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Abstract

Physical notions of stochastic resonance for potential diffusions in periodi-
cally changing double well potentials such as the spectral power amplification
have proved to be defective. They are not robust for the passage to their effec-
tive dynamics: continuous time finite state Markov chains describing the rough
features of transitions between different domains of attraction of meta-stable
points. In the framework of one-dimensional diffusions moving in periodically
changing double well potentials we design a new notion of stochastic resonance
which refines Freidlin’s concept of quasi-periodic motion. It is based on exact
exponential rates for the transition probabilities between the domains of attrac-
tion which is robust with respect to the reduced Markov chains. The quality of
periodic tuning is measured by the probability for transition during fixed time
windows depending on a time scale parameter. Maximizing it in this parameter
produces the stochastic resonance points.

Key words and phrases: stochastic resonance; diffusion; periodic potential; dou-
ble well potential; noise induced transition; exit time distribution; comparison theorem;
perturbed dynamical system; spectral theory; low lying eigenvalue.
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Introduction

One of the simplest and earliest stochastic climate models goes back to Nicolis [17]
and Benzi et al. [1]. It intends to give a qualitative explanation of glacial cycles and
is based on a deterministic differential equation for the global mean temperature ex-
pressed through a balance between the albedo-driven absorbed and the black-body
type emitted radiative energies. A periodic exterior forcing comes from the slowly fluc-
tuating solar constant and is due to Milankovich cycles caused by the gravitation of big
planets. Only the addition of a stochastic term as a second forcing makes spontaneous
transitions between the otherwise isolated meta-stable states of temperature possible.
The resulting stochastically and periodically perturbed differential equation was capa-
ble of describing at least one characteristic aspect of experience: the typically short
and abrupt transitions, observed before by Kramers [14] in reaction-diffusion phenom-
ena. The model was soon strongly disputed. Despite its lack of realistic assumptions,
the concepts underlying the model brought to light the phenomenon of stochastic res-
onance. Roughly speaking, a periodic (input) system subject to random perturbations
is in stochastic resonance, if the noise intensity is tuned in such a way that the random
periodic output is optimal. A very lively research field developed around this concept,
drawing numerous examples from a wide spectrum of areas (see Gammaitoni et al. [10],
Freund et al. [9] for a survey).

The mathematically precise understanding of the phenomenon is still under discus-
sion at the time this paper is written. The first approach is done in Freidlin [7], where
the deep large deviations’ theory of Freidlin and Wentzell [8] is employed to produce a
notion of stochastic resonance explaining the phenomenon in the small noise limit as
approximating the periodic hopping between the energetically most favorable states in
the landscape provided by a periodically weakly perturbed potential with finitely many
local minima. In this sense stochastic resonance can be understood as the ability of the
system to undergo quasi-periodic motion in the limit of small noise intensity. Let us
briefly recall this interpretation more precisely. If noise intensity is ε, in the absence of
periodic exterior forcing, the exponential order of times at which successive transitions
between meta-stable states occur corresponds to the work to be done against the po-
tential gradient to leave a well. This fact, heuristically derived by Kramers and Eyring
(Kramers’ time), is shown with mathematical accuracy in Freidlin and Wentzell [8].
The attractor basins are subdivided into a hierarchy of cycles with main states corre-
sponding to the deepest among the cycle states. In the presence of periodic forcing
with period time scale e

µ
ε , in the limit ε → 0 transitions between (the main states of)

cycles with critical hopping work close to µ will be periodically observed. Transitions
with smaller critical work may happen, but are negligible in the limit. Those with
larger critical work are forbidden. In the simplest case of two minima of potential
depth V and v, v < V , the role of which switches periodically at time T , for T larger
than e

v
ε the diffusion will be quasi-deterministic, i.e. close to the deterministic periodic
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function jumping between the locations of the deepest wells.

Quasi-periodicity captures an important aspect of stochastic resonance, as it pro-
vides conditions under which stochastic trajectories are able to exhibit periodic behav-
ior. Yet, physics literature (see Gammaitoni et al. [10], Freund et al. [9]) stipulates
that stochastic resonance not only explains conditions for stochastically periodic behav-
ior but comprises its optimality in a sense quite similar to the resonance notions of
wave dynamics. In classical optics resonance is understood as the optimal amplitude
of the response of the system to periodic excitation. In the same way, a stochastic res-
onance point is claimed to explain optimal periodic tuning of the stochastic trajectories
of the diffusion responding to deterministic periodic excitation. Amplitude as a mea-
sure of quality of periodic tuning is replaced by signal-to-noise ratio or spectral power
amplification (see below). Numerical simulations as for example in Milstein and Tret-
jakov [16] clearly support the optical evidence that beyond the threshold described by
Freidlin [7] at which quasi-deterministic behavior becomes possible, for different noise
intensities quite different qualities of periodicity of the random trajectories can be ob-
served. There are parameter ranges for T in which random trajectories follow quite
well the deterministic shapes of excitation curves. But as T gets even bigger, many
short excursions to the wrong well during one period may occur. They will not count
on the exponential scale on which quasi-periodic motion is measured, but trajectories
will look less and less periodic. Physicists’ quality measures for tuning therefore cannot
be explained on the basis of quasi-deterministic motion alone.

The thesis by I. Pavlyukevich [18] and [13] present an attempt to provide a math-
ematically sound underpinning of physical notions of stochastic resonance based on
optimality of periodic tuning — as opposed to the trajectorial analysis of Berglund and
Gentz [2] containing very fine estimates on relaxation times. The physical concepts are
mostly based on comparisons of trajectories of the noisy system and the deterministic
periodic curve describing the location of the relevant meta-stable states, averaged with
respect to the equilibrium measure. In the simple one-dimensional situation considered
above the system switches between a double well potential state U(x) with two wells
of unequal depths V and v, v < V, during the first half period, and U(−x) for the
second half period. The total period length is T , and stochastic perturbation comes
from the coupling to a white noise of intensity ε. The most important measures of
quality studied are the spectral power amplification, the related signal-to-noise ratio
or the entropy of the equilibrium distribution. In particular the first two mentioned
play an eminent role in the physical literature. They mainly contain the L2 average in
equilibrium of the spectral component of the solution trajectories corresponding to the
input period T , normalized in different ways. These measures of quality are functions
of ε and T , and the problem of finding the resonance point e.g. consists in optimizing
them in ε for fixed (large) T .

Let us briefly explain a striking shortcoming of these concepts of optimal periodic
tuning which made us look for different ones. The first step to find optimal tuning
intensities ε(T ) for large T consists in reducing the dynamics of the diffusion to the
inter well motion, i.e. the pure transitions between the potential minima. In the
physics literature, this corresponds to the reduction given for example by Mc Namara
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and Wiesenfeld [15]. One ends up with continuous time two state Markov chains
with transition probabilities corresponding to the inverses of the diffusions’ Kramers-
Eyring’ times. The mathematical analysis of stochastic resonance then proceeds along
the following lines. One first determines the optimal tuning parameters ε(T ) for large
T for the approximating Markov chains, a rather simple task. To see that the Markov
chain’s behavior approaches the diffusion’s in the small noise limit, spectral theory of
the infinitesimal generator is used. Its spatial part is seen to possess a spectral gap
between the second and third eigenvalues, and therefore the closeness of equilibrium
distributions od Markov chain on the one hand and diffusion on the other hand can be
well controlled. Surprisingly, however, the notion of spectral power amplification is not
robust for the passage from the Markov chain to the diffusion. Subtle dependencies
on the geometrical fine structure of the potential function U in the minima beyond
the expected curvature properties lead to quite unexpected counterintuitive effects.
For example, a subtle drag away from the other well caused by the sign of the third
derivative of U in the deep well suffices to make the spectral power amplification curve
strictly increasing in the parameter range in which the approximating Markov chain
has its resonance point. This dramatic deviation from expected behavior is due to the
significance the spectral power amplification attributes to small intra well fluctuations.

Our main motivation in writing this paper was to investigate concepts by which on
the one hand the physical intuition of optimal periodic tuning of random trajectories
with a simple periodic input can be interpreted in a mathematically sound way, and
which on the other hand fail to have this unfortunate defect of robustness. We deal with
the framework of one-dimensional potential diffusions. The notion of quality of periodic
tuning we shall investigate completely excludes the effect of small intra well fluctuations
and purely relies on the transition mechanism between domains of attraction given by
the potential. At the same time it generalizes the previously known results to potential
functions which may vary periodically in time in a continuous, but otherwise quite
general way, and whose growth at ±∞ may just be linear. More precisely, we study
diffusion processes driven by a Brownian motion of intensity ε given by the stochastic
differential equation

dXt = − ∂

∂x
U(

t

T
,Xt)dt +

√
2εdWt, t ≥ 0.

The underlying potential landscape (see Figure 1) is described by a function U(t, x), t ≥
0, x ∈ IR, which is periodic in time with period 1, and its temporal variation, by the
rescaling with very large T , acts on the diffusion at a very small frequency. U is
supposed to have exactly two wells located at ±1, separated by a saddle at 0. The
depth (measured in positive quantities) of U(t, ·) at ±1 is given by the 1-periodic depth
functions D±1(t) which are assumed to never fall below zero. We shall throughout
look at time scales T = exp(µ

ε
), for which the Kramers-Eyring formula indicates that

transitions e.g. from the domain of attraction of −1 to the domain of attraction of 1
will occur as soon as D−1 gets less than µ, i.e. at time (see Figure 2)

a±1
µ = inf{t ≥ 0 : D±1(t) ≤ µ}.
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Figure 1: Potential landscape
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Figure 2: Definition of a−1
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This triggers periodic behavior of the diffusion trajectories on long time scales. The
modern theory of meta-stability in time homogeneous diffusion processes complements
the fundamental large deviations’ theory presented by Freidlin and Wentzell [8] to pro-
duce the exponential decay rates of transition probabilities between different domains
of attraction of a potential landscape together with very sharp multiplicative error
estimates, uniformly on compacts in system parameters. Their sharpest forms are pre-
sented in some recent papers by Bovier et al. [3], [4], improving Day’s previous results
obtained in [5], [6]. They are derived from deep relationships of large deviations’ theory
with the spectral and capacity theory of the infinitesimal generator. We shall make
use of this powerful machinery to obtain very precise estimates of the exponential tails
of the laws of the transition times between domains of attraction. In fact, we have
to extend the estimates by Bovier et al. [4] to the framework of time inhomogeneous
diffusions. In the underlying one-dimensional situation, this is roughly achieved by
freezing the time dependence of the potential on small time intervals to define lower
and upper bound time homogeneous potentials not differing very much from the origi-
nal one. Consequently comparison theorems are used to control the transition behavior
from above and below by the behavior of the corresponding time homogeneous diffu-
sions. This allows very precise estimates on the probabilities with which the diffusion
at time scale T = exp(µ

ε
) transits from the domain of attraction of −1 to the domain

of attraction of 1 or vice versa within time windows [(a±1
µ −h)T, (aµ±1 + h)T ] for small

h > 0. If τx(X) denotes the transit time to x, it is shown to be given by

lim
ε→0

ε ln(1−M(ε, µ)) = max
i=±1

{
µ−Di(a

i
µ − h)

}
,
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with

M(ε, µ) = min
i=±1

IPi(τ−i(X) ∈ [(ai
µ − h)T, (ai

µ + h)T ]), ε > 0, µ ∈ IR,

and where IR is the resonance interval (Figure 3),

i

a

b

Figure 3: Resonance interval

i.e. the set of scale parameters for which trivial or chaotic transition behavior of the
trajectories is excluded.

t tt

x

Figure 4: Chaotic and trivial transition behavior of the trajectories

The stated convergence is uniform in µ on compact subsets of IR. This allows us to
take M(ε, µ) as our measure of periodic tuning, compute the scale µ0(h) for which the
transition rate is optimal, and define the stochastic resonance point as the eventually
existing limit of µ0(h) as h → 0. This notion of stochastic resonance is strongly related
to the notions of periodic tuning based on interspike intervals (see Figure 5 and [11]),
which describe the probability distribution for transitions as functions of time with
exponentially decaying spikes near the integer multiples of the forcing periods. As

Figure 5: Length distribution of the interspike intervals in a simplified model (two
state Markov chain)

opposed to the physics notions based on spectral decomposition of the statistics of the
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solution trajectories investigated in Pavlyukevich [18] or [13], it has the big advantage of
being robust for the passage from the diffusion to the two state Markov chain reducing
its behavior to the features of pure transitions between the two domains of attractions
of meta-stable points.

Here is an outline of the organization of the material in the paper. Section 1 presents
a review of results from the asymptotic theory of time homogeneous diffusions and their
meta-stable sets needed for our purposes (Theorem 1.1). In section 2 we bring to work
the tools of comparison theorems to deduce the sharp exponential transition rates for
our time periodic diffusions from the time homogeneous results (Theorem 2.1). Section
3 is devoted to applying these sharp estimates to identify stochastic resonance points for
diffusions (Theorem 3.2), compare them to their counterparts for the reduced Markov
chains and prove robustness of our notion of resonance (Theorem 3.4).

1 Exponential distribution of transition times for

time homogeneous diffusions

It will turn out to be crucial for our approach of periodic tuning to be discussed
later to obtain large deviation type estimates for the exponential decay rate of the
law of transition times uniformly in a time scale parameter. We shall make use of a
technique of freezing time dependent potentials on small subintervals of the periodicity
interval [0, T ] on their states taken at fixed times in the intervals, to be able to use
known results for time homogeneous diffusions. In this setting, the uniformity problem
translates into uniformity of the convergence to exponential decay rates in compact
subsets of the domain of attraction the diffusion starts in and in time. It is clear
that we are lead directly into large deviations’ estimates for exit time distributions of
time homogeneous diffusions such as presented in the pioneering book by Freidlin and
Wentzell [8]. But for obtaining uniformity in space and time, one has to use sharpened
versions of these estimates developed later for controlling in particular the exponential
errors in the estimates. The purpose of this section is to summarize what we shall need
from this fine well established theory.

We shall refer to the most recent and advanced development of sharp estimates
for transition times presented in Bovier, Gayrard, Klein [3], [4]. They are valid far
beyond our modest framework, both in the multidimensional case and for any finite
number of local minima of the potential. Their quality comes from a detailed analysis
of the relationship between transition times and low lying eigenvalues of the spectrum
of the infinitesimal generator of the diffusion. We shall state them in the simple one-
dimensional setting given here. A more complex multi-dimensional version can also be
found in Day [5]. For this purpose, suppose that Q is a purely space dependent C2

potential function (see Figure 6) possessing only −1, 1 as local minima, separated by
the saddle point 0 at which Q takes the value 0. Suppose that the curvature of Q at −1
is strictly positive, i.e. Q′′(−1) > 0. As for ultra- or hypercontractivity type properties
for Q, we shall assume that it has exponentially tight level sets, i.e. there is a0 > 0
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Figure 6: Potential

such that for any a ≥ a0 there exists a constant C(a) such that for ε ≤ 1

∫

{y:Q(y)≥a}
exp(−Q(z)

ε
)dz < C(a) exp(−a

ε
). (1)

We shall concentrate in this situation on a transition out of the domain of attraction
of the stable point −1 for the diffusion associated with the SDE

{
dY ε

t = −Q′(Y ε
t ) dt +

√
2εdWt,

Y ε
0 = y.

Let C be a closed interval of the form [d,∞[ with d 6= 0. To state our aim in a
slightly different version, we will be interested in the asymptotics of the entrance time
of Y ε into C:

τ ε
C = inf{t > 0 : Y ε

t ∈ C}.
Then we obtain the following result (see [5] or [4]).

Theorem 1.1 Let λε denote the principal eigenvalue of the linear operator

Lεu = εu′′ −Q′u′

with Dirichlet boundary conditions on ∂C. Then for every compact K ⊆]−∞, 0[ there
is a constant c > 0 such that

IPy(τ
ε
C > t) = e−λεt(1 +OK(e−c/ε)), (2)

where OK denotes an error term which is uniform in y ∈ K, t ≥ 0. Moreover, for the
asymptotic behavior of the eigenvalue λε the following holds

λεIEy[τ
ε
C ] → 1 uniformly on compacts K ⊆]−∞, 0[. (3)

as ε → 0.

Proof:
There are two small issues which deserve comments.

First, the uniformity over compacts in ]−∞, 0[ claimed in the main statements. Day
[5] tackles it. But he considers only exits from bounded domains. Bovier, Gayrard,
Klein [4] have a version for unbounded domains, but uniformity over compacts of the
domain of attraction in which the diffusion starts is not explicitly proved. It is, however,
hidden in their method of proof of Theorem 1.3 ([4], pp. 30, 31) which makes use of an

8



eigenfunction expansion. But due to regularity results on the eigenfunctions (see [4],
pp. 16-18) they must be bounded on compacts in the domain of attraction ] −∞, 0[.
This implies the desired uniformity.

The second comment concerns our assumptions on C. Translated into our setting,
in [4] the target set C is assumed to be closed, to contain a neighborhood of 1 if the
potential is deeper there than at −1, and to have a positive distance from the saddle
0. Since we are in a one-dimensional setting, we may reduce these conditions to the
simple one d 6= 0. If necessary, we may always cut out of C a small open neighborhood
of 0 without changing the law of τC if starting from the domain of attraction of −1. 2

2 Exponential transition rates between moving do-

mains of attraction

We shall now consider a potential diffusion given by the one-dimensional stochastic
differential equation

dXt = −∂U

∂x
(
t

T
,Xt) dt +

√
2εdWt. (4)

The time periodic potential U of period 1 is supposed to fulfill the following conditions.
First of all, its global rough geometry is the one of a double well potential with tem-
porally moving wells, but time independent critical points. For simplicity we suppose
that its local minima are given by ±1, and its only saddle point by 0, independently
of time. So ±1 are the only metastable states of the potential on the whole time axis.
Outside of 0,±1, ∂U

∂x
is supposed to be continuous in (t, x). Our main concern will be

the asymptotics of the transition times from the domain of attraction ]−∞, 0[ of −1 to
the domain of attraction ]0,∞[ associated with 1 of the time inhomogeneous diffusion
in the small noise limit ε → 0. More precisely we will be interested in describing the
exponential transition rate from the domain of −1 to the domain of 1. Our potential
not being time homogeneous, we shall make use of comparison arguments with diffu-
sions possessing time independent potentials in order to find a careful reduction of the
inhomogeneous exit problem to the homogeneous one, and use the asymptotic results
stated in Theorem 1.1 in this framework. This will be achieved by freezing the driving
force derived from the potential on small time intervals on the mimimal or maximal
level it takes there. To be more precise, for each interval I ⊂ IR+ let

VI(x) = sup
t∈I

∂U

∂x
(t, x) and RI(x) = inf

t∈I

∂U

∂x
(t, x). (5)

The regularity conditions valid for U imply that V and R are continuous functions.

Moreover VI(−1) = RI(−1) = 0. If I = [a, b], we denote by X
I

the solution of the
SDE on IR+





dX
I
t = −RI(X

I
t )dt +

√
2εdBt,

X
I
0 = XaT .

(6)
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Figure 7: Definition of VI and RI

XI is defined in the same way replacing RI by VI . These two time homogeneous
diffusions are used to control the time inhomogeneous diffusion X as long as time runs
in the interval I. In fact, we have P−a.s.

XI
tT ≤ X(t+a)T ≤ X

I
tT , t ∈ [0, b− a].

Of course, to make use of the asymptotic results stated in the previous section, we
need ultra- or hypercontractivity properties for the frozen potentials. To formulate a
hypothesis which is both not too restrictive and easy to handle for time dependent
potentials, let us give the following easy sufficient criterion for exponential tightness of
levels of a time independent potential Q.

Lemma 2.1 Assume that Q is a real valued differentiable function on IR, and that
there are constants K1, K2 > 0 such that

Q′(x) ≤ −K2 for x ≤ −K1, (7)

Q′(x) ≥ K2 for x ≥ K1.

Then Q has exponentially tight level sets.

Proof:
It is obviously enough to argue on IR+. Due to (7), we know that near ∞, Q is strictly
increasing with inverse Q−1. So for a > 0 big enough and ε > 0 we have

∫

{y:Q(y)≥a}
exp(−Q(z)

ε
)dz =

∫ ∞

a
exp(− t

ε
)

1

Q′(Q−1(t))
dt

≤ 1

K2

∫ ∞

a
exp(− t

ε
)dt

=
ε

K2

exp(−a

ε
).

This clearly implies exponential tightness.2
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Conditions like (7) are practical in our setting for the following reason: if we assume
them to be satisfied uniformly for t ∈ [0, 1], it is clear that all frozen potential func-
tions will inherit the property. We will therefore assume throughout that there exist
constants K1, K2 > 0 such that

sup
t≥0

∂U

∂x
(t, x) ≤ −K2 for x ≤ −K1, (8)

inf
t≥0

∂U

∂x
(t, x) ≥ K2 for x ≥ K1.

We measure periods T on the logarithmic scale µ given by T = Tε = exp(µ
ε
). The

reason for this is hidden in the classical formula of Kramers-Eyring. It states that
in the small noise limit T is the time it takes the diffusing particle to climb a height
µ in a potential landscape U . This formula has the following intuitive consequences.
Assume the diffusion faces an obstacle of constant potential height U+ > µ for exiting
if it diffuses on time scale T . Then asymptotically it never exits on this scale. On the
other hand, if it faces an obstacle of height U− < µ diffusing at time scale T , it has to
exit immediately in the small noise limit. We introduce the depth function at x ∈ IR
by

Dx(t) = U(t, 0)− U(t, x), t ≥ 0.

The maximal well depths D−1 and D1 will be of particular importance. We shall
assume that they satisfy the assumption (see Figure 2)

all local extrema of D1, D−1 are global and the (9)

functions are strictly monotonous between the extrema.

For µ ≥ 0 let now
aµ = inf{t ≥ 0 : D−1(t) ≤ µ}.

This is the same function as a−1
µ defined above. Here we omit the superscript since we

always concentrate on transitions from −1 to 1. The interval

I−1 =] inf
t≥0

D−1(t), sup
t≥0

D−1(t)[ (10)

contains all possible depths the potential minimum located at −1 takes during one
period of time. Note that aµ = 0 for µ strictly above the upper boundary of I−1, and
aµ = ∞ for µ strictly below the lower boundary. If µ ∈ I−1, then for times beyond aµ,
the barrier height between −1 and 0 has dropped below the critical level so that on
time scale T the diffusion exits immediately. According to this heuristics, the diffusion
running on time scale T should exit the domain of attraction ]−∞, 0[ through 0 and
then transit to the other well immediately after TD−1(t) drops below µ. We shall be
interested in the exponential rate at which this happens, uniformly in starting points
taken from a compact in ] −∞, 0[. For this purpose, for a regular diffusion Y on IR
and a ∈ IR, we denote by τa(Y ) the first hitting time of a by Y .

Our first aim is to prove the precise estimate

lim
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T ) = µ−D−1(aµ − h) (11)
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for x < 0, uniformly in µ on compact subintervals Γ of (10) and for 0 < h < infµ∈Γ aµ.
Note that given such a compact Γ, due to the continuity of D−1 we have infµ∈Γ aµ > 0.
Fix Γ, x and h from now on. Our approach proceeds in essentially two steps.

2.1 Upper bound for the exponential exit rate

In the first step we shall find upper bounds for the exponential rates. For this purpose
we shall partition the relevant time intervals [0, aµ − h]. Fix some δ > 0 such that
δ < |x|. Since ∂U

∂x
is continuous we may choose an equidistant partition 0 = r0 < r1 <

· · · < rn = aµ − h of [0, aµ − h] with mesh γ small enough to ensure

sup
s,t∈[rj ,rj+1]

sup
x∈[−1,0]

∣∣∣∣∣
∂U

∂x
(t, x)− ∂U

∂x
(s, x)

∣∣∣∣∣ ≤ δ. (12)

Denote Ij = [rj−1, rj], 1 ≤ j ≤ n. Though the choice of the intervals depends on h and
Γ, their number will be bounded by a universal constant. Using this partition, we may
start our search for an upper bound by freezing the time dependent potential on Ij at

its value RIj
, 1 ≤ j ≤ n, and then comparing the diffusion X there with X

Ij . There is
a little difficulty with this procedure. The drift coefficients RIj

which govern the sde

for X
Ij were defined by taking infima over time intervals. This operation may destroy

their differentiability properties in the spatial variable. Therefore it may be necessary
to compare X on the intervals Ij with smoother diffusions still dominating it. But this
can be done at no extra cost. For each 1 ≤ j ≤ n we may choose Rj ∈ C1(IR) satisfying





Rj ≤ RIj
≤ Rj + δ,

there are mj ∈]− 1− δ,−1 + δ[, sj ∈]− δ, δ[,mj ∈]1− δ, 1 + δ[
such that Rj|]−∞,mj [∪]sj ,mj [ < 0, Rj|]mj ,sj [∪]mj ,∞[ > 0,

R′
j(mj) > 0,

there are constants K1, K2 > 0 such that Rj(x) ≤ −K2 for x ≤ −K1,
Rj(x) ≥ K2 for x ≥ K1.

(13)

Let Xj be the diffusion associated with Rj, 1 ≤ j ≤ n. Let us choose a partition
x = x0 < x1 < · · · < xn = −δ of the interval [x,−δ] which will typically not be
supposed to be equidistant. In the following inequality the diffusions X and Xj on Ij

are compared and the Markov property is employed. We have

IPx(τ1(X) ≤ (aµ − h)T ) ≤
n−1∑

j=1

IPx(τxj−1
(X) ≥ rj−1T, τxj

(X) ≤ rjT )

+IPx(τxn−1(X) ≥ rn−1T, τ1(X) ≤ rnT )

≤
n−1∑

j=1

IPx

[
{τxj

(X·+rj−1T ) ≤ γT} ∩ {τxj−1
(X) ≥ rj−1T}

]

+IPx

[
{τ1(X·+rn−1T ) ≤ γT} ∩ {τxn−1(X) ≥ rn−1T}

]

≤
n−1∑

j=1

IEx

[
IPXrj−1T

(τxn(Xj) ≤ γT )1{τxj−1 (X)≥rj−1T}
]
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+IEx

[
IPXrn−1T

(τ1(X
n) ≤ γT )1{τxn−1 (X)≥rn−1T}

]

≤
n−1∑

j=1

IPxj−1
(τxj

(Xj) ≤ γT )

+IPxn−1(τ1(X
n) ≤ γT ). (14)

Let us now fix 1 ≤ j ≤ n and continue estimating the term IPxj−1
(τxj

(Xj) ≤ γT )
and IPxn−1(τ1(X

n) ≤ γT ) individually. For this purpose we apply Theorem 1.1 for
Q = Rj, d = xj to obtain that

IPxj−1
(τxj

(Xj) ≤ γT ) ≤ 1− e−λε
jγT (1− e−c/ε) ≤ 1− e−λε

jγT + e−c/ε, (15)

IPxn−1(τ1(X
n) ≤ γT ) ≤ 1− e−λε

nγT (1− e−c/ε) ≤ 1− e−λε
nγT + e−c/ε

uniformly in T , hence uniformly in µ. Here λε
j denotes the principal eigenvalue of the

operator Lε
j defined by

Lε
ju = εu′′ −Rj u′

with Dirichlet boundary conditions at xj. We now come to the crucial part of the
derivation of an upper estimate. We shall use precise asymptotics of the eigenvalues
λε

j .

Lemma 2.2 There exists C > 0 such that for 1 ≤ j ≤ n

∣∣∣∣limε→0
ε ln λε

j − [U(rj, xj)− U(rj,−1)]
∣∣∣∣ ≤ Cδ. (16)

Proof:
Fix 1 ≤ j ≤ n. Define the pseudopotential corresponding to the drift Rj by

Vj(x, z) = inf
{

1

2

∫ t

0
(φ′s +

Rj

2
(φs))

2 ds, φ0 = x, φt = z, t > 0
}

,

where φ stands for absolutely continuous functions defined on the time interval [0, t].
Since due to our assumptions mj is the only local minimum of the potential correspond-
ing to Rj on ]−∞, 0[, the sharpened form of the exit time Theorem of Freidlin-Wentzell
(see Bovier, Gayrard, Klein [4], Theorem 1.1) implies that

lim
ε→0

ε ln λε
j = −Vj(mj, xj).

Let us estimate the pseudopotential. We have

Vj(mj, xj) =
∫ xj

mj

Rj(θ)dθ

=
∫ xj

−1

∂U

∂x
(rj, θ)dθ +

∫ xj

mj

(
Rj(θ)− ∂U

∂x
(rj, θ)

)
dθ

−
∫

[−1,mj ]

∂U

∂x
(rj, θ)dθ.

13



Continuity of ∂U
∂x

in (t, x) entails the existence of C1 < 0 such that

∣∣∣∣∣
∫

[−1,mj ]

∂U

∂x
(rj, θ)dθ

∣∣∣∣∣ ≤ C1δ.

To estimate the second remainder term, recall that the mesh γ was chosen to produce
at most δ as modulus of continuity of ∂U

∂x
(see (12)), and that Rj is also at most a

distance δ away (see (13)). We therefore obtain

∣∣∣∣∣
∫ xj

mj

(
Rj(θ)− ∂U

∂x
(rj, θ)

)
dθ

∣∣∣∣∣ ≤ 2δ.

Hence ∣∣∣∣limε→0
ε ln λε

j − [U(rj, xj)− U(rj,−1)]
∣∣∣∣ ≤ (2 + C1)δ. (17)

The asserted asymptotic result follows. 2

As a consequence we obtain an upper bound for the exponential convergence rate
for the exit time from the domain of attraction of the potential well at −1.

Proposition 2.1 Let x < 0, Γ a compact subset of (10). Then there exists 0 < h0 <
infµ∈Γ aµ such that for h ≤ h0

lim sup
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T ) ≤ µ−D−1(aµ − h) (18)

uniformly for µ ∈ Γ.

Proof:
According to what has been proved, there are constants ε0 > 0 and K > 0 such that
for ε ≤ ε0, µ ∈ Γ

IPx(τ1(X) ≤ (aµ − h)T ) ≤
n−1∑

j=1

IPxj−1
(τxj

(Xj) ≤ γT ) + IPxn−1(τ1(X
n) ≤ γT )(19)

≤ KγT
n∑

j=1

λε
j + ne−

c
ε .

Taking logarithms on both sides, multiplying by ε and using the equation

lim
ε→0

ε ln(f(ε) + g(ε)) = max[lim
ε→0

ε ln(f(ε)), lim
ε→0

ε ln(g(ε))]

for two positive functions f and g, we may apply Lemma 2.2 to get

lim sup
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T )

≤ [max[µ− [U(rj, xj)− U(rj,−1)] : 1 ≤ j ≤ n] + Cδ)] ∨ (−c)

≤ [max[µ− [U(rj, x1)− U(rj,−1)] : 1 ≤ j ≤ n] + Cδ)] ∨ (−c).
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Recalling the definition of aµ and that x1 < 0 is arbitrary, we may conclude

lim sup
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T )

≤ [max[µ−D−1(rj) : 1 ≤ j ≤ n] + Cδ)] ∨ (−c)

≤ [(µ−D−1(aµ − h)) + Cδ)] ∨ (−c)

uniformly for µ ∈ Γ. Now choose h0 > 0 small enough so that for h ≤ h0 we have

inf
µ∈Γ

(µ−D−1(aµ − h)) > −c.

Finally, since δ is arbitrary, we may let δ tend to zero. This way we obtain the desired
upper bound for the exponential rate. 2

2.2 Lower bound for the exponential exit rate

In the second step of our approach, we shall establish lower bounds for the exponential
rates at which the diffusion exits from the basin of attraction of −1. Let us first prove
an auxiliary result. It states that the probability of exiting the interval [l, 0] via l is
exponentially small with exponential order increasing in |l|, due to hypercontractivity.
Recall the constants K1 and K2 from (8).

Lemma 2.3 There exist positive constants C and ε0 such that for ε ≤ ε0 and l <
x ∧ −K1 and µ > 0 we have

IPx(τl(X) ≤ T ) ≤ C

ε
exp(

2K2(l − x ∧ (−K1)) + µ

ε
) (20)

Proof:
We give arguments for the case x < −K1, the other case being easier. Recalling that
by (8) the gradient of U is bounded below by −K2 on R+×] − ∞,−K1], we may
compare the diffusion X with the diffusion Z on the interval ] −∞, x] reflected at x
with constant drift equal to K2. It can be given by the SDE

dZt = K2dt + dLt +
√

2εdWt,

where Z0 = x, and L is an increasing process satisfying
∫ t
0(Zs − x)dLs = 0, t ≥ 0. See

for example Revuz, Yor [19]. The comparison clearly yields

IPx(τl(X) ≤ T ) ≤ IPx(τl(Z) ≤ T ). (21)

By Tchebyshev’s inequality

IPx(τl(Z) ≤ T ) ≤ eIEx[exp(− 1

T
τl(Z))]. (22)
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Let ϕ(y) = IEy[exp(− 1
T

τl(Z))], l ≤ y ≤ x. Our task consists in an estimation of ϕ(x).
According to the Feynman-Kac and Dynkin formulae ϕ solves the boundary value
problem

{
ε ϕ′′ + K2ϕ

′ − 1
T

ϕ = 0 on ]l, x[,
ϕ′(x) = 0, ϕ(l) = 1.

The eigenvalues of the differential equation are determined by the equation

ελ2 + K2λ− 1

T
= 0,

hence by λ± = 1
2ε

[−K2 ±
√

K2
2 + 4ε

T
]. Taking the boundary conditions into account

leads to the equation

ϕ(y) =
λ+eλ+x+λ−y − λ−eλ−x+λ+y

λ+eλ+x+λ−l − λ−eλ−x+λ+l
, y ∈ [l, x].

Neglecting the second term in the denominator of the fraction we obtain

ϕ(x) ≤
√

K2
2 + 4ε/T

ελ+eλ−(l−x)
.

Now for ε small enough, λ+ ≥ 1
K2T

and λ− ≤ −K2

ε
. Therefore, for ε small enough there

exists a constant C0 > 0 independent of ε and T such that

ϕ(x) ≤ C0K
2
2

T

ε
exp[

K2(l − x)

ε
] =

C0K
2
2

ε
exp[

K2(l − x) + µ

ε
].

This implies the desired inequality (20). 2

We shall continue to use the partition (Ij : 1 ≤ j ≤ n) of the interval [0, aµ − h]
of the preceding subsection. This time, we shall compare with homogeneous diffusions
by freezing the potential derivative at an upper level, which results in working with
the drifts V Ij , and the diffusions XIj . Again, these drifts may fail to possess the
regularity properties required to apply Theorem 1.1. For this reason we may choose
smoothed versions Vj ∈ C1(IR) of the potentials with corresponding diffusion processes
Y j satisfying





Vj ≥ VIj
≥ Vj + δ,

there are mj ∈]− 1− δ,−1 + δ[, sj ∈]− δ, δ[,mj ∈]1− δ, 1 + δ[
such that Vj|]−∞,mj [∪]sj ,mj [ < 0, Vj|]mj ,sj [∪]mj ,∞[ > 0,

V ′
j (mj) > 0,

there are constants K1, K2 > 0 such that Vj(x) ≤ −K2 for x ≤ −K1,
Vj(x) ≥ K2 for x ≥ K1.

(23)

To deduce a lower estimate, we shall compare X via XIn with Y n on the interval In in
the scale T . We may write for l < x

IPx(τ1(X) ≤ (aµ − h)T ) ≥ IPx(τ1(X) ≤ rnT, τ1(X) ∧ τl(X) ≥ rn−1T ) (24)

≥ IEx(1{τ1(X)∧τl(X)≥rn−1T}PXrn−1T
(τ1(X·+rn−1T ) ≤ γT ))

≥ IPl(τ1(Y
n) ≤ γT )× IPx(τ1(X) ∧ τl(X) ≥ rn−1T ).
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As a consequence of µ − D−1((aµ − h)T ) < 0 and the arguments presented in the
preceding subsection, we note that uniformly on our compact set Γ

lim
ε→0

IPx(τ1(X) ≤ rn−1T ) = 0.

This clearly implies that there is ε0 > 0 and a constant C > 1
2

such that for ε ≤ ε0

IPx(τ1(X) ≥ rn−1T ) ≥ C. (25)

Moreover, by Lemma 2.3, for l small enough, there exists ε1 > 0 such that for ε ≤ ε1

IPx(τ1(X) ≥ rn−1T ) ≥ C.

Hence for ε small enough we have

IPx(τ1(X) ∧ τl(X) ≥ rn−1T ) ≥ C − 1

2
> 0.

It therefore remains to find lower bounds for IPl(τ1(Y
n) ≤ γT ).

We may now apply the same arguments as those developed in the preceding subsec-
tion. We just have to use Lemma 2.2 for the eigenvalues of the operator

Lεu = εu′′ − Vn u′.

with Dirichlet boundary conditions at 0 in the sense of lower bounds uniformly on the
compact Γ. As a consequence we obviously obtain, with a constant C > 0 independent
of Γ

lim inf
ε→0

ε ln IPl(τ1(Y
n) ≤ γT ) ≥ (µ−D−1(aµ − h)− Cδ) ∨ (−c),

uniformly for µ ∈ Γ. Let us now choose h0 > 0 and δ0 > 0 small enough such that for
h ≤ h0, δ ≤ δ0 we have µ−D−1((aµ− h)T )−Cδ ≥ −c. Since δ is arbitrary, we obtain

lim inf
ε→0

ε ln IPl(τ1(Y
n) ≤ γT ) ≥ (µ−D−1((aµ − h)T )),

uniformly for µ ∈ Γ. Recalling (24) and (25), we finally obtain

lim inf
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T ) ≥ µ−D−1((aµ − h)T ),

uniformly on Γ. With this result we have established the desired lower bound for the
exponential exit rate.

Proposition 2.2 Let x < 0, Γ a compact subset of (10). Then there exists 0 < h0 <
infµ∈Γ aµ such that for h ≤ h0

lim
ε→0

ε ln IPx(τ1(X) ≤ (aµ − h)T ) ≥ µ−D−1(aµ − h) (26)

uniformly for µ ∈ Γ.
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2.3 The exponential smallness of the rate of too long transi-
tions

Having proved (11) in the preceding two propositions, the second aim of this section is
to show that the exponential rate at which τ1(X) exceeds (aµ +h)T is arbitrarily small.
In fact, we shall make precise that the rate at which transitions happen which take at
least as long as (aµ + h)T vanishes to all exponential orders, for h > 0 arbitrary.

Proposition 2.3 Let x < 0, Γ a compact subset of (10) not containing D−1(0). Then
there exists h0 > 0 such that for all 0 < h ≤ h0 and µ ∈ Γ we have

lim sup
ε→0

ε ln IPx(τ1(X) ≥ (aµ + h)T ) = −∞.

Proof:
Let δ > 0 and h > 0 be given. Let Γ be a compact subset of (10). First, for l < x we
may write

IPx(τ1(X) ≥ (aµ + h)T ) ≤ IPx(τ1(X) ∧ τl(X) ≥ (aµ + h)T ) (27)

+IPx(τl(X) ≤ (aµ + h)T ). (28)

To estimate the second term on the right hand side of (27), we employ Lemma 2.3. In
fact, for l < x ∧ (−K1) we have

lim sup
ε→0

ε ln IPx(τl(X) ≤ (aµ + h)T ) ≤ 2K2(l − x ∧ (−K1)) + sup
µ∈Γ

µ.

Therefore
lim

l→−∞
[lim sup

ε→0
ε ln IPx(τl(X) ≤ (aµ + h)T )] = −∞.

It therefore remains to estimate the first term on the right hand side of (27) for l small
but fixed. Let 0 = r0 < r1 < · · · < rn = aµ + h be an equidistant partition of the
interval [0, aµ + h] of mesh γ < h

2
and denote Ij = [rj−1, rj], 1 ≤ j ≤ n. Then we have

IPx(τ1(X) ∧ τl(X) ≥ (aµ + h)T ) (29)

= IPx(τ0(X) ∧ τl(X) ≥ rn−1T, τ1(X·+rn−1T ) ∧ τl(X·+rn−1T ) ≥ γT )

≤ IEx(1{τ0(X)∧τl(X)≥rn−1T}IPXrn−1T
(τ1(X

In) ≥ γT )

≤ max
y∈]l,0[

IPy(τ1(X
In) ≥ γT )

= IPl(τ1(X
In) ≥ γT )

≤ IPl(τ1(X
n) ≥ γT ).

Here, we compare the inhomogeneous diffusion X on In with the time homogeneous one
XIn corresponding to drift RIn and finally with Xn subject to drift Rn to be described
below, and we use monotonicity of

y 7→ IPy(τ1(X
In) ≥ γT ).
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We assume γ to be small enough to ensure

sup
s,t∈[rn−1,rn]

sup
x∈[l,0]

∣∣∣∣∣
∂U

∂x
(t, x)− ∂U

∂x
(s, x)

∣∣∣∣∣ ≤ δ. (30)

We may choose the drift Rn to satisfy





Rn ≤ RIn ≤ Rn + δ,
there are mn ∈]− 1− δ,−1 + δ[, sn ∈]− δ, δ[,mn ∈]1− δ, 1 + δ[

such that Rn|]−∞,mn[∪]sn,mn[ < 0, Rn|]mn,sn[∪]mn,∞[ > 0,
R′

n(mn) > 0,
there are constants K1, K2 > 0 such that Rn(x) ≤ −K2 for x ≤ −K1,
Rn(x) ≥ K2 for x ≥ K1.

(31)

We are ready to apply Theorem 1.1, this time for Q = Rn, d = −δ to obtain that

IPl(τ1(X
n) ≥ γT ) ≤ e−λε

nγT (1 + e−c/ε) (32)

uniformly on Γ. Here λε
n stands for the principal eigenvalue of the operator Lε

n defined
by

Lε
nu = εu′′ −Rn u′

with Dirichlet boundary conditions at −δ. The asymptotic properties of λε
n can be

deduced in a similar way to Lemma 2.2. We estimate the pseudopotential corresponding
to Rn taking (30) into account. We obtain that there exists C > 0 such that

| lim
ε→0

ελε
nT − (µ−D−1(rn))| ≤ Cδ, (33)

uniformly on Γ. Now recall that due to the choice of γ, we have aµ + h
2

< rn, hence

µ−D−1(rn) > 0, µ ∈ Γ,

and by compactness of Γ even

inf
µ∈Γ

[µ−D−1(rn)] > 0.

This in turn implies that
lim
ε→0

λε
n T = ∞

uniformly on Γ. But due to (32) we are allowed to conclude

lim
ε→0

IPl(τ1(X
n) ≥ γT ) = −∞,

uniformly in Γ. According to (29), this completes the proof.2

Finally, we may summarize the results of the preceding subsections, and state the
main result on asymptotic exponential decay rates of transition probabilities.
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Theorem 2.1 Let x < 0, Γ be a compact subset of (10). For ε > 0, µ ≥ 0 let
T = exp(µ

ε
. Then there exists h0 > 0 such that for h ≤ h0

lim
ε→0

ε ln IPx(τ1(X) 6∈ [(aµ − h)T, (aµ + h)T ]) = µ−D−1(aµ − h) (34)

uniformly for µ ∈ Γ.

Proof:
This is an immediate consequence of Propositions 2.1, 2.2, and 2.3. 2

3 Stochastic resonance in a double-well potential

Let us now turn to the main subject of this paper, a characterization of the notion of
stochastic resonance. Let us recall that we look for a characterization of the concept of
optimal periodic tuning which is extensively studied in the physics literature by notions
such as the signal-to-noise ratio or the spectral power amplification (see Pavlyukevich
[18]). Let us also remark that this concept implicitly uses and refines the concept of
stochastic resonance studied by Freidlin [7] which paraphrases the ability of periodi-
cally perturbed stochastic systems to follow the periodic excitation in the small noise
limit, and exhibit quasi-periodic motion. In more mathematical terms and the notation
introduced before we aim at choosing the noise intensity parameter ε such that in the
large period limit T → ∞ the diffusion trajectories follow the periodic excitation of
the system hidden in U in an optimal way to be made precise. In the first subsection
we shall show that a quality measure of goodness of periodic tuning is given by the
exponential rate at which the first transition to the other well happens within a fixed
interval around aµT. In the second subsection we establish robustness of this notion of
quality: we show that in the small noise limit the diffusion and its reduced model, a
Markov chain living on a two point state space, have the same resonance pattern.

3.1 Transition probabilities as a measure of quality

The local extrema of the depth functions D±1 of U are supposed to be global, and D±1

is strictly increasing between its extrema. Recall that we work with exponential time
scales µ related to the natural time T by the equation T = exp(µ

ε
. In this section, we

have to work with scale functions depending on the starting well and eventually on
arbitrary starting times. So we let

ai
µ(s) = inf{t ≥ s : Di(t) ≤ µ}, i = ±1, µ ≥ 0.

The relevant time scales µ will be chosen from the intervals

Ii =] inf
t≥0

Di(t), sup
t≥0

Di(t)[, i = ±1.

Our aim is to observe periodic behavior of the diffusion. This will in principle mean
that the process can travel from one well to the other and back on the time scales
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in which we let the diffusion run, but not instantaneously. So, on the one hand, we
have to work on time scales on which it does not get stuck in one of the wells of the
potential. On the other hand, the time scales we are concentrating on should also not
allow for chaotic behavior, i.e. immediate re-bouncing after changing the well.

To make these conditions mathematically precise, recall that transitions become
possible as soon as the potential barrier D±1 becomes smaller than the time scale
parameter µ. Hence if µ > inft≥0 Di(t), there is a time range during which the diffusion
can leave the well centered at i. Not to get stuck in one of them, the diffusion has to
be able to leave both. This is guaranteed if

µ > max
i=±1

inf
t≥0

Di(t). (35)

To avoid immediate re-bouncing, we have to assure that the diffusion cannot leave
the domain of attraction of −i at the moment it reaches it, coming from i. Suppose
we consider the dynamics after time s ≥ 0, and the diffusion is near i at that time. Its
first transition to the well at −i occurs at time ai

µ(s)T , and it stays there for at least
a little while if D−i(a

i
µ(s)) is bigger than µ. This is equivalent to stating that for all

s ≥ 0 there exists δ > 0 such that on [ai
µ(s), ai

µ(s) + δ] we have µ < D−i. But for t
shortly after ai

µ(s), we always have Di(t) ≤ µ by the very definition of ai
µ. Hence our

condition becomes equivalent to the following: for all s ≥ 0 there exists δ > 0 such that
on [ai

µ(s), ai
µ(s) + δ] we have µ < maxi=±1 Di. This in turn is more elegantly expressed

by
µ < inf

t≥0
max
i=±1

Di(t). (36)

We may summarize our search for an appropriate set of scale parameters µ for which
periodicity in the diffusion behavior will occur. We call this set ”resonance interval” to
indicate that we have to look for the scale of optimal periodicity, the resonance scale,
in this interval. See [11] for the definition of the corresponding interval in the case of
two state Markov chains. The interval

IR =] max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)[

is called resonance interval (see Figure 3). Let us pause for a moment at this point
to compare our approach with Freidlin’s [7] understanding of stochastic resonance by
quasi-deterministic motion. In Freidlin’s terms, stochastic resonance is given if the
parameter µ exceeds the lower boundary of our resonance interval. Our concept of
resonance stipulates to look for an optimal µ in the resonance interval at which in a
sense to be made precise the quality of periodic tuning is optimal.

Let us now come to the discussion of the quality of periodic response of the stochastic
system given by the diffusion, in dependence of the noise parameter ε and the time
scale parameter µ which according to the remarks made above has to be chosen in the
resonance interval. To simplify things a little, let us assume that the depth functions
are related by a phase φ ∈]0, 1[, i.e.

D−1(t) = D1(t + φ), t ≥ 0.
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a b

Figure 8: Depth functions in phase

Moreover we assume that the diffusion starts in −1. There are many ways to describe
optimality of periodic tuning. Pavlyukevich and Imkeller ([12], [13]) consider different
measures of quality such as the spectral power amplification, the energy, the energy-
to-noise ratio, the out-of-phase measure, the entropy and the relative entropy. The
detailed study of the physicists’ favorite measure, the spectral power amplification,
based on the energy of the spectral component of the mean trajectory in equilibrium
corresponding to the forcing frequency 2π

T
, shows one surprising defect: it is not robust

as one passes from the diffusion to a reduced model described by a two state Markov
chain jumping with rates corresponding to the transition rates between the meta-stable
states ±1 of the diffusion given by the potential minima. In fact, while the Markov
chain’s spectral power coefficient shows a pronounced peak for µ near an average well
depth, the overwhelming influence of the diffusion’s fluctuations in small neighborhoods
of the potential wells, discovering very subtle details of the potential’s geometry there,
destroys this picture completely. Here we propose a notion of quality of periodic tuning
which is based on the pure transition mechanism of the system between the domains
of attraction of the double well potential. Generalizing the approach of a study of
optimal tuning for two state Markov chain models (see [11]), we measure the quality of
tuning by computing for varying time scale parameters µ the probability that, starting
in i, the diffusion is transferred to −i within the time window [(ai

µ − h)T, (ai
µ + h)T ]

of width 2hT . To find the stochastic resonance point for large T we have to maximize
this measure of quality in µ ∈ IR. The probability for transition within this window
will be computed by the estimates of the preceding section. Uniformity of convergence
to the exponential rates will enable us to maximize in µ. Let us now make these ideas
precise.

To make sure that the transition window makes sense at least for small h, we have
to suppose that ai

µ > 0, i = ±1 for µ ∈ IR. This will be guaranteed if

Di(0) > inf
t≥0

max
i=±1

Di(t), i = ±1. (37)

If this is not granted from the beginning, it suffices to start the diffusion a little later,
in order to be sure that (37) is satisfied. Under (37), we call

M(ε, µ) = min
i=±1

IPi(τ−i(X) ∈ [(ai
µ − h)T, (ai

µ + h)T ]), ε > 0, µ ∈ IR, (38)

transition probability for a time window of width h.
We are prepared to state our main resonance result.
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Theorem 3.1 Let Γ be a compact subset of IR, h0 > 0 be given according to Theorem
2.1. Then

lim
ε→0

ε ln(1−M(ε, µ)) = max
i=±1

{
µ−Di(a

i
µ − h)

}
(39)

uniformly for µ ∈ Γ.

Proof:
This proposition is an obvious consequence of Propositions 2.1, 2.2 and 2.3.2

It is clear that for h small the eventually existing global minimizer µR(h) of

IR 3 µ 7→ max
i=±1

{
µ−Di(a

i
µ − h)

}

is a good candidate for our resonance point. But it still depends on h. To get rid of
this dependence, we shall consider the limit of µR(h) as h → 0.

Definition 3.1 Suppose that

IR 3 µ 7→ max
i=±1

{
µ−Di(a

i
µ − h)

}

possesses a global minimum µR(h). Suppose further that

µR = lim
h→0

µR(h)

exists in IR. We call µR the stochastic resonance point of the diffusion X with time
periodic potential U .

We shall now show that the stochastic resonance point exists if one of the depth
functions, and thus both, due to the phase lag, has a unique point of maximal decrease
on the interval where it is strictly decreasing.

a

b

Figure 9: Point of maximal decrease

Theorem 3.2 Suppose that D1 is twice continuously differentiable and has its global
maximum at t1, and its global minimum at t2, where t1 < t2. Suppose further that there
is a unique point t1 < s < t2 such that D1|]t1,s[ is strictly concave, and D1|]s,t2[ is strictly
convex. Then µR = D1(s) is the stochastic resonance point.
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Proof:
First of all, note that there is ψ ∈]0, 1[ such that D1 = D−1(· + ψ). As a consequence
of this,

max
i=±1

{
µ−Di(a

i
µ − h)

}
=

{
µ−D1(a

1
µ − h)

}
.

Write aµ = a1
µ and recall that on the interval of decrease of D1, aµ = D−1

1 (µ). Therefore,
the differentiability assumption yields

1 = D′
1(aµ − h) · a′µ = D′

1(aµ − h) · 1

D′
1(aµ)

.

Our hypothesis concerning convexity and concavity of D1 essentially means that D′′
1(s) =

0, and D′′
1 |]t1,s[ < 0, D′′

1 |]s,t2[ > 0, in other words that µ 7→ D′
1(aµ) has a local maximum

at aµ = s. Hence for h small there exists a unique point aµ(h) such that

D′
1(aµ(h)− h) = D′

1(aµ(h))

and
lim
h→0

aµ(h) = s.

To show that aµ(h) corresponds to a minimum of the function

µ 7→ [µ−D1(aµ − h)],

we take the second derivative of this function at aµ(h), which is given by

D′
1(aµ(h)− h)D′′

1(aµ(h))−D′′
1(aµ(h)− h)D′

1(aµ(h))

D′
1(aµ(h))

.

But D′
1(aµ(h)), D′

1(aµ(h) − h) < 0, whereas D′′
1(aµ(h) − h) > 0, D′′

1(aµ(h)) < 0. This
clearly implies that aµ(h) corresponds to a minimum of the function. But by definition,
as h → 0, aµ(h) → s. Therefore, finally, D1(s) is the stochastic resonance point.2

To illustrate our results, we next discuss an example.
Example: Let us consider the double-well potential

U(t, x) =
x6

6
− cos

{
2π

(
t− 1

4
+ ψ sgn(x)

)} (
x5

5
− x3

3

)
− x2

2
,

with T = exp(µ
ε
) and ψ ∈ [0, 1

4
[.

U satisfies all the assumptions required for potentials above, in particular

∂U

∂x
(t, x) = 0 iff x ∈ {−1, 0, 1}.

−1 and 1 are the meta-stable states of the potential, and 0 the saddle point. We can
then compute the barrier height of the two wells. For i ∈ {−1, 1},

Di(t) =
2

3
− i

4

15
cos

(
2πt + i2πψ − π

2

)
.
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Figure 10: Double-well potential (case: ψ = 0)
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Figure 11: Level sets of the potential

Let us note that D1(t) = D−1(t + 2ψ + 1
2
). Since ψ ∈ [0, 1

4
[, we are in the phase case

with φ = 2ψ + 1/2. The resonance interval is then given by

IR =
]
2

5
,
2

3
− 4

15
cos

(
π

2
− 2πψ

)[
.

In the symmetric case, that is if ψ = 0 we obtain IR =]2/5, 2/3[. Let us now compute
the optimal tuning scale applying Theorem 2.1. We obtain

a−1
µ =

1

2π
arccos

(
15

2

(
µ

2
− 1

3

))
+ ψ +

1

4
.

Hence, for h > 0 small enough,

F (µ) = µ−D−1(a
−1
µ − h)

= µ− 2

3
− 4

15
cos

(
arccos

{
15

2

(
µ

2
− 1

3

)}
− 2πh

)

=
(
µ− 2

3

)
(1− cos 2πh)− 4

15
sin(2πh)

√
1−

(
15

2

(
µ

2
− 1

3

))2

.

Let us recall that F does not depend on the phase which implies

µ−D−1((a
−1
µ − h)T ) = µ−D1((a

1
µ − h)T ).

Hence, to obtain optimal tuning, it suffices to compute the minimum of F for µ ∈ IR.
Differentiating F we obtain

F ′(µ) = 1− cos(2πh) +
15

2
sin(2πh)

µ
2
− 1

3√
1−

(
15µ
4
− 15

6

)2
.
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Hence F attains its minimum for

µR(h) =
2

3
− 2

√
2

15

√
1− cos(2πh)

and

µR = lim
h→0

µR(h) =
2

3
.

Thus we obtain that µR is the stochastic resonance point if µR ∈ IR, that is, if the
phase is near to 1

2
, i.e. if ψ is close to 0. In the other case, the optimal tuning rate on

every interval [a, b] ⊂ IR is given by the upper bound b.2

3.2 The robustness of stochastic resonance based on transition
windows

In the small noise limit ε → 0, it seems reasonable to assume that the periodicity prop-
erties of the diffusion trajectories caused by the periodic forcing due to the potential,
are essentially captured by a simpler, reduced stochastic process: a continuous time
Markov chain which just jumps between two states representing the bottoms of the
wells of the double well potential at rates corresponding to the transition mechanism
of the diffusion. This is just the reduction idea ubiquitous in the physics literature,
and explained for example in McNamara, Wiesenfeld [15]. In [13] it is found that this
idea may conflict with the intra well fluctuations of the diffusion if the quality of peri-
odic tuning is measured by concepts using spectral decompositions of the trajectories.
We shall now show that in the small noise limit both models, diffusion and Markov
chain, produce the same resonance picture, if quality of periodic tuning is measured
by transition rates as discussed in the previous subsection.

We first have to describe the reduced model. Let U be a time dependent potential
function generating the potential diffusions of the preceding section. Recall that the
depth functions of the potential minima satisfy D1(t) = D−1(t + φ), t ≥ 0, with phase
shift φ ∈]0, 1[. So, let us consider a time-continuous Markov chain {Yt, t ≥ 0} taking
values in the state space {−1, 1} with initial data Y0 = −1. Suppose the infinitesimal
generator is given by

G =

(
−ϕ( t

T
) ϕ( t

T
)

ψ( t
T
) −ψ( t

T
)

)
,

where ψ(t) = ϕ(t + φ), t ≥ 0, and ϕ is a 1-periodic function describing a rate which
just produces the transition dynamics of the diffusion between the potential minima
±1, i.e.

ϕ(t) = exp(−D−1(t)

ε
), t ≥ 0. (40)

Note that by choice of φ,

ψ(t) = exp(−D1(t)

ε
), t ≥ 0. (41)

26



Transition probabilities for the Markov chain thus defined are easily computed. See
[11], section 2. For example, the probability density of the first transition time σi(Y )
is given by

p(t) = ϕ(t) exp(−
∫ t

0
ϕ(s)ds), if i = −1, (42)

q(t) = ϕ(t + φ) exp(−
∫ t

0
ϕ(s + φ)ds), if i = 1,

t ≥ 0. Equation (42) can be used to obtain results on exponential rates of the transition
times σi(Y ) if starting from −i, i = ±1. We summarize them and apply them to the
measure of quality of periodic tuning in case (37)

N(ε, µ) = min
i=±1

IPi(σ−i(Y ) ∈ [(ai
µ − h)T, (ai

µ + h)T ]), ε > 0, µ ∈ IR, (43)

which is called transition probability for a time window of width h for the Markov chain.
Here is the asymptotic result obtained from a slight modification of Theorems 3 and

4 of [11] which consists of allowing more general depth functions than the sinusoidal
ones used there and requires just the same proof.

Theorem 3.3 Let Γ be a compact subset of IR, h0 < sup(a−1
µ , T/2 − a−1

µ ). Then for
0 < h ≤ h0

lim
ε→0

ε ln(1−N(ε, µ)) = max
i=±1

{
µ−Di(a

i
µ − h)

}
(44)

uniformly for µ ∈ Γ.

It is clear from Theorem 3.3 that the reduced Markov chain Y and the diffusion
process X have exactly the same resonance behavior. Of course, we may define the
stochastic resonance point for Y just as we did for X. So the following final robustness
result holds true.

Theorem 3.4 The resonance points of X with periodic potential U and of Y with
exponential transition rate functions D±1 coincide.
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