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Introduction

On a probability space, let (G;) be a filtration containing a smaller filtration
(Ft). The basic question of the well known theory of enlargement of filtrations
(see [JY85]) with some relevance in simple models of financial markets with
asymmetric information (see for instance [Imk03]) is this: under which con-
ditions every (F;)-semimartingale remains a semimartingale relative to (G;)?
In the pioneering papers of [JY85] this inheritance property has been called
"Hypothese (H’)’. Jacod [Jac85] gives a sufficient criterion for it to hold and
studies semimartingales’ Doob-Meyer decompositions relative to (G;). With
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respect to vector space topologies on the set of (F;)- and (G;)-semimartingales
Yor [Yor85] investigates continuity properties of the associated mapping of
(Fi)-semimartingales into the space of (G;)-semimartingales.

In this paper we reconsider the problem of the inheritance of the semi-
martingale property from a different and more general perspective. In fact,
in section 1 we derive inheritance results generalizing Jacod’s [Jac85], which
were proved in the setting of initial enlargements by the information stored
in random elements with values in Lusin spaces. Our proofs are based on the
concept of the decoupling measure, which allows an independent view on the
additional information contained in the enlarged filtration, specified in o-fields
‘H; enlarging F; to obtain G, = F; V H;. The key observation is that under
the decoupling measure every (F;)-martingale is a (G;)-martingale. Hence, en-
larging the filtration can be seen as stepping from a view of processes through
the decoupling measure to a view by the original measure. In particular, the
associated Girsanov transform can be used to obtain explicit representations
of the Doob-Meyer decomposition w.r.t. the larger filtration. This idea goes
back to [FI93], where this method was used to analyze initial enlargements of
the Wiener filtration by some random variable G. Later [AIS98] and [GP98]
extended these techniques to more general stochastic bases and semimartin-
gales. In more recent approaches it was rediscovered in terms of a Bayesian
interpretation of simple models of insider trading by Gasbarra and Valkeila
[GV03]. Of course, the cost of this approach consists in the very assumption
of the existence of the decoupling measure. It restricts generality to a non-
trivial extent, as is seen if compared for example to the setting of [ADI04].
For instance, if the information drift to be deducted from a martingale in
the larger filtration does not generate an equivalent martingale measure cap-
turing the change of views from the small to the large filtration, then there
will be no decoupling measure. In order to tackle the problem, as Yoeurp
[Yoe85] for the analysis of progressive enlargements, we choose a formulation
a product space: the first marginal contains the original information, while the
second describes the additional information. Under the product measure both
marginals are independent. Therefore it will be the appropriate candidate for
our decoupling measure.

Here is an outline of the structure of the material presented. Our main
occupation in section 1 consists in showing how objects are transferred from
the original space into the artificial product space and vice versa. Once this
is handled, an application of the Girsanov transform leads to explicit Doob-
Meyer decompositions. In section 2 we provide estimates of the strength of
the information drift by appropriate generalized entropies. These are used
in section 3 in order to prove continuity properties of the embedding of the
(Fi)-semimartingales into the set of (G;)-semimartingales with respect to well
known vector space topologies. These results generalize continuity results ob-
tained by Yor [Yor85].
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1 Enlargement of filtrations and Girsanov’s theorem

Let (2, F, P) be a probability space with right-continuous filtrations (F;)¢>o
and (Hy)i>0. Moreover, let Foo = \/tzo Fr and Heo = \/tZO H.
Our objective is to study the enlarged filtration

Go=()(FVH,), t=0.

s>t

We relate this enlargement to a measure change on the product space
N=0x0N

equipped with the o-field
F =Foo @Hoo.

We endow 2 with the filtration

Fo=(\F.oH), t=0.

s>t

2 will be embedded into 2 by the map
v (2,F) = (2,F), wr (w,w).
We denote by P the image of the measure P under v, i.e.
P =Py

Hence for all F-measurable functions f : £2 — R we have
/f(w,w’)dp(w,w’) = /f(ww)dP(w). (1)

In the following measure the two components in {2 are decoupled, and weighted
according to P :
Q=P|, ®P|, .

We use notations and concepts of stochastic analysis as explained in the book
by Protter [Pro04]. Our results will be stated for completed filtrations. We
remark that due to our general assumption 1 below, all possible probability
measures on the enlarged space we will consider possess systems of null sets
that are at least bigger than the one related to Q. So we could refer to the
same completion throughout, and working with completions will not reduce
generality. We shall use the following notation. Let (K;) be a filtration and R
a probability measure. We denote by (KF) the filtration (K;) completed by
the R-negligible sets.

The map ¢ will be used to translate processes X = (X;)¢>o defined on
(2, FP) into processes X = X o defined on (£2, FF). The following Propo-
sition shows that structural properties are preserved by this embedding.
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Proposition 1. Let X = (Xt)tE[O,oo) andY denote stochastic processes and T
a random time all defined on the measurable space (2, F). We set X = X o),
Y =You and T = Torp. Then adaptedness, predictability, the local martingale
or semimartingale properties are transferred from X with respect to (ﬁtp ) and
P to Y with respect to (GF) and P. If T is a (FL)-stopping time, then T is

a (G{)-stopping time. Moreover, if X is a (F}, P)-semimartingale and Y is
a caglad (FF, P)-adapted process, then

(/YdX) oz/J:/YdX
up to indistinguishability. If X and Y are (}_'tp, P)-semimartingales, then
[X,Y]oy = [X,Y]
up to indistinguishability.
Proof. Just observe that

Gi=()o(ANB: A€ F,BEMH,) = (o (v "(AxB): A€ F,,B€H,)

s>t s>t
=y (ﬂ(fs ® m)) =~ (F)
s>t
so that
VU FD) c gl (2)

Now the properties follow by straightforward arguments.

In the reverse direction, structural properties are transferred quite as eas-
ily.
Lemma 1. Let M be a right-continuous (F{, P)-local martingale. Then the
process M (w,w') = M(w) is a (F2,Q)-local martingale.

Proof. Modulo localization, the martingale property follows readily by em-
ploying a monotone class argument to pass from indicators of rectangles to
general bounded measurable functions in the smaller o—field.

In the sequel we will always assume that P is absolutely continuous with
respect to Q, i.e.

Assumption 1
P<QonF.

Note that this assumption is always satisfied if (G;) is obtained by an
initial enlargement by some discrete random variable G, i.e. H; = o(G) for
all ¢ > 0. In particular, this holds true for any progressive enlargement by
Hi =V, <:{L < u} where L is discrete random time with values in [0, o] (see
also end of the section).
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Now let M be a (FF, P)-local martingale and M its extension to {2 as
in Lemma 1. Since P < @, M is a (ff,?)—semimartingale and hence, by
Proposition 1, M is a (G/, P)-semimartingale. Thus, clearly hypothesis (H’)
is satisfied. But what is its Doob-Meyer decomposition relative to (G}, P)?

Essentially the change of filtrations corresponds to changing the measure
from @ to P on the product space (2. Girsanov’s theorem applies on {2, since
the measure P is absolutely continuous with respect to Q. As a consequence
we obtain a Girsanov-type result for the corresponding change of filtrations.
For its explicit description we introduce the density process. Let (Z;) denote
a cadlag (F2,Q)-martingale satisfying

P

We are now in a position to state the main Girsanov-type result.

Theorem 1. If M is a continuous (Ff, P)-local martingale with My = 0,
then

1
M~ ——-[M,Z]

is a (GF, P)-local martingale.

Proof. Let M be a continuous (F/’, P)-local martingale with My = 0. Lemma
1 implies that the process defined by M (w,w’) = M(w) is a (F&)-local mar-
tingale and the Girsanov Theorem (see for instance [Pro04], p. 136) yields
that
- L (M, Z]
Z_

isa (ftp , P)-local martingale. It remains to appeal to simple transfer proper-
ties stated in Proposition 1.

Remark 1. Similar results as in Theorem 1 may of course be derived for non-
continuous martingales M (see [Ank05] for details).

The preceding may also be formulated in terms of the stochastic logarithm of
the density process Z. To this end set S’ = inf{t > 0: Z; = 0} and

_ {5” if $’ < ocoand AZg =0

oo otherwise.

Sisa (.7:'? )-predictable stopping time and we define

_ 1 _ _
L:/ L4z on [0,5] 3)
o+ 2
with the convention that L; = Lg, for t € [S’,S[. So far, the process L is
determined P-, but not Q-almost everywhere. (In order to define it everywhere
we may put L = 0 on [S,00[.) Then L is an (F}, P)-semimartingale but
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not necessarily an (.T:tQ ,Q)—semimartingale. However, restricted to the time
interval [0, 5[ it is an (FZ, Q)-local martingale. As usual we write L = L o t).
Alternatively, one can define L t_hrough the stochastic integral L = fo n i dZz.

Since the process L is a (F2, Q)-local martingale on the interval [0, 5], it
can be decomposed into a unique continuous local-martingale part L¢ starting

in 0 and a sum of compensated jumps L?. As before, we consider the processes
L¢ = Lo and L? = L% 01). Theorem 1 can now be reformulated as follows.

Theorem 2. If M is a continuous (Ff, P)-local martingale with My = 0,
then M — [M, L] is a (GF, P)-local martingale.

Proof. The definition of L implies that - -[M, Z] = [M, L], P-a.s. Now apply
Theorem 1.

Finally, we will need the following formula, in which the subtracted drift is
represented in terms of the quadration variation of the given local martingale.

Theorem 3. If M is a continuous (Ff, P)-local martingale with My = 0,
then there is a (GI)-predictable process , called information drift, such that
M — - [M, M) is a (GF)-local martingale satisfying P-a.e.

/ o? d[M, M), <[L,L]S, < oo.
0

Proof. Let M be a continuous (Ff, P)-local martingale with My = 0. As a
consequence of the Kunita-Watanabe inequality (see for instance Lemme 1.36
in [Jac79] or page 136 of [Pro04]), there exists a (G} )-predictable process (o)
such that

a-[M,M]=[M,L]=[M,L.

The processes M and O = L€ — « - M are orthogonal w.r.t. [-, -] so that
o [M,M] = [a-M,a- M] <[L¢ L] = [L, L]°.

Recall that [L,L] = (Z% . [Z,Z]) o1 and that Z is a uniformly inte-

grable nonnegative (F2,Q)-martingale. Since P-a.s. Zs, > 0, one has also
inf;>0 Z; > 0, P-a.s. Moreover, [Z, Z] < 00, Q-a.s. Therefore, [L, L] is P-
a.s. bounded and consequently [L, L]§ converges as ¢ — oo P-a.s. to some real
value which we denote by [L, L]<,.

Remark 2. Due to the previous theorem the information drift obtained via the
Girsanov approach under Assumption 1 is always locally square integrable.
It was shown in [ADIO4] that in case {2 is standard Borel and each (F)-
martingale has a continuous modification, square integrability on the product
space {2 x [0,T] with respect to the measure d[M, M] ® P implies the abso-
lute continuity of the kernels k;(-, dw’) with respect to the conditional laws
P,(-,dw") of Gy with respect to Fy, where
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t
Pi(-,A) = P(A) +/ keo(-, A)dM, + L, Ae G ,tel0,T],
0

LA being orthogonal to M. In this case the R-N density process v, (w,w’) =
fai%‘éi/,)) is identical to « if restricted to the diagonal w = w’. Hence this ab-
solute continuity condition (ACL) is implied by Assumption 1. Enlargements
with locally integrable but not square integrable information drifts are beyond
the scope of this article. But they provide examples for which (ACL) does not
imply Assumption 1. One example is obtained for instance by enlarging the
Wiener filtration by the maximum of the Wiener process over some finite time
interval. In this case Malliavin’s calculus can be applied and an explicit repre-
sentation of the information drift is obtained via the Clark-Ocone formula (see
[[PWO01] and [Imk03]). In case §2 is not standard Borel we do not know at the
moment whether assumption 1 is more restrictive than (ACL). The methods
of [ADI04] allow in a more general setting the description of information drifts

which are not necessarily locally square integrable.

Comparison with Jacod’s condition

In Jacod’s paper (see [Jac85]) the filtration (F;) is supposed to be enlarged
by some random variable G taking values in a Lusin space (E, ). As a conse-
quence, for t € [0,T] regular conditional distributions @Q; of G relative to F;
exist. The following condition is assumed to be satisfied:

(A’) For every t > 0 and P-a.a. w the measure Q¢(w,-) is absolutely
continuous with respect to the law 7 of G.

We will show that in this setting condition (A’) is equivalent to our as-
sumption 1. More precisely, with H; = o(G), we have the following.

Lemma 2. (A’) is satisfied if and only if P < Q on F; for all t > 0.

Proof. First assume property (A’). Let ¢t > 0 and C € F; with Q(C) = 0. We
choose C' € F; ® £ such that

lo(w,w') =1a(w,GW")),

and observe that

Q) = [ 1ew.e)dQe, ) = [

£ 2

( /E 1o(w,9) dn(g)) dP(w).

Hence for P-a.a. w the set C,, = {g € F : (w,g) € C} is a n-nullset. Conse-
quently,

P(C) = /Q Lo (w, w) dP(w) = / Qi(w, C) dP(w)

is equal to 0 due to (A’).
Now fix ¢ > 0 and assume that P < @Q on F,. Then there exists a F;-
measurable density ¢ which can be represented in the form
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plw,w) = ¢(w, G(@))
where ¢ is an appropriate F; ® E-measurable function. Now integrating in
w will, by using Fubini’s theorem in a similar manner as above, yield the
conditional law of G relative to F; which is absolutely continuous with respect
to n. This entails property (A’).

Jacod does not use Girsanov’s theorem in his paper [Jac85]. However, he points
out that his results could also be deduced by applying it to the conditional
measures P? = P(:|G = z), z € E. Condition (A’) implies that the conditional
measures P are absolutely continuous with respect to P. Hence, by Girsanov,
for a given (Ft, P)-local martingale there is a drift A® such that M — A® is a
(Ft, P*)-local martingale. By combining the processes A* we obtain that

M — AC

is a (G, P)-local martingale. The main work consists in proving that the
processes A” can be combined in a meaningful way. As far as we know, Jacod’s
sketch has never been worked out rigorously.

In our approach we embed every local martingale into the product space
2. We apply Girsanov’s theorem on the product space and then translate our
results back into the original space. One of the advantages of our approach
is that we do not have to assume regular conditional distributions to exist.
And we do not need to show how processes can be combined. Instead we have
to show how one can transfer objects from {2 to 2 and vice versa. Moreover
we are not restricted to initial enlargements, but only to enlargements of the
form

G =()(F-VHs), tel0,T].
s>t

Starting with Jacod’s results one can obtain decompositions for filtrations of
this kind by using predictable projections. For this suppose A to be a bounded
variation process such that M — A is a local martingale with respect to the
initially enlarged filtration (F; V Hso). If B is the predictable projection of A
onto (Gy), then M — B is a (G;)-local martingale.

2 Estimates for the drift

Suppose M is a continuous (F/, P)-local martingale with My = 0. Under the
assumptions of the previous section we know that there is a (GF)-predictable
process a such that M —«-[M, M] is (G}, P)-local martingale. Moreover, the
information drift « satisfies

(@® - [M, M))oo < [L, LS. (4)
In this section we provide bounds for

E[(o® - [M, M])%]
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for various moments p > 1 based on inequality (4).

Throughout this section we suppose the assumptions of the previous sec-
tion and maintain the notation. More precisely, we assume that P < Q,
denote by Z; = % 2@ the density process, and by L the stochastic logarithm
of Z. We use again the decomposition of L into a continuous part L¢ and a
part L? consisting of compensated jumps. As before we denote by Z, L and L¢

the corresponding (G;)-adapted processes obtained by a right side application
of .
2.1 Moment p=1

Recall that the relative entropy of two probability measures P and ) on some
o-algebra M is defined by

Ep<logdp ), if P< @ on M
HM(PHQ): @ M

00, if not P < @ on M.

In our situation, the relative entropy Hz(P|Q) provides an upper bound for
the first moment of [L, L]¢:

Lemma 3.
1 o
SETIL L%, < HA(P|Q).

If (Zy)i>0 is continuous and Zy = 1, then one even has

SEFIL I = Hz(P]Q)

Remark 8. If the o-field Fy is trivial, then the measures P and @ coincide on
Fo ® Ho, and hence in this case Zy = 1.

Proof. Let (T;,) denote an increasing sequence of stopping times with lim,, ., T,, >
§'. Since (Z;) is a uniformly integrable (F{)-martingale Jensen’s inequality
implies that ) )
EQZTW/ log ZTW, < E9Z, log Z,,
so that Fatou’s lemma leads to
lim E9Zz log Zz = E9Zy log Zao = Hz(P||Q). (5)

On [0, S| we decompose L into its continuous and discontinuous part L =
L¢+ L4 and let Zf = E(L°); and Z@ = Zo E(LY),. Then Z; = Z¢ Z and

Zlog Zy = Zylog Zf + Zylog Zﬁ.

Now Ités formula implies that A; = Z; log Z¢ is a (,7:"9 , Q)-local submartingale
on [0, S]. In fact, with £(z) = xlogx for z > 0 and £(0) = 0 one obtains on
[0, 5]
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A—ez)+ [ eziyazis [ z:¢2l)az
0+ 0+

+ > Ze (€2 - gzl - €zl Az,
0<s<t
where all summands in the previous line are non-negative due to the convexity
of €.
Next, note that due to the Girsanov transform

I — (L, IJ°
isa (ftQ , P)-local martingale. Now choose an increasing sequence of bounded
stopping times (T},)nen such that (L¢ — [L, L]°)™ is a (F2, P)-martingale,
AT is a Q-submartingale and lim,, o, T, > S’. Such a sequence exists, and
combining the above results gives

EQZTn log ZT" > EQZT" log Z%n + EQZO log Z§
_ _ 1 5 - -
> E"log 25 = 5EP[L, L)% .
The first assertion follows by equation (5).
If Z is continuous and Zy = 1, then Z; = Z¢ which implies that
_ -~ 1 5 - _
ERZy logZy, = S BV L], -

The second assertion is an immediate consequence of equation (5).

2.2 Moments p > 1

Now we consider moments of order p > 1. In this case the p-th moment of
[L, L] can be compared to some generalized relative entropy. See [Imk96] for
elementary versions of the inequalities to be derived.

Our analysis requires some additional assumption. We suppose that (G;)
is an initial enlargement of (F;), i.e.

Go=[()(F VA, t>0,

s>t

where A is some fixed sub-o-algebra of F. Moreover, we assume that Fg is
trivial. As in [Yor85], we need to impose the following additional assumption.

Assumption 2 (C) Every (FF, P)-martingale has a continuous modifica-
tion.

We shall see that under this condition L is a continuous (.7?,9 , @)-local mar-
tingale. We begin with the definition of the generalized relative entropy.

Definition 1. Forp > 1, and probability measures P < Q on a o-algebra M,

let
p

HE(PIQ) = B log, 5] )
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We provide now an upper bound of E[L, L|Z with the help of the generalized
entropy of P with respect to Q) on the set F.,. To simplify notations, we omit
the o-algebra F,, and write only H?(P||Q) and H(P||Q). The aim of this
section is to prove

Theorem 4. For any p > 1 there exists a universal constant C = C(p) < o0
such that under the above assumptions one has

B[L,Lg, < C [H(P||Q) + H"(P||Q)].

For the proof we need some auxiliary results. We start by showing that
there exists a continuous modification for Z.

Lemma 4. Let M be a uniformly integrable (.7-:9, Q)-local martingale. If as-
sumption (C) is satisfied, then for P-a.a. o' the process M* = M(-,w') is a
(FF)-local martingale.

Proof. Choose a modification such that every path of M is cadlag. Now let
M be an A ® O(F)-measurable process such that for all w’ and s > 0

MY = EP[MY|F,).

For the existence of such a process we refer to [SY78], Proposition 3. Put
Cy = {M, > M,}. Clearly Cy € F and Cy(-,w’) € FF for all P-a.a. ' (recall
that (F;) is right-continuous). Moreover for ¢ > 0

/ / Loy (w, ) (WT¥ — B1¥') dP(w) dP(&))
= E91¢, (M, — M,)]
= E9Lc, (M, — M)

- / / Lo, (w,w) (NI = M) dP(w) dP(W)
- / 0 dP(w') = 0,

A similar result holds true on the set {Mt < M}, and as a consequence we
have for P-a.a. w’
M;(-,W") = My(-, '), P-as.

Hence for P-a.a. w’ the process (M,;",)qe@+ is a (FF)-martingale. Since M; is

cadlag and uniformly integrable we obtain that also

—

(M )0
is a (F})-martingale for P-a.a. w'.

Lemma 5. If (C) is satisfied, then every uniformly integrable (]:',?,Q)—local
martingale has a continuous modification.
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Proof. Let M be a (.7-:,?,6_2)-100&1 martingale. We may suppose that M is
cadlag everywhere, and hence, the set

N = {(w,w’) : t = M;(w,w’) is not continuous}

is measurable. Fix ' and suppose that M is a (FF)-martingale. Then as-
sumption (C) implies that for P-a.a. w the paths ¢ — M¥ (w) are continuous,
i.e. P(N“") = 0. Now Fubini’s theorem yields with Lemma 4

BN = [ [ 1yo() aP) dpe)
- /0 dP(W') = 0,

and hence the result.

For the rest of the section we will suppose that Z is a continuous modification

of our density process ap . Similarly, L will be assumed to be continuous.

ag | _
72

Proof (of Theorem 4). We assume that H(P||Q) and HP(P|Q) are finite.
Then X, := L; — [L, L]; is a continuous L?-bounded P-martingale by Lemma
3 and we write log Z; = X, + %At with A; := [L, L]; = [X, X];. Next, observe
that

HP(P|Q)Y? = EP[(Xoo + = Ax)8]""

P[( A - (Xl A 220))]"

vV
==
|
v/l
s
8%
5
|
&
v/l
=
8
=
S

> *EP AP 1/p_CET:' Ap/2 1/p

where the last inequality holds for some constant C' > 0 due to the Burkholder-
Davis-Gundy inequality. Now choose £ > 0 such that for all z > 0

1
P .p/2 P P
CPx <§x+4px.

This leads to i ) 1 .
CPEY AP/2 < ¢PEP AL + 4—pEPA£o

and hence to

1

Pl ypp 1/p
B an]

OEP [A%Q] 1/p < €EP|:AOQ]1/p +
With (6) we conclude that
P (PIQY? = (P (L] - e8P (4] /" = LEP[42]'" — € (P Q).

Consequently,
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EP[an]" < 4€H(P|Q)V? + 4HP (P Q)7
< 8(¢PH(P(|Q) + HP(P|Q)"/,

where the last step follows from the elementary inequality a+b < 2(aP+bP )1/ P
a,b>0.

Remark 4. The above proof is based on the fact that there exists a constant
C, such that for any continuous L?-bounded P-martingale (X;) with Xy =0
and quadratic variation process (A;) one has

= B 1 1
EP A%, < Cp B | Xoo + 5400 + (Xoo + 5.40)" |-
Improving the estimate to
5 5 1
BP AL, < Gy B (Xoo + 5A0) (7)

would lead to the better estimate ET[L,L]? < C, HP(P||Q). However, an
estimate stating (7) is not valid, as the following example shows.

Example 1. Let W be a Wiener process and for fixed ¢ > 0, let T" denote
the first hitting time of the slope ¢ +— & — ¢/2. We consider X; := W[ and
At = [X, X];. Then by the Lévy-Bachelier formula the law of T = A, has
density

—t/2
Lo ) 53 o(F=2),

where ¢ is the density of the standard normal law. Hence,

E[AZ] = 5/000 P32 (;s(g_jf) dt.

In particular, for € | 0, one has E[AZ ] = . On the other hand,
1
E[(XOO + 5Am)ﬂ = E[(Wp +T/2)P] = ¢?

such that one can always find a sufficiently small € > 0 for which the inequality
(7) is not valid.

We next show a result which in a sense contains the inverse statement to
Theorem 4.

Lemma 6. For p > 1 there exists a universal constant C = C(p) < oo such
that )
HY(P|Q) < C[E”[L, L], +1].

In particular finiteness of EP ([E,E]go) implies finiteness of the entropy
HP (P Q).



14 Stefan Ankirchner, Steffen Dereich, and Peter Imkeller

Proof. We have, by Burkholder-Davis-Gundy, with a universal constant Cy

o B 1. - 1/p
H(PIQM” < B (En = 1L L)
_ 1/ 1 - 1/p
<E(Ll’) " +E <2{L,L]€o>

and thus the result.

Suppose now that the enlargement A is induced by some discrete random
variable G, i.e. A = o(G). In that case one can estimate the moments of
[L, L]~ against some generalized absolute entropy of G.

Definition 2. Let (q4) denote the probability weights of G. We denote by

P(G) = ZQQUOg 1/qq)".

the gemeralized absolute entropy of order p.

Lemma 7. One has
HP(P|Q) < HP(G),

and if G is Foo-measurable, then
HP(P|Q) = H(G).

Proof. For the proof we need a monotonicity property of f-divergences. Due
to Corollary 1.29 in [LV87] one has

HP(P||Q) = H?(Pay__ id4llPar. ® Pay)
< HP(Pay ,cidallPdr,.c ® Pay)-

Moreover, if G is F-measurable, then one even has equality in the previous
line. We denote by (gq) the probability weights of G. One easily verifies that

dPay_ G.ida
dpidy:oc G ® Pa,

1
(wmgaw/) = 1{g:G(w’)} -
g

Set f(g,9") = 1{y= g} . Then
Pldfoo e ld_AHPld}'oo,G ® Pa,)

/f 9. G(W")) (log, f(g,G(W"))" d(Piar.. ¢ ® Pay)(w, g,0")

1 1
—/ (1Og+ ) d(Pg ® Pa4)(g,w"),
{(g.w):g=G(w")} 99 4y
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since f(g,G(w')) = 0 if g # G(w') and the integrand does not depend on w.
Altogether, we arrive at

H(PIQ) < Yay (tox o) = H7(G)

and equality holds if G is F.-measurable.

Ezxample 2. Let My = W, denote a Wiener process and consider the completed
filtration (F;) = (F}V) generated by the Wiener process. We now consider
an initial enlargement of the filtration (F;) by some arbitrary o-field A, i.e.
Gt = Ny (Fs A A). Supposing that P < @, the Doob-Meyer decomposition
for W with respect to (G;) is of the form

t
Wt:Wt+/ asds,
0

where W is a (G;)-Wiener process and « is a (G;)-adapted process. In fact,
W is continuous with quadratic variation process [W, W], = t. Moreover,
since Fy is trivial and all (F;)-martingales have continuous modifications, the
results of this section lead to the estimate

dfﬁ@f<@www+mwm»

If in addition A = o(G) is generated by some discrete random variable G,
then

E(/Ot 02ds) < C,[H(G) + H(O)].

3 Continuity of initial enlargements

In section 1 we have seen that every (F[)-semimartingale is also a semi-
martingale relative to a bigger filtration (G7) if the measure P is absolutely
continuous with respect to Q. In this section we analyze to which extent this
embedding of (F})-semimartingales into some space of (G} )-semimartingales
is continuous. For simplicity we restrict to initial enlargements. It turns out
that the embedding is continuous if and only if some generalized entropy of
the measures P and Q is finite.

Let (£2,F, (Ft), P) be afiltered probability space as in the previous section.
Throughout this section we assume that Fg is trivial and we let

Gi=[)(FsVA), t>0,

s>t

where A is some fixed sub-o-algebra of F. The measures P and @ are defined
as in the previous section and we assume again that P is absolutely continuous
with respect to Q. As before we will abbreviate Z, = %| 7, t>0 Fora
treatment of basic questions and ideas of this section in the setting of initial
enlargements by random variables see [Imk96].
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3.1 Preliminaries

We now recall the definition of some basic norms on the set of semimartingales.
For this let X be a (F{)-semimartingale. Given a decomposition X = M + A
we define for all 1 < p < oo,

J (M, A) = H[M, ML + /[ 1A,
0,00

Lp

and
IXllse = inf jp(M,A)

We denote by SP the set of all (F)-semimartingales X such that || X||s» < oco.
If we want to emphasize the filtration we are referring to we write SP(F;). The
space SP is a Banach space with the following properties (see e.g. [DM82]):

e Any X € SP is a special semimartingale.

o Let X € SP and X = M + A be the unique decomposition such that A is
predictable and Ag = 0. There is a constant ¢ > 0, depending only on p,
such that j,(M, A) < c[| X ||s».

e The space of all martingales in SP, denoted by H?, is a closed subspace.

e The set of all continuous semimartingales in S, denoted by S?, and the set
of all continuous martingales in SP, denoted by HZ, are closed subspaces.

e The set of all predictable processes with integrable variation, vanishing in
0 and with norm A — || [ |dA,]|| v is a closed subspace of SP.

We will see that under suitable conditions every semimartingale in S?(F;)
belongs to S(Gy).
3.2 Continuity and relative entropy
We are now in a position to prove the first main result.
Theorem 5. Suppose H(P|Q) = C < co. Then the embedding
H2(Fe) — SHGe), X = X,
is a continuous linear mapping with norm < 1+ v/2C.

Proof. Let M € H?(F;). By Theorem 2, (M — [M, L]) + [M, L] is a decompo-
sition relative to (G;). The Kunita-Watanabe inequality implies

n

Hence by Lemma 3

1 1
< L, LIS |l2l[[M, M]S|l2-
1

1
||M|31gt§H b+ [ ja, o

1
1 1
1+ [L, Z] so||2) (M, MIZ

w)?) IM e r,
<+ w >||M||H2(f,),

Nl
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and the proof is complete.

As an immediate consequence we get the following

Corollary 1. Suppose H(P||Q) < co. Then the embedding
SCQ(]:,:) — Sl(gt),X — X,

is a continuous linear mapping.

3.3 Continuity and generalized entropy

We aim at generalizing Theorem 5 and Corollary 1. Starting from the Banach
space 8" (F;) with r > 1, what are sufficient criteria for the embedding into
the space of (G;)-semimartingales to be continuous?

Throughout this section we assume assumption (C). In other words, we
will assume that HE(F;) = HP(F;) for p > 1.

We begin by stating a result obtained by Yor.

Lemma 8. (see Lemme 2 in [Yor85]) Let v > 1 and p,q > 0 such that + =
2—11) + %. Then the following conditions are equivalent:

1) There is a constant C' > 0 such that every continuous (G)-local martingale

satisfies
[ v,z
0

We are now ready to state the main theorem.

< C[I[M, M]S]lq-

T

2) EJ[L,L]5] < co.

Theorem 6. Suppose assumption (C) is satisfied and let p > 1 and ¢, > 0
such that % = % + % The generalized entropy HP(P||Q) is finite if and only
if the embedding

SUF) — S"(G), X — X,

is a continuous linear mapping.

Proof. Suppose HP(P||Q) < oo. Theorem 4 implies that [L, L], is LP-
integrable. Thus, by Lemma 8, there is a constant C' > 0 such that for all
continuous (G;)-local martingales we have

| [ v,z

Hence, for a martingale M in S7(F;) with decomposition M = (M —[M, L))+
[M, L] relative to (G;), we have

1
< C||[M, M) La-

Lr
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1M

1 o)
S(Gy) — H[Ma M]go +~/O |d[M7 L]s‘

LT

|tz

< ||[M, M]&||- + C||[M, M]3 || La
<1+ O)M, M]3 ||La
< (1 +O)[M|sax,)-

< [I[M; M5 || -

|

LT

Therefore the map S4(F;) — S"(G:), X — X, is continuous.
Now suppose the embedding to be continuous. Then Lemma 8 implies

E[[L, L)%, < oco.
So by Lemma 6 the proof is complete.

Ezample 3. Suppose A is generated by a countable partition P = {A1, Aa, ...}
of {2 into F,.-measurable sets. Then the corresponding initial enlargement
can be viewed as enlargement by the discrete random variable G(w) :=
> nnla,(w). Hence, for p > 1, we have by Lemma 7

P
HY (P|Q) =) P(A <log (2))'
i>1 v

Now let ¢,7 > 0 such that * = ﬁ + %. Theorem 6 implies that the embedding
SUF) — S"(Gt), X — X, is a continuous if and only if

ZP (1og (;2)>p < 00.

i>1

This result was already shown by Marc Yor, using different arguments (see
Théoreme 2 in [Yor85]).

3.4 Continuity and Shannon Information

If the filtration (F;) is generated by a fixed martingale M with cadlag paths,
then the relative entropy of P with respect to @ is equal to the so-called
mutual information between M and the enlarging o-algebra A. We recall this
notion.

Definition 3. Let X and Y be two random variables with values in the mea-
sure spaces (M, M) and (K, K) respectively. The mutual information between
X and Y is defined by

I(X,Y) = Huex (Px,y)|Px @ Py).
Similarly, one can define the generalized mutual information to be

IP(X,Y) = HY (o (Pix,v)|Px ® Py), p>1.
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For a given o-algebra J C F letidy denote the map (2,F) — (2, T),w — w.
The mutual information between X and J is defined by

10X, 7) = I(X,idy).

We start with the following observation.

Lemma 9. If (F;) equals the filtration generated by M, then
1(M, A) = H(P|Q),

and for p > 1,
I"(M, A) = H"(P|Q).

Proof. First observe that F = F.,, ® A, because

F=\/Fc\/(F®eA)CF.0ACF.
t t

Now let D denote the Skorokhod space. We define a map ¢ by
NxN2—-Dx N (ww)— (Mw),w).
Since F, is generated by M, we have
oM (BMD) @A) =M Y BD)®A=Fo® A,

and hence
Hz(P||Q) = Hpmyoa(Ps|Qs)-
Now observe
Py = Pyoy = Piarian)

and
Qo = Py ® Pay,

which yields the first claim. The second follows by similar arguments.

As a consequence we obtain the following.

Theorem 7. Suppose assumption (C) is satisfied and let p > 1 and ¢, > 0
such that % = ﬁ + %. If (Fy) equals the filtration generated by M, then the
generalized mutual information IP (M, A) is finite if and only if the embedding

SUF) — 8"(Gr), X — X,
is a continuous linear mapping.

Proof. This follows by combining Theorem 6 with Lemma 9.
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Ezample 4. Let W be the standard Wiener process and (F;) the filtration
generated by W and completed by the negligible sets relative to the Wiener
measure. Moreover, let V' be a Gaussian element independent of F,, with zero
mean and variance w > 0. Suppose the enlarging o-algebra A is generated by
the random variable

Wi+ V.

One can easily verify that three random variables X,Y and Z satisfy

IP(X,(Y,2)) < P(X.Z) + P(X.Y|Z) (p>1).

Consequently, we obtain for the mutual information between id 4 and W

IP(W,idy) = IP(Wh + V, (W1, (Wi)o<i<1))
S IP(Wy + VW) + IP(Wh + V, (W) o<t<1 |[Wh)
=IP(W, W1 +V)

< Q.

Thus, for all p > 1 and ¢,r > 0 such that % = 2—117 + é, the mapping S?(F;) —
S8"(G:), X — X is continuous.
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