory. This crucial link between stochastic forward and backward
differential equations on the one hand and nonlinear PDE, possibly with solutions in
the viscosity sense, on the other hand is provided by a nonlinear extension of the
Feynman-Kac formula and will be explained in subsection 1.2. All stochastic equations
relevant for our purposes will be transferred into linea and semi-linear PDE by means
of this link in section 1.3. For instance, the analytical description of the optimal
investment policies of the different agents into the asset price process of the market
XS and the insurance asset XE leads to an optimal control problem in terms of a
nonlinear Hamilton-Jacobi-Bellman equation. In the final subsection 1.4 we discuss
concrete examples of risk exposure functionals which depict some of the situations
alluded to in the introduction. Existence and uniqueness questions for the different
PDEs governing the analytical description in this section will be discussed in section 2.

1.1 An equilibrium model for trading market external risks

We consider a probability space (Ω,F , IP ) with two independent Brownian motions
W1 and W2 which we take for simplicity one-dimensional, indexed by the finite time
interval [0, T ], where T > 0 is a deterministic time horizon. Let F = {Ft}0≤t≤T be the
completion of the natural filtration of W = (W1,W2) by the sets of measure 0.

We consider a simple financial market composed of 2 securities, consisting of one
bond with null interest rate

X0,t = 1, for all t ∈ [0, T ],

and 1 stock. We assume that the stock price vector process XS is given by a Markovian
SDE, i.e. :

{
dXS

s = XS
s

(
bS(s, XS

s )ds + σS(s,XS
s )dW1,s

)
, t ≤ s ≤ T,

XS
t = x1 ∈ IR.
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The coefficients bS : [0, T ]× IR 7→ IR, σS : [0, T ]× IR 7→ IR× IR are supposed to satisfy
Lipschitz conditions in the state variables.

We also consider a 1-dimensional climate process, the dynamics of which is described
by an SDE of the form

{
dKs = bK(s, Ks)ds + σK(s,Ks)dW2,s, t ≤ s ≤ T,
Kt = k ∈ IR.

The coefficients bK : [0, T ] × IR 7→ IR and σK : [0, T ] × IR 7→ IR × IR are again
Lipschitz functions of the state variables. Our model assumes independence of the
uncertainties inherent in the stock market or the climate process respectively. This
can in fact be weakened considerably. If the Gaussian noise processes driving XS and
K are correlated, say E(W1,tW2,t) = ρt, t ≥ 0, we split the climate noise into two
independent components, by setting

Xt =
1√

1− ρ
[W2,t −√ρW1,t], t ≥ 0,

to get
W2,t =

√
1− ρXt +

√
ρW1,t, t ≥ 0.

Hence essentially we obtain, with respect to another independent pair of Wiener pro-
cesses (W1, X), a stock price process XS only depending on the first component W1,
and a climate process depending on both components (W1, X). This is the setting
treated in the general framework of [15]. It is shown in a manner analogous to the
one sketched above that a unique market price of risk exists in partial equilibrium. A
numerical simulation of the market dynamics as the one performed in this paper for
the case of independent XS and K, however, is still missing in the correlated case.

1.1.1 Market completion

Market completion is achieved by adding a security XE whose market price of risk
process θE parametrizes the completion and thus the valuation of risky claims. XE

will be determined by the solution of an SDE driven by the climate uncertainty process
W2 of the form

{
dXE

s = XE
s

(
bE
s ds + σE

s dW2,s

)
, t ≤ s ≤ T,

XE
t = x2 ∈ IRd.

We will note θS = bS

σS , θE = bE

σE , and θ = (θS, θE). The probability Qθ, under which
(XS, XE) is a martingale, is given by Girsanov’s formula

dQθ

dIP

∣∣∣∣
Fs

= Zθ
s = E

(
−

∫ s

0

θtdWt

)
= exp

(
−

∫ s

0

θtdWt − 1

2

∫ s

0

||θt||2 dt

)
, s ∈ [0, T ].

(1)
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1.1.2 Agents and income

Let I be the finite set of small agents active on the market. Each agent a ∈ I is
supposed to be endowed with an initial capital va

0 ≥ 0. He invests in the market
including the insurance asset and uses an admissible trading strategy π = (π1, π2).

Therefore his wealth process is given by

V a
s = va

0 +

∫ s

0

π1,s
dXS

s

XS
s

+ π2,s
dXE

s

XE
s

, s ∈ [0, T ] (2)

(“not investing” means investing in X0, i.e. choosing the strategy π = 0).

At the end T of the trading interval, each agent a receives a stochastic income Ha,
describing the profits the company he represents obtains, which can depend on the
market and on the climate. For our purposes we assume that it has the form

Ha = ga(τ,X1,τ , Kτ ) +

∫ τ

0

ϕa(t,XS
t , Kt)dt,

where ga and ϕa are real valued bounded smooth (C∞) functions, with

τ = inf
{
s ∈]t, T ]

∣∣(s,XS
s , Ks) 6∈ O

}

the entrance time of some critical set O, an open subset of ]0, T [×IR× IR.

1.1.3 Individual utility maximization

Each agent a ∈ I, by acting on its trading strategy π, wants to maximize the expected
utility of the sum of the terminal wealth V a

T and the income Ha. His preferences are
described by an individual exponential utility function

Ua(x) = − exp (−αax) , x ∈ IR,

with individual risk aversion coefficient αa > 0. In mathematical terms, every agent
wants to attain

Ja = sup
π admissible

IE [Ua (V a
T + Ha)] . (3)

Under simple assumptions (see [15]), this quantity can be computed via well known
techniques based on duality and Legendre transforms for U . See Karatzas, Lehoczky,
Shreve [19] or Kramkov, Schachermayer [23]. The formula valid in our setting is derived
in [15], Theorem 2.2. We have

Ja = IE

[
−λa

αa

Zθ
T

]
= −λa

αa

, (4)

since Zθ is a IP−martingale, where λa is defined by

log(λa) = log(αa)− αav
a
0 + IEθ

[− log
(
Zθ

T

)− αaH
a
]
. (5)

7



1.1.4 Local Equilibrium Measure

The optimal income agent a obtains from trading in the two securities and his exposure
to external risk therefore depends on the market price of external risk θE. To determine
a unique price of risk θ∗ under which the market reaches an equilibrium under which
every agent obtains his maximal income we impose a partial market clearing condition.
It states that the total investment (πa

2)a∈I in the insurance asset satisfies the condition

∑
a∈I

πa
2 = 0 a.s. (6)

The corresponding equilibrium price of risk process θE∗, which determines completely
the structure of the security XE and a unique martingale measure QθE∗

, is computed
in [15], Theorems 3.3 and 3.5, as the solution of a nonlinear BSDE. We shall briefly
recall how this can be seen. The structure result for the optimal utility of agent a
reflected for example in (5) combines with (1) to produce for any a ∈ I the following
formula for the optimal income from trading in (XS, XE) including the income due to
risk exposure

− 1

αa

log(
1

αa

λaZ
θ
T )−Ha (7)

= − 1

αa

log

(
λa

αa

)
+

1

αa

∫ T

0

(θS
t dW1,t + θE

t dW2,t) +
1

2αa

∫ T

0

((θS
t )2 + (θE

t )2)dt−Ha.

To take into account the market clearing condition, we now calculate the total
optimal income of all agents on the market due to their trading strategies (πa

1 , π
a
2). It

amounts to the following quantity

∑
a∈I

(Ba −Ha)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t)dXS

t +

∫ T

0

(
∑
a∈I

πa
2,t)dXE

t (8)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t) σ1,tX

S
t (dW1,t + θS

t dt)

+

∫ T

0

(
∑
a∈I

πa
2,t) σE

t (dW2,t + θE
t dt)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t) σ1,tX

S
t (dW1,t + θS

t dt).

We next sum (7) in a ∈ I and equate the result to (8). The equation thus obtained
is interpreted as an equation for the unknown process θE with given parameter θS and
given risk exposure functionals Ha. To explain this, we abbreviate
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α =

(∑
α∈I

1

αa

)−1

,

H =
∑
α∈I

Ha +
1

2α

∫ τ

0

(θS
t )2dt,

z1 = θS − ασS
∑
a∈I

πa
1 ,

z2 = θE.

Observe that the equation obtained from taking the overall balance of (7) and (8)
is a static equation valid only for time T , and given by

αH = c +

∫ T

0

ztdWt +

∫ T

0

θS
t z1,tdt +

1

2

∫ T

0

z2
2,tdt. (9)

We extend it to a dynamic equation of processes, which controls the system into
the final variable αH. This is the job of the following nonlinear BSDE to be solved
by a pair of processes (h, (z1, z2)). The role of the first component h is to define the
momentary price of the claim αH, while the control process z2 provides the equilibrium
price of climate risk θE∗. The equation is given by

hs = αH −
∫ T

s

ztdWt −
∫ T

s

θS
t z1,tdt− 1

2

∫ T

s

z2
2,tdt. (10)

It is one of the main goals of this paper to compute and simulate the equilibrium
market price of risk θE∗ in simple scenarios of exposure of few agents to climate risk.
We shall assume in the sequel, and justify in the computations later, that θE∗ can be
written as a regular function of the state of the system, i.e.

θE∗
s = θ̃E∗(s,XS

s , Ks) with θ̃E ∈ C2.

In the sequel we shall use the same symbol θE for both the random process and the
real valued regular function of (s, x1, k) ∈ [t, T ]× IR× IR, since it will be clear from the
context which object we are dealing with. Hereby for notational simplicity the “*” is
suppressed. Under the conditions we impose on the coefficients of our equations, it will
be seen that θ̃E is even C∞. We emphasize that expectations are usually taken with
respect to the partial equilibrium probability QθE

and denoted by the symbol EθE
.

1.1.5 Local equilibrium under a family of linear pricing rules

The idea of market completion with a partial equilibrium just sketched can be re-
interpreted in the framework of a family of pricing rules. At the same time, this
interpretation allows an extension of our method to a more general situation. How
the agents on our market get along with these pricing rules also gives an alternative
description of how the market uses the fictitious asset featured in the concepts explained
above.
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The external risk might be too complicated to complete the market with only one
additional security. In this case completion may be attained in a different way. The
agents can trade the risk by buying and selling random payoffs among each other which
they are able to choose freely. At the beginning of the trading interval the agents sign
contracts that describe those payoffs. As before, they are allowed to freely trade at the
stock market.

Random payoffs are priced using one pricing rule for all payoffs on the market.
The value of a payoff which is replicable by a trading strategy must equal its initial
capital. In particular, a pricing rule consistent with the stock price is linear on the
agents’ replicable payoffs. We therefore use pricing rules which are linear functions
of the payoffs and which can be described as expectations under probability measures
equivalent to the real world measure P . The condition to be consistent with the
stock price in addition leads us to those equivalent probability measures for which
the stock price process is a martingale. In the version of our model described above
market completion was achieved by choosing a second security parameterized by a
market prize of risk process θE which generates a martingale under a unique probability
measure QθE

. In this version it is replaced by a step procedure: at first, the agents are
allowed to trade random payoffs which in the second step are priced with rules directly
parameterizing martingale measures QθE

.
The budget set of an agent consists of all random payoffs that are not more ex-

pensive than the sum of the initial capital and the value of his random income due
to risk exposure. It depends of course on the pricing rule which formally replaces the
introduction of the insurance asset in the model version above. To correspond to the
latter, given an admissible pricing rule, every agent chooses in his budget set the payoff
which maximizes his expected utility.

In this setting, the market clearing condition leading to the partial equilibrium reads
as follows. The difference between the sum of the incomes of the agents due to external
risk exposure and the sum of the preferred payoffs viewed with particular linear pricing
rules must be replicable by a trading strategy based on the stock alone. So partial
equilibrium is achieved through the construction of a linear pricing rule for which the
difference between risk exposure and optimal payoff can be replicated on the stock
market.

1.2 The PDE link: generalized Feynman-Kac formulas

Since methods for simulating (10) are not available at the moment, we shall transfer
our stochastic control problem of determining the equilibrium price of risk and the
associated stochastic differential equations into a problem facing linear and semi-linear
parabolic PDE. The translation uses a well known generalization of the Feynman-Kac
formalism. We will recall in this subsection the main results from this technique we
have to appeal to in our particular situation.

Let n, d ∈ N. Let O be an open subset of ]0, T [×IRn. Let t ∈ [0, T ] be an arbitrary
time, representing time of initial action. For a d−dimensional Brownian motion W ,
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and x ∈ IRn, we construct the process X t,x as the solution of the following SDE

{
dX t,x

s = b(s,X t,x
s )ds + σ(s,X t,x

s )dWs, t ≤ s ≤ τ
X t,x

t = x ∈ {y |(t, y) ∈ O} ,
(11)

and we define τ = inf {s ∈]t, T ] |(s,X t,x
s ) 6∈ O} , the first exit time of X t,x from the

domain O.

In this section, we will denote by L the infinitesimal generator associated with X t,x,
i.e. for a regular (C2) function φ,

Lφ(s, x) = b(s, x)Dφ(s, x) +
1

2
trace

[
σσ∗(s, x)D2φ(s, x)

]
, (s, x) ∈ O,

where Dφ stands for the gradient and D2φ the Hessian matrix of φ.

In all the following, we will suppose that the drift b and the diffusion matrix σ
are C∞ functions of the state variable with linear growth at infinity, and that L is
uniformly elliptic.

We first recall the well-known classical Feynman-Kac formula for linear problems,
which can be found in [21].

Theorem 1.1 Suppose that the coefficients f and h are Lipschitz functions of the
state variable with linear growth at infinity. Assume further that h is bounded, g is
continuous with polynomial growth in the state variable. We define the function v on
O by the expectation Et,x with respect to the diffusion measure starting at time t in x

v(t, x) = IEt,x

[∫ τ

t

f(s,X t,x
s )e−

∫ τ
s h(r,Xt,x

r )drds + g(τ,Xτ )e
− ∫ τ

t h(s,Xs)ds

]
. (12)

Then v is a classical solution of the following backward linear system

{
−∂v

∂s
− Lv + f − hv = 0 in O,

u(s, x) = g(s, x) on ∂O.
(13)

There is a similar formula for forward PDEs with an initial condition instead of a
terminal one.

Proof:
The simplest way to prove that the function v solves (13) is to prove that there exists
a classical solution to the PDE (13). Once this is guaranteed, we just have to apply
Itô’s formula in a well known manner to read off the PDE. So it is enough to quote
a classical existence and uniqueness result. It is valid under certain hypotheses for
the coefficients which will be seen to be satisfied in all the applications we have in
mind below. To complete the proof we therefore recall a result which can be found for
example in [12] or [14].2
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Theorem 1.2 Under the assumptions of Theorem 1.1, system (13) has a unique clas-
sical solution.

We now recall the nonlinear Feynman-Kac formula for BSDEs.

Theorem 1.3 Suppose that σσ∗ is uniformly elliptic, and O =]0, T [×IRn. In addition
to the family (X t,x)(t,x)∈[0,T ]×IRn given by (11) consider two additional processes Y and
Z defined by the following BSDE

{ −dY t,x
s = F (s,X t,x

s , Y t,x
s , Zt,x

s )ds− Zt,x
s dWs, t ≤ s ≤ τ

Y t,x
τ = g(τ, X t,x

τ ).
(14)

Assume that F : [0, T ]× IRn× IR× IRn → IR is C∞ and g ∈ C([0, T ]×C1(IRn)). Then,
for every t ≤ s ≤ τ , we have

{
Y t,x

s = u(s,X t,x
s )

Zt,x
s = σ∗Du(s,X t,x

s ),

where u is the unique classical solution of the PDE
{
−∂u

∂s
− Lu− F (s, x, u, σ∗(t, x)Du) = 0 in O,

u(s, x) = g(s, x) on ∂O.
(15)

Proof:
Again, we shall invoke a classical existence, regularity and uniqueness result, in order
to prove that the generally existing solution in the viscosity sense of (15) is in fact a
unique regular classical solution. Once this is guaranteed, the proof of the existence
may be completed by an appeal to Itô’s formula (see [22], p. 581) in a well known
manner. 2

The theorem alluded to above which guarantees the existence, uniqueness and reg-
ularity of classical solutions for (15) is taken from Taylor [29].

Theorem 1.4 Under the assumptions of theorem 1.3, system (15) has a unique clas-
sical solution w ∈ C ([0, T ], C1 (IRn)) ∩ C∞ ([0, T [×IRn).

Proof:
The proof is given in Taylor [29], in Proposition 15.1.1 on p.273. Note first that we
may and do assume that the infinitesimal generator L is in divergence form, and thus
self adjoint as a linear operator. This can be achieved by shuffling the drift part as
well as an additional drift containing Dσσ∗ to the function F in Taylor’s Proposition.
This is possible due to the regularity assumptions on b and σ. With F and L thus
modified, we next have to make sure that under the given assumptions the hypotheses
of this Proposition are satisfied. For convenience, we recall these hypotheses. For any
integer r ≥ 0, they claim

etL : Cr+1([0, T ]× IRn) → Cr+1([0, T ]× IRn)
is a strongly continuous
semigroup, for t ≥ 0,

(16)

Φ :
Cr+1([0, T ]× IRn) → Cr([0, T ]× IRn)

ϕ 7→ F (ϕ,Dϕ)
is a locally Lipschitz map, (17)

12



and, for some γ < 1,

||etL||L(Cr([0,T ]×IRn),Cr+1([0,T ]×IRn)) ≤ Ct−γ. (18)

The condition on F is evidently satisfied. To verify the conditions on the semigroup
of L, we refer to Davies [8]. Strong continuity is due to [8], Theorem 1.4.1, p.22. The
smoothing property is related to [8], Theorem 5.2.1, p. 149, and the large time asymp-
totic property can be obtained from [8], Theorem 2.3.6, p. 73. 2

1.3 The key PDE of our model

In the following subsection, we shall use the techniques of subsection 1.2 to derive
the main parabolic linear or nonlinear PDE relevant for our model. We start with
the individual utility maximization problem for the agents on the market according to
subsubsection 1.1.3.

1.3.1 PDE for individual maximal utility

Fix a ∈ I. The expectation in the explicit representation of the maximal utility for
agent a in (5) leads to a linear PDE. To see this, define for t ∈ [0, T ], x1 ∈ IR, k ∈ IR

χ(t, x1, k) = IEθE [− log
(
Zθ

T

)− αaH
a
]

= IEθE

[∫ T

t

(∣∣∣∣
∣∣∣∣−

1

2
θ
(
s,XS

s , Ks

)∣∣∣∣
∣∣∣∣
2

− αaϕ
a
(
s,XS

s , Ks

)
)

ds− αag
a
(
T, XS

T , KT

)
]

.

An appeal to the backward version of Theorem 1.1 translates the stochastic utility
maximization formula into a linear backward PDE.

Corollary 1.1 Let L̃ be the infinitesimal generator of the diffusion (XS, K) under Qθ,
determined for a regular function φ by

L̃φ =
(
bK − θEσK

) ∂φ

∂k
+

1

2
trace

{(
x2

1(σ
S)2 0

0 σ2
K

)
D2φ

}
.

Then χ is the unique classical solution of the following backward PDE

{
−∂χ

∂t
− L̃χ− 1

2
||θ||2 − αaϕ

a = 0

χ(T, x1, k) = −αag
a(x1, k).

(19)

Proof:

The result follows from Theorem 1.1 in dimension n = 2 with b =

(
0

bK − θEσK

)
,

σσ∗ =

(
x2

1(σ
S)2 0

0 σ2
K

)
, f = −1

2
||θ||2−αaϕ

a, g = −αag
a and h = 0. Obviously, f and

h are Lipschitz continuous and possess linear growth at infinity, g is continuous and

13



bounded. There is one small gap here, which can be easily overcome. The diffusion
matrix σσ∗ is not uniformly elliptic, due to the appearance of x2

1 in the first diagonal
entry. But since the generated diffusion does not visit the boundary x1 = 0, we may
argue by using a logarithmic coordinate change in x1 at the beginning of the analysis
(see the proof of Corollary 1.3). By this change, the diffusion matrix becomes constant
in the first diagonal entry, and thus uniformly elliptic. The drift is modified, but stays
Lipschitz with linear growth at infinity. The change of variable being a regular bijection
of the domain, existence and uniqueness of solutions in the two coordinate systems are
equivalent. 2

If, as usual, the initial time of action is 0, we have

Ja = − exp (−αav
a
0 + χ(0, x1, k)) .

1.3.2 PDE for optimal portfolio

While Corollary 1.1 offers a convenient possibility of describing the optimal utility,
an analytic access to the actual optimal portfolio strategies (π1, π2), the quantities of
(XS, XE) to be invested, requires to dig a little deeper. We have to invoke the basic
results of stochastic control theory (see for example [24] or [5]).

Fix as before a ∈ I and suppose that the trading period begins at a time t ∈]0, T ],
each agent starting with an initial capital va

t (and XS
t = x1 and Kt = k). a wants to

attain his value function

Ja(t, x1, k, va
t ) = sup

π admissible
IEt,x1,k,va

t
[Ua (V a

T + Ha)] .

Here Et,x1,k,va
t

denotes the expectation with respect to the two dimensional diffusion
(XS, K) starting at time t in (x1, k), with initial capital va

t . By the same calculus we
have

Ja(t, x1, k, va
t ) = − exp (−αav

a
t + χ(t, x1, k)) , (20)

where χ is the classical solution of the PDE of Corollary 1.1.
Let us rewrite the wealth process V a defined in (2) in terms of the proportions p =

(p1, p2) to be invested in (XS, XE). Formally πi

V a = pi, and we now have p0+p1+p2 = 1.
In these terms we may write

dV a
s

V a
s

= p1,s

(
bSds + σSdW1,s

)
+ p2,s

(
θEds + dW2,s

)
,

so that the coefficients of this SDE controlled by p do not depend on XE.

Equation (20) yields that the function Ja is C2, as is the function χ. So, using
theorem 1.3.1, p. 25, in [7] this implies that Ja solves the following Hamilton-Jacobi-
Bellman (HJB) equation





∂Ja

∂t
(s, x1, k, v) + sup

p
{LpJa(s, x1, k, v)} = 0 for (s, x1, k) ∈ O

Ja(s, x1, k, v) = Ua(v + ga(x1, k)) for (s, x1, k) on ∂O,
(21)
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where O is the open set from 1.1.2, Lp is the infinitesimal generator of the diffusion
s 7→ (XS

s , Ks, V
a
s , ), i.e. the differential operator determined by its value for a regular

function φ by

Lpφ(s, x1, k, v) =




x1b
S(s, x1)

bK(s, k)
v

(
p1b

S + p2θ
E
)







∂φ
∂x1
∂φ
∂k
∂φ
∂v




+
1

2
trace








x2
1(σ

S)2 0 vp1x1(σ
S)2

0 σ2
K vp2σK

vp1x1(σ
S)2 vp2σK v2

(
p2

1(σ
S)2 + p2

2

)







∂2φ
∂x2

1

∂2φ
∂x1k

∂2φ
∂x1v

∂2φ
∂x1k

∂2φ
∂k2

∂2φ
∂kv

∂2φ
∂x1v

∂2φ
∂kv

∂2φ
∂v2








.

(22)
If the optimal control process exists, it is given in feedback form, i.e. as a function

of the state of the system by

p(s, XS
s , Ks, V

a
s ) = arg max

p
LpJa(s, XS

s , Ks, V
a
s ). (23)

Formulas of this type have been derived for example in Fleming, Soner [11], p.170, in
a general setting, and also in [5] and [24]. As soon as this process p is well-defined, it
coincides with the optimal strategy. In our case, existence problems for p are covered
by (19) which guarantees the existence of a classical solution of the HJB equation.

Using (20), we can express the optimal proportions p in terms of the function χ
defined by system (5) of Corollary 1.1. This will allow us to justify the existence of the
optimal control.

We then have to find p1 which maximizes

p1

(
vbS ∂Ja

∂v
+ vx1σ

S ∂2Ja

∂v∂x1

)
+

1

2
(p1)

2

(
v2(σS)2∂2Ja

∂v2

)

and, independently, p2 which maximizes

p2

(
vθE ∂Ja

∂v
+ vσK

∂2Ja

∂v∂k

)
+

1

2
(p2)

2

(
v2∂2Ja

∂v2

)
.

This is seen by applying (22) to Ja, separating the p1− and the p2−terms from the
resulting polynomial in (p1, p2) and separately maximizing these. By (20), we have
∂Ja

∂v
= −αaJ

a, hence ∂2Ja

∂v2 = (αa)
2 Ja and ∂2Ja

∂kv
= −αa

∂Ja

∂k
. Therefore, to compute p2,

we have to maximize the expression

−p2αav

(
θEJa + σK

∂Ja

∂k

)
+

1

2
(p2)

2
(
v2(αa)

2J
)
.

Now, again by (20), ∂Ja

∂k
= ∂χ

∂k
Ja. Moreover, by definition of the utility functions, it is

clear that Ja ≤ 0. We are therefore led to the problem of minimizing

−p2αav

(
θE + σK

∂χ

∂k

)
+

1

2
(p2)

2v2(αa)
2.

The result is easily obtained by minimizing the given polynomial of degree 2 and,
together with the analogous calculation for p1 leads to the following formulas.
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Corollary 1.2 Let a ∈ I. Let χ be a solution of (5), define Ja by (20), and let XE

and therefore θE be given according to subsection 1.1. Then the solution (pa
1, p

a
2) of the

optimal control problem (23) at (XS
s , Ks, V

a
s ) = (x1, k, v) is given by

pa
1 =

bS + x1σ
S ∂χ

∂x1

v(σS)2αa

,

pa
2 =

θE + σK
∂χ

∂k
vαa

.

Accordingly, the quantity

πa
2,s = V a

s pa
2,s =

1

αa

(
θE(s,XS

s , Ks) + σK(s,Ks)
∂χ

∂k
(s,XS

s Ks)

)

is the optimal amount of money to be invested in XE by agent a at time s ∈ [t, T ].

1.3.3 PDE for equilibrium price of risk

Next we shall obtain a semi-linear parabolic PDE for the equilibrium price of external
risk, determined in the stochastic setting by (10). To simplify its derivation, let us
further abbreviate

g = α
∑
α∈I

ga,

ϕ = α
∑
α∈I

ϕa +
1

2
(θS)2,

Rs =

∫ s

0

ϕ(t,XS
t , Kt)dt.

In these terms, we obtain αH = g(τ,X1,τ , Kτ ) + Rτ and we can rewrite the BSDE
(10) as

−Ys = hs−Rs = g(τ,X1,τ , Kτ )−
∫ T

s

ztdWt−
∫ T

s

θS
t z1,tdt−1

2

∫ T

s

z2
2,tdt+

∫ T

s

ϕtdt. (24)

Now using the nonlinear Feynman-Kac formula in its version of Theorem 1.3, we see
that z and thus θE can be obtained by computing the function u, which is the classical
solution of a backward nonlinear PDE, provided the coefficient and risk functions satisfy
the following regularity hypotheses.

(H1) the system state domain O is given by the cylinder ]0, T [×]0,∞)× IR (there
is no stopping time, no Dirichlet condition).
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(H2) the terminal income g is a C1 (]0,∞)× IR) function and all the other coeffi-
cients bS, σS, bK , σK , ϕ are C∞ ([0, T ]×]0,∞)× IR) functions.

(H3) (σS)2, σ2
K are bounded below by positive constants.

Corollary 1.3 Assume that the domain and coefficient functions satisfy the hypotheses
(H1), (H2), (H3). Let u be a classical solution of the nonlinear PDE




−∂u

∂t
− bK

∂u

∂K
− 1

2

(
x2

1(σ
S)2∂2u

∂x2
1

+ σ2
K

∂2u

∂K2

)
+

1

2

(
σK

∂u

∂K

)2

− ϕ(t, x1, k) = 0 in O,

u = −g on ∂O.
(25)

Then by setting
Ys = Rs − hs = u(s,XS

s , Ks),

zs =

(
XS

s σS 0
0 σK

)
Du(s,XS

s , Ks)
(26)

we obtain the unique solution of BSDE (24).

Proof:

We shall prove that our system, under a regular change of variables, can be written
in the form {

∂u

∂t
− Lu− F (t, x, u, γ∗(t, x)Du) = 0 in O,

u(t, x) = g(t, x) on ∂O,
(27)

with

Lu =
1

2

(
γ2

1

∂2u

∂x2
+ γ2

2

∂2u

∂y2

)
,

and coefficients γ1, γ2 whose squares are bounded below by positive constants. Let us
begin formally. Suppose that ũ is a solution, in some sense, of (25). Consider a function
w̃ defined by

w̃(t, x, y) = ũ(T − t, ex, y) on [0, T ]× IR2.

It is straightforward to see that w̃ is associated with the system (27) with terminal
condition

f(x, y) = −g(T, ex, y), (28)

coefficients
γ1(x) = σS(ex), γ2(y) = σK(y), x, y ∈ IR,

and generator

F (t, (x, y), w, (wx, wy)) = −1

2
γ2

1wx + γ2wy − 1

2
γ2

2w
2
y + ϕ(T − t, ex, y). (29)

Due to (H2), f and F are regular functions, and (H3) guarantees the uniform ellip-
ticity of the operator L. Hence the assumptions of Theorem 1.4 hold. There exists
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a unique classical solution w ∈ C ([0, T ], C1 (IR2)) ∩ C∞ ([0, T [×IR2) of the system
(27),(28) and (29). Now we can define rigorously u by setting

u(t, x, k) = w (T − t, log(x), k) for (t, x, k) ∈ [0, T ]×]0,∞)× IR.

This function has clearly the announced regularity. Finally, using (26) and Itô’s for-
mula, it is easy to check that u solves (25) in the classical sense.2

Recall that θE is defined as a partial derivative of the function u in (30). The
preceding result allows us to justify this definition, moreover we obviously have

θE ∈ C
(
[0, T ], C

(
]0,∞)p × IRd

)) ∩ C∞ (
[0, T [×]0,∞)p × IRd

)
.

In particular θE is a Lipschitz continuous function, so the process XE is well-defined
by (30).

Recalling the definitions of z above and of θ in subsection 1.1, we can use Corollary
1.3 to compute explicitly θE and thus the equilibrium insurance asset process XE

through the following formulas

θE
s = σK

∂u

∂K
(s,XS

s , Ks), (30)

dXE
s = XE

s

(
θE

s ds + dW2,s

)
. (31)

1.3.4 PDE for moments of XE

We finally derive a linear PDE enabling us to compute the moments of the insurance
asset process XE in case σK is invertible. Under this hypothesis, we can write

dW2,s =
dKs − bK(s,Ks)ds

σK(s,Ks)
.

This leads us to an integral expression for X2 in terms of the trajectories of the process
K, given by

log
(
XE

t

)
= log (x2) +

∫ t

0

[
θE(s,XS

s , Ks)− 1

2
− bK(s,Ks)

σK(s,Ks)

]
ds +

∫ t

0

1

σK(s, Ks)
dKs.

If σK is even constant which is the case if for example K is an Ornstein-Uhlenbeck
process, we have

log
(
XE

t

)
= log (x2) +

∫ t

0

[
θE(s,XS

s , Ks)− 1

2
− bK(s,Ks)

σK

]
ds +

Ks −K0

σK

.

In this case the expectation of XE
t with the initial conditions X1,0 = x1, X2,0 =

x2, K0 = k may be expressed by the formula

IEx1,x2,k[X
E
t ] = x2e

− k
σK IEx1,k

[
e

Ks
σK exp

(∫ t

0

[
θE(s,XS

s , Ks)− 1

2
− bK(s,Ks)

σK

]
ds

)]

= x2e
− k

σK f(t, x1, k).
(32)
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In this case again, we may translate its computation into analysis by associating
with this expectation a PDE possessing a simple derivation from the forward linear
Feynman-Kac formula in Theorem 1.1.

Corollary 1.4 Suppose σK 6= 0 is constant. Define

f(s, x1, k) =
1

x2

e
k

σK IEx1,x2,k[X
E
t ], s ∈ [t, T ], x1, x2, k ∈ IR.

Let L be the infinitesimal generator of the diffusion (XS, K), i.e.

Lf =

(
x1b

S

bK

)
Df +

1

2
trace

{(
x1σ

S 0
0 σK

)
D2f

}
.

Then f is the solution of the forward linear PDE





∂f
∂t
− Lf −

(
θE − 1

2
− bK

σK

)
f = 0

f(0, x1, k) = exp
(

k
σK

)
.

(33)

Remark that the implicit dependence on x2 in the definition of f above can indeed be
suppressed, since XE depends only in a multiplicative way on its initial condition x2.

Proof:
The result is directly given by the forward form of theorem 1.1 with

b =

(
x1b

S

bK

)
, σ =

(
x1σ

S 0
0 σK

)
, f = 0, g = exp

(
k

σK

)
, and h = θE − 1

2
− bK

σK
.

For obtaining uniform ellipticity of the diffusion part, a procedure as in the proof of
Corollary 1.3, based on a logarithmic coordinate change in x1, again applies. 2

With the same technique, we can compute any moment of XE. For all n ∈ IN,

IEx1,x2,k[X
n
2,t] = x2 exp

(
−n

k

σK

)
fn(t, x1, k),

where fn is the solution of





∂fn

∂t
− Lfn − n

(
θE − 1

2
− bK

σK

)
fn = 0,

fn(0, x1, k) = exp
(
n k

σK

)
.

1.4 Examples

We now specify some climate processes, stock price models, and risk exposure func-
tionals we shall investigate in our numerical simulations in section 3.
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1.4.1 Temperature process

The climate process affecting the agents on our market will model the local temperature
(of air, of ocean water) evolution as a random function of time. It is therefore usually
modelled as a one-dimensional stochastic process, also for the simplicity of qualitative
numerical simulations. The reduced physical models they come from usually lead to
finite dimensional stochastic equations and describe some nonlinear interaction between
finitely many physical quantities including the local temperature. We shall base our
simulations on two of these. The first one comes from a nonlinear two-dimensional
stochastic differential equation coupling the thermocline depth in some area of the
South Pacific with the sea surface temperature (see [1]). The system turns out to be
an autonomous nonlinear stochastic oscillator which in some parameter regimes acts
as a stochastically perturbed bistable differential equation with an intrinsically defined
periodicity. For our purposes, we mimic it by taking a one-dimensional SDE driven
by a Brownian motion. It describes the motion of a state variable travelling through
a bi-stable potential landscape, with an explicit periodic dependence of the potential
shape creating a non-autonomous stochastic system that retains the characteristics of
the two-dimensional model. The second one comes from a 15-dimensional linear SDE
of the Ornstein-Uhlenbeck type with a 15×15−matrix with non-trivial rotational part
and entries determined by satellite measurements which is used in linear prediction
models for ENSO (see [27]). It creates a diffusion with non-trivial rotation numbers
implying random periodicity for the sea surface temperature contained in the model.
For our qualitative problems we may describe the temperature curve as a simple mean-
reverting linear sde with an additional deterministic periodic forcing. This leads to the
following concrete examples.

1. Ornstein-Uhlenbeck. A simple model for a temperature process fluctuating
around an average value Ka ∈ IR is given by an Ornstein-Uhlenbeck process
(centered in Ka), determined by

dKs = C(Ka −Ks)ds + σKdW2,s,

where C > 0 is the strength of restoring force to Ka, and σK > 0 the volatility.
We use this process in our simulations (cf. model A in section 3).

2. Ornstein-Uhlenbeck with periodic term. This is a rudimentary version of
the temperature part of the model used for ENSO prediction. It is obtained by
modifying the preceding example in adding a periodical perturbation

dKs =

[
C(Ka −Ks) + C ′ sin

(
2π

T0

s

)]
ds + σKdW2,s,

where C ′ > 0 is the amplitude and T0 the period of the sinusoidal periodic term.

3. Periodically forced bi-stable temperature. This is a phenomenological ver-
sion of the stochastic oscillator model for ENSO sketched above, where intrinsic
periodicity is replaced by a non-autonomous periodic dependence of the bi-stable
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function U . U is a double-well potential function, for example U(k) = k4

4
− k2

2
, k ∈

IR. The diffusion process K given by the SDE

dKs = −U ′(Ks)ds + Q. sin

(
2π

T0

s

)
ds +

√
εdW2,s

models temperature in a bi-stable environment. For ε chosen appropriately, the
trajectories of K are almost periodic. This phenomenon is investigated under
the name stochastic resonance. See [17] for a review. We use this process in our
simulations (cf. model B and C in section 3).
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Figure 1: A sample path of the bi-stable temperature process K.

1.4.2 Asset price process

The stock price model is for simplicity taken to be a geometric Brownian motion.

1. Black-Scholes. The stock price XS
t at time t is described by

dXS
s = XS

s

(
bSds + σSdW1,s

)
, s ∈ [t, T ], (34)

where bS > 0 is the rate and σS > 0 the volatility.
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1.4.3 Risk exposure of the agents

Three typical qualitative risk exposures will be considered: the one of a fisher describing
profits from fishing whose efficiency depends on the surface temperature of the ocean
and is optimal at some fixed temperature value while it drops off as temperature
deviates from this optimum. A rice farmer’s risk exposure functional may be quite
similar, his interests, however, complementary to the fisher’s. Think of the sea surface
temperature process possessing two meta-stable equilibria, a low and a high one. As
explained earlier and corresponds with the ENSO scenarios, the fisher may have his
temperature of optimal income near the lower equilibrium, while the farmer might profit
more from higher precipitation rates at the higher temperature equilibrium. This in
particular means that the fisher profits from temperature values under which the farmer
suffers most, and vice versa. The exposure of a bank may not directly dependent on
climate risk.

1. Fisher. Let τ = T , the final time of the trading interval. Let K be a local
sea surface temperature, and imagine a fishing company f ∈ I that makes most
profits if the temperature is near an optimal value k1. We can describe the income
Hf of this company on the period [0, T ] qualitatively by

Hf =

∫ T

0

ϕf (Ks)ds,

where ϕf is a positive function taking its global maximum in k1, for example

ϕf (k) = e−(k−k1)2 .

2. Farmer. The (rice) farmer or farming company may have an exposure of the
same type as the fisher. The optimal income is just obtained at a different value
kr, which is higher than kf , and may be given by the second meta-stable point of
a bi-stable process K. The income of the farmer may therefore be described by

Hr =

∫ T

0

ϕr(Ks)ds,

where ϕr is a positive function taking its global maximum in kr, for example

ϕf (k) = e−(k−k2)2 .

If we work with a bi-stable K, we see immediately that farmer and fisher have
complementary interests, and therefore are likely to profit from trading the cli-
mate risk among each other.

3. Bank. As an additional agent, we can consider a bank b whose profits only come
from its portfolio management from investment on the financial market, and
which participates in the climate risk share only by investing in the insurance
security XE. So its exposure functional will be the trivial Hb = 0.
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2 Numerical approximations results

As the main result of section 1, the stochastic equations relevant to our model have
been translated into linear or non-linear PDE. The main equations we obtained this
way are given by

• the backward linear PDE (19) describing the value function and providing the
optimal strategy for any agent on the market.

• the forward linear PDE (33) computing the moments of XE.

• the backward non-linear PDE (25) providing the coefficient θE which determines
the insurance asset XE.

In this section we design numerical schemes approximating the solutions of these
parabolic PDEs and prove their convergence. We shall employ a method initiated
by Barles and Souganidis [3] based on the well known stability results for viscosity
solutions (see [10], [2] for a general presentation) to derive a basic convergence result
which will be applicable to our schemes.

In subsection 2.1 we recall theorem 2.1 from [3], which deals with general fully non-
linear second order PDEs, and proves that any monotone, stable and consistent scheme
converges, provided that there exists a comparison result for the limiting equation.

In the next subsections, we shall explain the numerical approximation schemes we
use for our simulations, starting in the linear case1 in subsection 2.2, which can be used
to compute the solution of PDEs (19) and (33).

In subsection 2.3, we consider a non-linear equation with quadratic terms, like PDE
(25). For such an equation, the comparison result is known (see Kobylanski [22]) but
we cannot use classical schemes, and we present a new algorithm, generalizing finite
differences. The non-linearity of the original equation weakens the stability and mono-
tonicity properties of such schemes, and we solve this problem showing that under a
stronger Courant-Friedrichs-Levy (C.F.L.) condition, this scheme satisfies the condi-
tions required by the convergence result.

2.1 Convergence

To state our convergence result in a fairly general framework, let O be an open subset
of ]0, T [×IRn, and let us consider a general possibly non-linear PDE of the second order
written in the forward form

{
∂v
∂t

+ G(t, x, v, Dv,D2v) = 0 in O,
v = Ψ on ∂O.

(35)

Here G and Ψ are scalar functions, respectively continuous on O × IR× IRn × Sn and
∂O, and S denotes the set of symmetric n × n−matrices. Let ε > 0. We consider
time-explicit schemes of the form

1already presented as an example in [3]
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{
vε(t + ε, x) = S(ε)vε(t, x) if (t, x) ∈ O,
vε(t + ε, x) = Ψ(t + ε, x) in any other case,

(36)

where, for all ε > 0, S(ε) is an operator defined on L∞(O) with values in L∞(O).

We assume that the following assumptions hold.

Monotonicity :
For any ε > 0, and any function u, v ∈ L∞(O),

S(ε)u ≤ S(ε)v if u ≤ v in O. (37)

Let us note that this assumption can be relaxed (see [3] remark 2.1 p. 276), this
inequality needs only to hold within up to o(ε) terms.

Commutation with constants :
For any ξ ∈ IR,

S(ε)(u + ξ) = S(ε)u + ξ. (38)

Stability :

There exists a sequence (vε)ε>0 of solutions to the scheme (36)
which are locally uniformly bounded in L∞(O).

(39)

Consistency :
For any (t, x) ∈ O and any test function φ ∈ C∞

b (O),

lim
ε → 0

(s, y) → (t, x)

φ(s, y)− S(ε)φ(s, y)

ε
= G(t, x, φ(t, x), Dφ(t, x), D2φ(t, x)). (40)

We also assume that a strong comparison result holds for the equation (35) (see
[2], [3]), i.e.

If u is a bounded viscosity subsolution to (35)
and v is a bounded viscosity supersolution to (35),

then u ≤ v on O.
(41)

Under these conditions, we have the following convergence result derived in [3],
Theorem 2.1, p. 275, and also in [7], Theorem 2.4.5, page 81.

Theorem 2.1 Under the assumptions (37), (38), (39), (40) and (41), the solution vε

of the scheme (36) converges locally uniformly as ε → 0 to the unique viscosity solution
of PDE (35).

We note that a unique classical solution of (35) coincides with the viscosity solution.
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2.2 Approximation schemes for linear equations

Let us first treat a general backward parabolic linear PDE of the second order. Note
that equations (5) and (33) are of this form:

{
−∂u

∂t
− b.Du− 1

2
trace

[
σσ∗D2u

]
= 0 in O,

u = Ψ on ∂O.
(42)

We here assume that b : O → IRn and σ : O → IRn×n are Lipschitz continuous, Ψ is
continuous and also that a = σσ∗ is a diagonal dominant matrix, i.e.

for all j, σσ∗i,i ≥
∑

j 6=i

∣∣σσ∗i,j
∣∣ .

We use a time-explicit upwind finite differences scheme (see [7], section 2.4, page 65,
and [25]). Let ∆t = ε > 0 and ∆x = ∆x(ε) > 0 be the mesh size of a space-time grid.
We denote by V∆x the set of neighboring points of x = 0 on the space grid of mesh size
∆x.

Let us describe our scheme in the particular case O =]0, T [×IRn.

Scheme 2.1 Given ∆t > 0 and ∆x > 0, we construct a function u such that

u(T, x) = Ψ(x),

and
u(t−∆t, x) =

∑

h∈V∆x

p(x, h)u(t, x + h) = S(∆t, ∆x)u(t,.)(x), (43)

with :

p(x, 0) = 1− ∆t

∆x

d∑
i=1

|bi|(x)− ∆t

(∆x)2

d∑
i=1

(
aii −

∑

j 6=i

|aij|
)

(x),

p(x,±ei∆x) =
∆t

(∆x)2
(bi)

±(x) +
1

2

∆t

(∆x)2

(
aii −

∑

j 6=i

|aij|
)

(x),

p(x, (ei ± ej)∆x) = p(x,−(ei ± ej)∆x) =
1

2

∆t

(∆x)2
(aij)

±(x),

p(x, h) = 0 in any other case.

Consistency, monotonicity and commutation with constants of the scheme are straight-
forward. Under the C.F.L. condition

∆t ≤ (∆x)2

{
d∑

i=1

(
∆x|bi|+ aii −

∑

j 6=i

|aij|
)}−1

,
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the scheme is stable, because p(x, h) ≥ 0 and
∑

h∈V∆x

p(x, h) = 1, and S is a contraction.

In fact, we have
|u(t−∆t, x)| ≤ ||u(t, .)||∞ ≤ ... ≤ ||Ψ||∞.

Moreover, the classical uniqueness result of theorem 1.2 implies that a strong com-
parison result holds for equations (5) and (33) (see also theorem 3.3 p.18 in [10]).

Then, for both these equations, theorem 2.1 proves that u converges locally uni-
formly to the unique continuous viscosity solution, thus the unique classical solution,
as ∆t and ∆x converge to 0.

2.3 Approximation schemes for non-linear equations with quadratic
terms

We now consider a more complicated equation, the following general semilinear PDE
with quadratic terms which generalizes (25):

{
−∂u

∂t
− b.Du− 1

2
trace

[
σσ∗D2u

]
+ ||MDu||2 = 0 in O,

u = Ψ on ∂O,
(44)

where M is a n× n−matrix.

This kind of equation has been studied in the viscosity solutions framework in Koby-
lanski [22]. In particular, if we assume that the coefficients b, σ and M are Lipschitz
functions of the state variable with linear growth at infinity, theorem 3.3.2 p. 582 in
[22] states that a strong comparison result holds for (44).

Since ||MDu||2 = MDu · MDu = trace [MDuDu∗M∗] = trace [M∗MDuDu∗] =
(M∗MDu).Du, we can rewrite (44) as

{
−∂u

∂t
− (b−M∗MDu).Du− 1

2
trace

[
σσ∗D2u

]
= 0 in O,

u = Ψ on ∂O.
(45)

This gives us a simple idea for defining an approximating scheme which we again
describe in the case O =]0, T [×IRn.

Scheme 2.2 Given ∆t > 0 and ∆x > 0, we construct a function u such that

u(T, x) = Ψ(x),

and
u(t−∆t, x) =

∑

h∈V∆x

p̃(x, h)u(t, x + h) = S̃(∆t, ∆x)u(t,.)(x). (46)
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This time the transition coefficients p̃ depend on u in the following way

p̃(x, 0) = p(x, 0)− ∆t

(∆x)2

d∑
i=1

| (M∗Mδ∆xu(t, x)
)

i
|,

p̃(x,±ei∆x) = p(x,±ei∆x) +
∆t

(∆x)2

((
M∗Mδ∆xu(t, x)

)
i

)±
,

p̃(x, (ei ± ej)∆x) = p̃(x,−(ei ± ej)∆x) = p(x, (ei ± ej)∆x),

p̃(x, h) = 0 in any other case,

where

δ∆xu(t, x) =




u(t, x + e1∆x)− u(t, x)
u(t, x + e2∆x)− u(t, x)

...
u(t, x + ed∆x)− u(t, x)


 .

It is straightforward to check the consistency of this scheme with (44), and the
property of commutation with constants. Under the C.F.L. condition

∆t ≤ (∆x)2

{
d∑

i=1

(
∆x|bi|+ 2||Ψ||∞||M ||2∞ + aii −

∑

j 6=i

|aij|
)}−1

, (47)

the scheme is also stable : we have p̃(x, h) ∈ [0, 1] for all (x, h) and
∑

h

p̃(x, h) = 1 for

all x. So S̃ is a contraction and thus ||u||∞ ≤ ||Ψ||∞.

To check the monotonicity condition, let us further assume that

∆t ≤ (∆x)3. (48)

For any functions u and v such that u ≤ v, we obtain the following chain of inequal-
ities, denoting p̂ = p̃ − p and adding the subscript pu to indicate that the transition
matrix belongs to u etc:

S̃(∆t, ∆x)(u)− S̃(∆t, ∆x)(v) =
∑

h∈V∆x

(p̃u(x, h)u(t, x + h)− p̃v(x, h)v(t, x + h))

=
∑

h∈V∆x

p(x, h) (u(t, x + h)− v(t, x + h))

+
∑

h∈V∆x

(p̂u(x, h)u(t, x + h)− p̂v(x, h)v(t, x + h))

≤
∑

h∈V∆x

(p̂u(x, h)u(t, x + h)− p̂v(x, h)v(t, x + h))

≤ ∆t

(∆x)2
C ≤ ∆xC.

Here, thanks to stability, the constant C depends only on bounds on Ψ, M , b, σ and
on the Lispschitz constants of b and σ.
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Moreover, according to [22], we have a strong comparison result for the PDE (44).

Hence, Theorem 2.1 allows us to conclude that u converges locally uniformly to the
unique continuous viscosity solution u of (44), as ∆t and ∆x converge to 0.

3 Simulations and their interpretations

We now choose different types of simple toy agents and different temperature models
(as given in section 1.6.3). We concentrate on simulating the expectation of the addi-
tional security XE (in subsection 3.1), the maximal expected utility Ja for each agent
(in subsection 3.2) and the optimal strategy of investment in XE (in subsection 3.3).
We use the following concrete models :

Model A
The time horizon is chosen to be T = 2. We use an Ornstein-Uhlenbeck process to
describe the climate process K, with the following coefficients :

dKs = −Ks +
1

2
dW2,s, s ∈ [0, T ].

Here we consider only two model agents, a fisher and a bank as described in section
1.6.1. The fisher’s random income function is

Hf =

∫ T

0

ϕf (Ks)ds,

with ϕf (k) = 5 exp (−10k2) , for all k ∈ IR. This means that the optimal temperature
for the fisher is normalized to be 0. The bank has no risky income, i.e. Hb = 0. We
assume that each agent uses the risk aversion coefficient αf = αb = 1.

Model B
The temperature is now modelled by a periodically forced bi-stable temperature process
with coefficients

dKs = −8(K3
s −Ks)− sin(2πs) + 4.5dW2,s, s ∈ [0, T ].

See Figure 1 for a sample path of this process. Again, we choose T = 2 for the time
horizon, i.e. 2 periods of the temperature process. This process is close to the high
temperature value kr = 2.5 for t ∈ [0; 0.5] ∪ [1; 1.5] and symmetrically close to the low
value kf = −2.5 for t ∈ [0.5; 1] ∪ [1.5; 2]. Again we consider only two agents, a fisher
and a farmer with respective income

Hf =

∫ T

0

5 exp
(−10(Ks − kf )

2
)
ds and Hr =

∫ T

0

5 exp
(−10(Ks − kr)

2
)
ds,

where the optimal temperature is kf = −2.5 for the fisher and kr = 2.5 for the farmer,
which coincide with the bistable states of the temperature process. We again assume
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that each agent uses the risk aversion coefficient αf = αr = 1.

Model C
This model uses the same characteristics as model B except for the time horizon, which
is now chosen to be T = 3/2, i.e. 3 half-periods for the temperature process K. This
gives an advantage to the farmer, since the temperature spends 1 unit of time i.e. 2/3
of the trading interval near the meta-stable state favorable for the farmer, and only 0.5
units of time near its low meta-equilibrium favorable for the fisher.

In all the models, the share price is a geometrical Brownian motion given by (34)
with very strong coefficients bS = 1 and σS = 1.

3.1 Expectation of XE

Here we exhibit the expectation of XE
t at the same time t = 1.5 for each model, as a

function of the initial condition (x1, k) at time t = 0. XE is starting from 1 at time
t = 0.

3.1.1 Model A

We observe that IE[XE] has a minimum if the temperature starts from the value 0
which is optimal for the fisher. Indeed, in this case, the fisher’s income is maximal,
since the temperature will only slightly oscillate around 0. So there is no need to
transfer risk from the fisher to the bank : the expectation of XE (starting from k = 0)
almost stays at the initial value 1. This can serve as an indication that we could
interpret the size of XE as an appreciation rate for the trading of climate risk among
the affected agents.

If, on the other hand, the initial temperature is far from 0, the fact that the expec-
tation of XE grows with time indicates that the fisher has an interest to invest in XE.
In this case the growth of XE compensates the smaller income of the fisher.

3.1.2 Model B

The dependence on K seems reversed in this model as compared to model A. We now
see that the expectation of XE is maximal when starting from k = 0, i.e. in the middle
between the optimal temperatures. At this temperature obviously both agents like to
trade risk, since on the scale between −2.5 and 2.5 it corresponds to the worst situation
for the totality of the affected agents. This is why XE is expected to be higher.

3.1.3 Model C

This case is very similar to the preceding one. We just observe that the maximum of
the expectation has been translated to lower temperatures, to account for the difference
of exposition of the agents.
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t (model A).
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3.2 Optimal value Ja

We now turn to numerical simulations of the underlying optimal control problem. First
we will show the value Ja, the optimal utility, for both agents involved, at different
times t ∈ [0, 1], as a function of the current value of the temperature k at time t. Due
to simplicity of our model for the share price XS, and since the climate affected agents
are chosen to have incomes not depending on XS, Ja does not depend on XS

t .

In a real situation, the wealth process of an agent with initial capital va
0 = 1 should

increase with time. Here we assume that the initial capital of each agent is normed by
va

t = 1 at time t. This is why the expected terminal value Ja we simulated is decreasing
with time. Indeed we have Ja

T = 1. This is not a limitation, since Ja depends in a
multiplicative way on the initial value of the wealth process of agent a. Also, in our
simulations we are more interested in exhibiting the dependence of Ja on k at different
times.

3.2.1 Model A

Let us recall that if the fisher does not invest in XE, his only benefits will be given by
Hf . The dependence of this random income on K shows a narrow peak around the
optimal temperature 0. The fisher benefits a lot when the temperature is near 0 and
almost nothing not very far from there. We clearly observe that investing in XE reduces
the fisher’s risk exposure. The optimal utility curve exhibited by the simulations at
different times has a very wide maximal zone around 0.

The bank’s optimal utility curve as a function of temperature shows the following
features. The bank’s situation is best if the temperature is in a neighborhood of 0,
but not too close to 0. Indeed, if it is very close to 0, it is not interesting for the
fisher to invest in XE: there is no risk to transfer. If temperature changes a little,
both agents clearly have an interest in the exchange of XE. If the temperature is
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Figure 5: The maximal expected utility J for the fisher (model A).
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Figure 6: The maximal expected utility J for the bank (model A).
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too far from 0, then of course the situation is bad for both agents: the fisher has not
much money to invest. The latter situation is, however, very unlikely to happen. The
Ornstein-Uhlenbeck process used here reaches ±2 before time 1 only with a very small
probability.

3.2.2 Models B and C

We just show diagrams from the farmer’s point of view for theses models, since there
is symmetry in the exposure of the agents. The optimal expected utility for the farmer
seems a very flat curve, which is maximal around the optimal temperature. This may
indicate that trading on the risk asset brought security to the agents. There is no real
qualitative difference in the shape of the curves between model B and model C. We
just observe that model C reflects, of course, a better situation for the farmer.
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Figure 7: The maximal expected utility J for the farmer (model B).

3.3 Optimal strategies

We finally describe the optimal amount of money to be invested in XE by each agent
during the trading interval, i.e. the strategy of investment which allow the agents to
attain maximal expected utility Ja.

Since only two agents are active on the market, the local equilibrium condition (6)
implies that at each time t the entire quantity of XE sold by one agent is bought by
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Figure 8: The maximal expected utility J for the farmer (model C).

the other, i.e.

πf
2,t = −πb

2,t in model A, or πr
2,t = −πf

2,t in models B and C.

Therefore it will be enough to show diagrams of the strategy of one agent (fisher in
model A and farmer in models B and C). Since we are able to approximate numerically
the strategies of both agents, we remark that the local equilibrium condition may be
used to check the accuracy of our schemes.

We show the optimal strategies as functions of t (on the period [0,1]) and the current
temperature Kt. As in the preceding subsection, in our simple example this strategy
does not depend on XS

t . The diagrams also display the optimal amount of money to
be exchanged between the agents, from the selected agent’s point of view.

3.3.1 Model A

Here we only show the fisher’s optimal strategy πf
2 . At the optimal temperature for

fishing Kt = 0, the fisher makes his maximal profit, and we observe that there is no
exchange of risk trading money. As soon as the temperature grows a little, the fisher
has to buy a certain quantity of XE from the bank. This exchange will bring security
to the fisher and profits to the bank.

34



-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

pi
_2

,t

K_t ( temperature)

 Optimal investment in risk-security, model A, t=0.25

’x049.dat’

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

pi
_2

,t

K_t ( temperature)

 Optimal investment in risk-security, model A, t=0.50

’x099.dat’

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

pi
_2

,t

K_t ( temperature)

 Optimal investment in risk-security, model A, t=0.75

’x149.dat’

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

pi
_2

,t

K_t ( temperature)

 Optimal investment in risk-security, model A, t=1. 0

’x199.dat’

Figure 9: The optimal strategy for the fisher (model A).

3.3.2 Models B and C

We only show the farmer’s optimal strategy πr
2. We can first notice, by taking into ac-

count the estimates for the expectation of XE in subsection 3.1, that the appreciation
of risk trading is very low compared to model A.

On theses diagrams, we see that the farmer invests in XE when the temperature is
high in the first half period [0,0.5], i.e. an interval that favors him, and sells XE (to the
fisher) when the temperature is low, for t ∈ [0.5, 1], i.e. when he needs money. This
reflects the intuition that the agents have an interest to share their risks by exchanging
money this way.

Again, the qualitative difference between models B and C is not big. We just observe
that the farmer invests a little more than the fisher.
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Figure 10: The optimal strategy for the farmer (model B).
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Figure 11: The optimal strategy for the farmer (model C).
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