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Abstract. In this paper we consider the first exit problem of an overdamped Lévy
driven particle in a confining potential. We survey results obtained in recent years
from our work on the Kramers’ times for dynamical systems of this type with Lévy
perturbations containing heavy, and exponentially light jumps, and compare them
to the well known case of dynamical systems with Gaussian perturbations. It turns
out that exits induced by Lévy processes with jumps are always essentially faster
than Gaussian exits.

1 Introduction

Dynamical systems subject to small random perturbations play an important role both in the
physics and mathematics literature. Many interesting questions relate to the problem of the first
exit from and the corresponding problem of transition between their domains of attraction of
stable equilibria. Random noise makes stable equilibria become meta-stable and largely deter-
mines their asymptotic dynamic properties. The study of perturbations by white Gaussian noise
has the longest history (see e.g. [1,2]), and richest bibliography. The standard mathematical
reference on this subject is [3].

Recently non-Gaussian, in particular jump Lévy noise has been receiving increasing atten-
tion in the study of many systems of sciences and economics. Lévy noise with heavy tails (Lévy
flights) is observed for instance in Greenland ice core measurements (see [4]), and therefore
used to model important qualitative features of paleo-climatic processes by low-dimensional
dynamical systems. In biology Lévy flights are observed for example in the behavioral pattern
of certain species such as albatrosses [5] or anchovies [6]. They are used to account for the
uncertainties in price fluctuations in dynamical models of financial markets [7]. Lévy flights
also naturally appear in particle evolutions along polymer chains [8,9].

In this paper we give a purely probabilistic description of a noisy Lévy particle in an external
potential. More precisely we investigate equations of motion of overdamped particles perturbed
by small discontinuous noise processes. In the limit of small noise intensity we describe the exit
law from a potential well, the analogue of Kramers’ law for Gaussian diffusions. The main results
presented in this paper account for a complete description of exit time rates for equations driven
by Lévy processes with heavy-tailed (polynomial) and light-tailed (sub- or super-exponential)
jump measures.

We observe different patterns of exit. For algebraic or sub-exponentially light jumps, the exit
coincides with one big enough jump by which the particle penetrates through the barrier. For
super-exponentially light jumps, the particle makes finitely many smaller jumps that add up
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to trigger the exit. Opposite to the Gaussian case, the logarithmic rates of the exit times turn
out not to depend on the height of the potential barrier, but only on the distance between the
location of the stable minimum and the boundary of its domain of attraction. Our results specify
the dependence of the mean first exit time both on the small parameter and the geometry of
the domain.

2 Object of study

We consider the following one-dimensional Langevin equation with additive Lévy noise:

dXε
t = −U ′(Xε

t ) dt + εdLt, Xε
0 = x, t ≥ 0. (2.1)

We make the following assumptions on the components of this equation.

– x ∈ [−a, b], 0 < a, b < ∞;
– U is smooth enough and has ‘parabolic’ form, that is xU ′(x) ≥ 0, U ′(x) = 0 iff x = 0,

U ′′(0) > 0, U ′(−a), U ′(b) 6= 0;
– ε > 0 is the noise intensity;
– L is a symmetric Lévy process with characteristic function

EeiλLt = exp
[
− t

(
σ2 λ2

2
+

∫ (
eiλy − 1 − y

1 + y2

)
ν(dy)

)]
, t ≥ 0. (2.2)

It is a sum of a Brownian motion with the variance σ2 and an independent pure jump
process governed by a jump measure ν satisfying the usual conditions

∫
R

y2

1+y2 ν(dy) < ∞
and ν({0}) = 0.

Examples of Lévy processes:

1. If ν ≡ 0 and σ = 1, then L is the standard Brownian motion.
2. If σ = 0, α ∈ (0, 2), and

ν(dy) =
dy

|y|1+α
, y 6= 0, (2.3)

then L is a Lévy flights process (symmetric α-stable Lévy process). In this case, the char-
acteristic function has the form

EeiλLt = e−tc(α)|λ|α , λ ∈ R, (2.4)

with the normalizing constant c(α) = 2
∫ ∞
0

1−cos y
y1+α dy.

3. For ν(dy) = 1
2 (δ−1(dy) + δ1(dy)), σ = 0, the process L is a Poisson process with symmetric

jumps of size ±1.
4. Let W be a symmetric random variable with a distribution function F (x) = P(W ≤ x),

P (W = 0) = 0. Let c > 0 and
ν(dy) = cdF (y). (2.5)

Then with σ = 0, L is a compound Poisson process with jumps distributed according to F
and the exponentially distributed inter-jump times with intensity c:

EeiλLt = exp
(
c

∫
(eiλy − 1) dF (y)

)
. (2.6)

If σ 6= 0 then L is a so-called jump diffusion, that is a sum of a compound Poisson process
and an independent Brownian motion.
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The solution Xε of the SDE driven by εL is also a jump process with the same jumps as
εL and a deterministic drift force towards the stable point 0 given by the gradient −U ′. We
consider the problem of the first exit of Xε from the interval [−a, b] in the limit of small noise
ε → 0. More precisely, we define the first exit time by

σx(ε) = inf{t ≥ 0 : Xε
t (x) /∈ [−a, b]}. (2.7)

For Gaussian forcing, the paths of Xε are continuous. In this case we can speak about the first
hitting time of the level −a or b, whence Xε

σ(ε) = −a or Xε
σ(ε) = b. If L is a pure jump process,

Xε hits the boundary −a and b with probability zero, and either Xε
σ(ε) < −a or Xε

σ(ε) > b. In
our study of the first exit problem, we focus on the dependence of exit times on the heavyness
of the tails of the jump measure ν. Our goal consists in description of the characteristic time
scales (Kramers’ times) which correspond to the following types of tails of the jump measure
ν.

1. ν = 0: here we recover the classical Kramers’ exit time theory for diffusions;
2. ν[u, +∞) ≈ 1

uα , α ∈ (0, 2): this is the case of the first exit of jump diffusions driven by Lévy
flights;

3. ν[u, +∞) ≈ 1
ur , r > 0: this is the first exit of jump diffusions driven by Lévy processes

with power heavy jumps, in particular Lévy flights and the so-called weakly tempered Lévy
flights (see [10,11]) with jump measure

ν(dy) =
dy

|y|1+α(1 + y2)β/2
, α ∈ (0, 2), β ≥ 0. (2.8)

These processes have jumps as small as a Lévy flight of index α; their big jumps have index
r = α + β > 0. In particular, such processes have all moments up to order r: E|Lt|γ < ∞
for all 0 < γ < r, t ≥ 0.

4. ν[u, +∞) ≈ e−uα

, α ∈ (0, 1): this describes the case of sub-exponentially light jumps;
5. ν[u, +∞) ≈ e−uα

, α > 1: this is the case of super-exponentially light jumps.
6. The case of a Lévy process with bounded jumps can be considered as the limiting case

α = +∞.

Note that although the jump measure ν determines the law of Lt for all t ≥ 0, the tails of the
probability density function of Lt do not always coincide with the tails of ν. Indeed, if L is a
Brownian motion, then ν = 0 but P(Lt > x) ∼ 1

xe−x2/(2t). However, for Lévy processes with
regularly varying tails of the jump measure one can prove the relation P(Lt > x)/ν([x,∞)) → 1
as x → ∞ (see [12]).

3 Hierarchy of exit times

3.1 Kramers’ times

If L is a standard Brownian motion, then Eq. (2.1) is a classical Langevin equation driven
by Gaussian white noise. The small noise limit of this equation has been studied in numerous
mathematical [13,14,3,15–17] and physical [18,2] papers.

The results on the first exit time from a potential well of Gaussian diffusions in the small
noise limit can be summarized as follows. Assume for brevity, that the potential barrier at the
right end b of the interval is lower than at the left end, i.e. U(b) < U(−a). Then the mean exit
time from the interval in the small noise limit, known as Kramers’ time, is determined by the
height of the potential barrier the Gaussian particle has to overcome, and is exponentially large
in the small intensity parameter ε. Formally, we have

Eσx(ε) ≈ ε
√

π

U ′(b)
√

U ′′(0)
exp

(2U(b)
ε2

)
, ε → 0. (3.1)
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Furthermore, the normalized first exit time is exponentially distributed in the limit of small
noise:

P
( σx(ε)
Eσx(ε)

> t
)
→ e−t, t ≥ 0, ε → 0. (3.2)

To exit, the diffusion overcomes the lowest potential barrier. Unpredictable exponentially
long exit times depend on the potential’s energy landscape, on the curvature of the potential
at the stable equilibrium of the dynamical system, and on its slope at the point of the most
probable exit.

3.2 Lévy flights and general heavy tails

The exit pattern becomes quite different if we consider Langevin equations driven by white
Lévy noise with heavy tails. Assume that the Lévy measure has fat tails, i.e. with some r > 0
we have ν([u, +∞)) ≈ u−r, u → +∞. The case r ∈ (0, 2) corresponds to the well known case
of L évy flights.

The asymptotics of the first exit time was studied mathematically about thirty years ago
in [19], then in [20,4] in the context of paleo-climatic modelling as well as in [21,22,?]. Recent
mathematical results can be found in [23–25]. In the case of power heavy tails the mean exit time
is governed by the index r and the distance between the stable equilibrium of the deterministic
system and the boundaries of the interval. Formally, we have

Eσx(ε) ≈ 1
εr

[ 1
ar

+
1
br

]−1

. (3.3)

The probability law of the normalized first exit time is again exponential in the limit of small
noise:

P
( σx(ε)
Eσx(ε)

> t
)
→ e−t, ε → 0. (3.4)

The jump diffusion exits with a single big jump. Unpredictable polynomially long exit times
depend only on the horizontal diameter of the considered domain.

3.3 Sub-exponential tails

Consider now Lévy forcing with essentially lighter sub-exponential big jumps governed by
the Lévy measure ν([u,∞)) ≈ exp(−uα) with 0 < α < 1. This and the subsequent super-
exponential case have been treated in [26]. Assume that b < a.

In this setting, the exit pattern is similar to the one for jump measures with polynomial
tails. We have

Eσx(ε) ∝ exp
( bα

εα

)
, (3.5)

where ’∝’ stands for the logarithmic equivalence, i.e. we have εα lnEσx(ε) → bα. Unfortunately
we were not able to determine the pre-factor in this asymptotic relationship. Furthermore, the
law of the first exit time is also exponential in the following sense: for any δ > 0 and ε small
enough the estimates

exp(−C1−δ
ε t) ≤ P(σx(ε) > t) ≤ exp(−C1+δ

ε t), (3.6)

hold for all t ≥ 0 with Cε = e−bα/εα

.
Similarly to the heavy–tail case, exits occur via one big jump.
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3.4 Super-exponential tails

Finally, we consider the Lévy forcing with super-exponentially light tails for the jump measure,
where we have ν(u,∞) ≈ exp(−uα), α > 1. As before, assume that b < a. The mean exit time
now has a quite different asymptotic behavior. It turns out that

Eσx(ε) ∝ exp
(
b · α(α − 1)

1
α−1 | ln ε|1− 1

α

ε

)
. (3.7)

It is interesting to notice that in the super-exponential case the dependence of the exponent of
the mean exit time on the shortest distance b between the exit point and the stable equilibrium
of the dynamical system becomes linear. Although the pre-factor in the formula for the first
exit time is not known, the following estimates hold for its distribution:

exp(−D1−δ
ε t) ≤ P(σx(ε) > t) ≤ exp(−D1+δ

ε t), t ≥ 0, δ > 0,

Dε = exp
(
− b · α(α − 1)

1
α−1 | ln ε|1− 1

α

ε

)
.

(3.8)

The exit now is due to a big but finite number of relatively small jumps ‘climbing’ in one
direction towards the point of exit b.

4 Heuristic derivation of the mean exit times for sub- and
super-exponential jump tails

A detailed and rigorous proof of the derivation of the asymptotic behavior of the first exit time
can be found in [26].

The backbone of the proof consists in the decomposition of the driving process L into two
Lévy processes. Indeed, for ε > 0 let g = gε > 0 be a threshold. We consider the big jump
process ηε consisting of jumps of L, the absolute values of which are bigger than gε:

ηε
t :=

∑
s≤t

∆Ls · I(|∆Ls| ≥ gε), t ≥ 0. (4.1)

We denote the small jump process by

ξε
t := Lt − ηε

t , t ≥ 0. (4.2)

The processes ηε and ξε are independent Lévy processes with characteristic functions

Eeiλξε
t = exp

[ ∫
|y|<gε

(
eiλy − 1 − y

1 + y2

)
ν(dy)

]
,

Eeiληε
t = exp

[ ∫
|y|≥gε

(eiλy − 1)ν(dy)
]
, t ≥ 0, λ ∈ R.

(4.3)

The process ηε is a compound Poisson process with the jump intensity βε := 2ν([gε,∞)) =
2e−gα

ε and jump sizes Wi, i ≥ 1, with probability distribution function

P(Wi ≤ w) =
1
βε

∫ w

−∞
I(|y| ≥ gε)ν(dy), w ∈ R. (4.4)

The threshold gε will be chosen later; at the moment we impose the condition that gε → ∞ and
εgε → 0 as ε → 0. Under this condition it can be shown that the process εξε can be seen as a
small perturbation of the deterministic system ẋ = −U ′(x), and its impact on the exit behavior
of the system can be neglected. We will mainly deal with the compound Poisson process εηε.
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Assume that we know the asymptotic behavior of the probability pε ≈ P(σx(ε) ≤ T ) for
some T which does not depend on ε. Although this probability depends on the initial point
x, it is clear that for ε small and T large enough, the process Xε spends most of the time in
a small neighborhood of the stable equilibrium of the dynamical system. So we can assume
pε ≈ P(σ0(ε) ≤ T ). Then the mean exit time Eσx(ε) is obtained as follows:

Eσx(ε) ≤
∞∑

k=1

kTP((k − 1)T < σx(ε) ≤ kT ) ≈
∞∑

k=1

kT (1 − pε)k−1pε =
T

pε
, (4.5)

Eσx(ε) ≥
∞∑

k=1

(k − 1)TP((k − 1)T < σx(ε) ≤ kT ) ≈
∞∑

k=1

(k − 1)T (1 − pε)k−1pε =
T (1 − pε)

pε
≈ T

pε
,

(4.6)

and therefore all we have to do is determine the logarithmic rate of the probability pε.

4.0.1 Estimate from below

At this point, we argue that the exit occurs due to big jumps of the compound Poisson process
εηε. The number NT of such jumps on the interval [0, T ] is Poisson distributed with parameter
βε. Assume that b < a. We can show that the main contribution to the exit probability comes
from the event on which the sum of big jumps in the direction of b arising in the interval [0, T ]
exceeds b. Formally, for k ≥ 1 and arbitrary xk

1 , . . . , xk
k ≥ 0 such that xk

1 + · · ·+ xk
k = b we have

pε ≈ P
( NT∑

i=1

εWi ≥ b
)

=
∞∑

k=1

P(NT = k)P
( k∑

i=1

εWi ≥ b
∣∣∣NT = k

)
≥

∞∑
k=1

P(NT = k)P(εW1 ≥ xk
1 , . . . , εWk ≥ xk

k)

=
∞∑

k=1

P(NT = k)
k∏

i=1

P(εWi ≥ xk
i )

=
∞∑

k=1

(βεT )k

k!

k∏
i=1

ν([max{gε,
xk

i

ε }, +∞))
βk

ε

=
∞∑

k=1

T k

k!
exp

(
−

k∑
i=1

(
max{gε,

xk
i

ε
}
)α)

.

(4.7)

Since this inequality holds for k ≥ 1 and arbitrary xk
1 , . . . , xk

k ≥ 0 such that xk
1 + · · · + xk

k = b,
we conclude that

pε ≥
∞∑

k=1

T k

k!
exp

(
− min

xk
1+···+xk

k=b

k∑
i=1

(
max{gε,

xk
i

ε
}
)α)

≈
∞∑

k=1

T k

k!
exp

(
− min

xk
1+···+xk

k=b

k∑
i=1

(
max{0,

xk
i

ε
}
)α)

.

(4.8)
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4.0.2 Estimate from above

The estimate from above is technically more complicated. However it can be shown that

pε ≤
∞∑

k=1

P
( k∑

i=1

εWi ≥ b
∣∣∣NT = k

)
P(NT = k)

≤ kε max
1≤k≤kε

P
( k∑

i=1

εWi ≥ b
∣∣∣NT = k

)
P(NT = k) + P(NT ≥ kε + 1)

≤ kε max
1≤k≤kε

C(ε, k)
T k

k!
exp

(
− min

xk
1+···+xk

k=b

k∑
i=1

(xk
i

ε

)α)
+ P(NT ≥ kε + 1)

(4.9)

with some factors C(ε, k) that increase only sub-exponentially fast and do not matter on the
logarithmic scale on which our estimate is obtained. The threshold kε is also chosen to be an
algebraic function of 1/ε, so that P(NT ≥ kε +1) → 0 faster than the first term in the estimate,
whence the term will be neglected.

4.1 Optimization problem

To estimate pε we therefore have to solve a maximization problem. Omitting the sub-exponential
pre-factors T k, C(ε, k) and kε, let us consider the main component of the estimates, namely

max
k≥1

{ 1
k!

exp
(
− min

xk
1+···+xk

k=b

k∑
i=1

(xk
i

ε

)α)
} as ε → 0. (4.10)

Let us first calculate the minimum in the exponent:

min
{ k∑

i=1

xα
i : xi ≥ 0,

k∑
i=1

xi =
b

ε

}
. (4.11)

Due to the concavity of the function x 7→ xα for α ∈ (0, 1), and its convexity for α > 1 we
obtain

min
{ k∑

i=1

xα
i : xi ≥ 0,

k∑
i=1

xi =
b

ε

}
=

{
( b

ε )
α + 0 · (k − 1) = ( b

ε )
α, for α ∈ (0, 1)

k( b
kε )

α = k1−α( b
ε )

α for α > 0.
(4.12)

This solution can be obtained by the method of Lagrangian multipliers which reduces the
minimization problem with constraint to a minimization in x1, · · · , xk of the function

f(x1, . . . , xk, λ) =
k∑

i=1

xα
i − λ

( k∑
i=1

xi −
b

ε

)
, (4.13)

where λ is the Lagrange multiplier. The global minimum of a continuous function is attained
either in an inner point of its domain of definition, or on its boundary. The coordinate of the
extremum in the interior of the domain is a solution of the system of equations{

∂
∂xi

f(x1, . . . , xk, λ) = αxα−1
i − λ = 0,

∂
∂λf(x1, . . . , xk, λ) =

∑k
i=1 xi − b

ε = 0, 1 ≤ i ≤ k.
(4.14)

Solving this system gives the coordinate of the extremum x∗
i = b

kε , 1 ≤ i ≤ k.
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In case α ≥ 1, the function x 7→ xα is convex, and the interior point given by x∗
1 = · · · =

x∗
k = b

kε is a global minimum of the optimization problem with the minimal value k( b
kε )α. If

α ∈ (0, 1), the function x 7→ xα is concave, and its minimum attained on the boundary of the
domain, namely at one of the points given by xi = b

ε , xj = 0, j 6= i. The minimal value in this
case is given by bα

εα .
To determine the maximum (4.10) we will have to consider the cases α ∈ (0, 1) und α > 1

separately. Different estimates for this maximum will lead to quite different asymptotics of
mean exit times for sub- and super-exponential tails.

4.2 Mean exit time, 0 < α < 1

For any δ > 0 and ε small we obtain the following estimates. According to Eq. (4.8) we have

pε ≥
∞∑

k=1

T k

k!
exp

(
− min

xk
1+···+xk

k=b

k∑
i=1

(xk
i

ε

)α)
≥ exp

(
− bα

εα

) ∞∑
k=1

T k

k!
≥ exp

(
− (1 + δ)

bα

εα

)
,

(4.15)
which together with Eq. (4.6) gives the lower bound for the mean exit time.

On the other hand, according to Eq. (4.9), and recalling the negligibility of the terms related
to C(ε, k) and the second sum, we get

pε ≤ kε max
1≤k≤kε

C(ε, k)
T k

k!
exp

(
− min

xk
1+···+xk

k=b

k∑
i=1

(xk
i

ε

)α)
+ P(NT ≥ kε + 1) ≤ exp

(
− (1 − δ)

bα

εα

)
.

(4.16)
With the help of Eq. (4.5) this entails the upper estimate for the mean exit time.

The solution of the optimization problem has a clear interpretation. The exit from the
interval occurs in one jump of the process εL of size bigger than b. All other exit patterns with
higher numbers of smaller jumps are essentially less probable in the small noise limit.

4.3 Mean exit time, α > 1

According to Eq. (4.8) we have

pε ≥
∞∑

k=1

T k

k!
exp

(
− k

( b

kε

)α)
≥ max

k

T k

k!
exp

(
− k

( b

kε

)α)
. (4.17)

On the other hand,

pε ≤ kε max
1≤k≤kε

C(ε, k)
T k

k!
exp

(
− k

( b

kε

)α)
+ P(NT ≥ kε + 1). (4.18)

Again we do not discuss the contributions of the negligible components T k, C(k, ε) and kε, and
maximize the function

1
k!

exp
(
− k

( b

kε

)α)
(4.19)

over positive integer k. Recalling that 1√
2π

ek(ln k−1)− 1
2 k = 1√

2πk
(k

e )k ≤ k! ≤ kk = ek ln k, and
again only retaining the leading term on the logarithmic scale, it is enough to minimize the
exponent

k ln k + k
( b

kε

)α
(4.20)

in k in the small noise limit ε → 0. Let

f(y) = y ln y + ε−αy1−αbα, y > 0. (4.21)
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Fig. 1. Typical exit paths of the solutions of the Eq. 2.1 in case of sub-exponential tails of the jump
measure, α ∈ (0, 1), (l.) and super-exponential tails, α ∈ (1,∞) (r.).

To estimate the infimum of this function carefully, we introduce the new variable y = z
ε . In

these terms

f(y) =
z

ε
ln

z

ε
+ ε−α

(z

ε

)1−α

bα =
1
ε

(
z(ln z + | ln ε|) +

bα

zα−1

)
=

| ln ε|
ε

(
z
ln z + | ln ε|

| ln ε|
+

bα

zα−1| ln ε|

)
.

(4.22)

The factor ln z+| ln ε|
| ln ε| converges to 1 uniformly in z ≤ o(| ln ε|). Thus in the limit ε → 0 we obtain

f(y) ≈ | ln ε|
ε

(
z +

bα

zα−1| ln ε|

)
. (4.23)

Minimizing the right-hand side yields the optimal exponent in the mean exit time:

f(y) ≥ bα(α − 1)
1
α−1 | ln ε|1− 1

α

ε
. (4.24)

We conclude that for any δ > 0 and ε small we obtain the estimates

exp
(
− (1 + δ)bα(α − 1)

1
α−1 | ln ε|1− 1

α

ε

)
≤ pε ≤ exp

(
− (1 − δ)bα(α − 1)

1
α−1 | ln ε|1− 1

α

ε

)
,

(4.25)
which together with Eqs. (4.6) and (4.5) give the asymptotic bounds for the mean exit time. It is

instructive to notice that the minimum of the function f above is obtained at y ≈ 1
ε

(
b(α−1)
| ln ε|

)1/α

.

This means that the most probable exit path of the process Xε consists of k = O(ε−1| ln ε|−1/α)
jumps of the size εWi = O(ε| ln ε|1/α) in the direction of b.

5 Conclusion

For dynamical systems perturbed by small Lévy noise, exits from domains of attraction induced
by jumps are always faster than those induced by diffusive behavior. More formally, any non-
Gaussian Lévy forcing of the form εL(t) induces exit times of the asymptotic size of

Eσx(ε) . exp
(c| ln ε|

ε

)
� exp

( c

ε2

)
. (5.1)

No forcing of the type εL can fill the essential gap between non-Gaussian and Gaussian exit
time scales. Note that the jump intensity is not included in our scaling. For example, for the
Poisson process εL(ε) with the jump measure

νε(dy) =
1
2ε

(δ−ε(dy) + δε(dy)) (5.2)
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exp(−uα)
ν([u,∞)) =

1

ur
, r > 0

α ∈ (0, 1) α ∈ (1,∞) α = ∞
Gaussian

Eσx(ε) ∝ 1

εr

h 1

ar
+

1

br

i−1

exp

„

bα

εα

«

exp

„

bα(α − 1)
1
α
−1| ln ε|1−

1
α

ε

«

exp

„

b| ln ε|
ε

«

exp

„

2U(b)

ε2

«

Table 1. The hierarchy of mean exit times for a process Xε defined by Eq. (2.1) from the domain
[−a, b], b < a, in dependence on the tails of the jump measure ν. For the Gaussian forcing we assume
that U(b) < U(a) and U(0) = 0.

the central limit theorem implies the convergence of εL(ε) to a Brownian motion. For a stochastic
perturbation of this form exit times would become similar to Kramers’ times ([3]).

In the following diagram we summarize the different scenarios of the asymptotic behavior of
exit times in the small noise limit ε → 0 corresponding to jump measures ν with different tails
ν([u,∞)), u → ∞. The limiting case α = ∞ of the Lévy noise with exponentially light jumps
corresponds to the case of bounded jumps.

P.I. and I.P. thank DFG SFB 555 for financial support.
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Will be inserted by the editor 11

15. A. Galves, E. Olivieri, and M. E. Vares. Metastability for a class of dynamical systems subject to
small random perturbations. The Annals of Probability, 15(4):1288–1305, 1987.

16. Z. Schuss. Theory and applications of stochastic differential equations. Wiley Series in Probability
and Mathematical Statistics. John Wiley & Sons, 1980.

17. M. Williams. Asymptotic exit time distributions. SIAM Journal on Applied Mathematics, 42:149–
154, 1982.

18. H. Eyring. The activated complex in chemical reactions. The Journal of Chemical Physics, 3:107–
115, 1935.

19. V. V. Godovanchuk. Asymptotic probabilities of large deviations due to large jumps of a Markov
process. Theory of Probability and its Applications, 26:314–327, 1982.

20. P. D. Ditlevsen. Anomalous jumping in a double-well potential. Physical Review E, 60(1):172–179,
1999.

21. A. Chechkin, O. Sliusarenko, R. Metzler, and J. Klafter. Barrier crossing driven by Lévy noise:
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