Random times at which insiders can have free
lunches

Peter Imkeller
Institut fur Mathematik
Humboldt-Universitat zu Berlin
Unter den Linden 6
10099 Berlin
Germany

May 2, 2002

Abstract

We consider models of time continuous financial markets with a regular trader
and an insider who are able to invest into one risky asset. The insider’s additional
knowledge consists in his ability to stop at a random time which is inaccessible
to the regular trader, such as the last passage of a certain level before maturity
by some stock price process, or the time at which the stock price reaches its max-
imum during the trading interval. We show that under very mild assumptions
on the coefficients of the diffusion process describing these price processes the
information drift caused by the additional knowledge of the insider cannot be
eliminated by an equivalent change of probability measure. As a consequence,
all our models allow the insider to have free lunches with vanishing risk, or even
to exercise arbitrage.
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Introduction

In recent years, the study of mathematical models of financial security markets with
agents on different information levels has been intensifying (see Wu [38] for a survey).
Many papers deal with two species of agents: a regular trader whose information horizon
coincides with the natural evolution of the underlying stock price processes, and an
insider who possesses some additional information from the beginning of the trading
interval, to be revealed to the regular trader continuously until the end of this interval



(see also Kyle [34]). Work begun by Karatzas and Pikovski [29] and Elliott et al
[17] deals with the question how the insider’s extra utility arising from his additional
knowledge can be described. It led to an identification of the optimal logarithmic
utility of the insider with the entropy of his additional information in Amendinger [1]
and Amendinger, Imkeller and Schweizer [2], and to a more general quantification of
the value of initial information in Amendinger, Becherer and Schweizer [3] . In Grorud
and Pontier [19] and [20] the insider’s optimal portfolios are studied, and on this basis
the question is discussed how to detect an insider acting according to these policies in a
simple statistical test. Questions of completeness of the insider market model and risk
neutral probabilities are discussed in Grorud, Pontier [21], and some simple arbitrage
opportunities for the insider are identified. In Imkeller, Pontier and Weisz [24] Malliavin
calculus techniques for measure valued processes based on results obtained in [18], [22],
[23] were used to treat questions of the existence of equivalent martingale measures
for the insider’s information horizon, and of the existence of arbitrage strategies in a
rather general framework.

The common method employed in all these studies is the powerful technique of
grossissement de filtrations. It was developed in a series of deep works, e.g. Yor [39],
[40], [41], [42], Jeulin [28], Jacod [26], Chaleyat-Maurel, Jeulin [9], Meyer [32]. More
precisely, all the above quoted works deal with the simplest version of enlargement of
filtrations, the initial enlargement. In this framework, the underlying natural filtration
is enlarged by the information about some given random variable for the whole time
horizon. In the context of insider trading, this type of enlargement is able to model
situations in which the insider gets some fixed additional information at the beginning
of the trading interval.

In contrast to this, the extra information the insider is allowed to have in this
paper comes from a continuous flow of additional knowledge about a random time the
regular trader is unable to stop. We consider random times such as the time at which
a Brownian motion or a regular one dimensional diffusion representing possible stock
price processes take their maxima, or the last passage time of Brownian motion or a
regular one dimensional diffusion through a certain level modelling for example a last
level crossing before maturity. Of course, the regular trader will be unable to take action
at such a time. We suppose that the insider’s information horizon at any time is just big
enough so that he is able to stop at this random time, and eventually incorporate this
knowledge into portfolio decisions. Mathematically, this just means that his filtration
is given by the progressive enlargement of the regular trader’s filtration. This type of
enlargement has been well understood in the pioneering papers on the grossissement
techniques. See Yor [40], [41], [42], [43], Jeulin [28]. Our main aim is to find out whether
the additional knowledge of one of the random times described above may lead to free
lunches or arbitrage for the insider, or whether the information drift favouring the
decisions of the insider still allows an equivalent change of probability measure which
eliminates this drift from the insider’s perspective. In fact, we show that in all the
cases considered, excursion theory for Brownian motion can be applied to prove that
no equivalent change of probability measure is possible. The principal common reason
is the appearance of a three dimensional Bessel process in the information drift. The
influence of these processes had already led to similar conclusions about the existence



of arbitrage in quite different situations: see Delbaen, Schachermayer [13], or Imkeller,
Pontier and Weisz [24]; see also Jeanblanc, Rutkowski [27]. The more subtle ones of
the arbitrage strategies for the insider exhibited rely upon the observation that the
Brownian motion just after one of the honest times considered behaves like a three
dimensional Bessel process, and therefore has a drift which is not noticeable for the
regular trader.

The paper is organized as follows. In section 1 the model is explained, some basic
facts about progressive enlargements of filtrations are recalled, and a sufficient condi-
tion is derived under which no equivalent change of measure can make the information
drift due to the insider’s additional knowledge disappear. In section 2 we consider the
enlargement which enables the insider to stop at a last level crossing by a Brownian
motion. A time reversal argument shows that the information drift contains a compo-
nent comparable to a 3-dimensional Bessel process which creates arbitrage possibilities.
Section 3 is devoted to the study of the random time at which a Brownian motion W
reaches its maximum. The well known equality in law of sup,., W — Wy, t > 0, with a
Brownian motion reflected at 0 enables us to identify the law of the time of the maxi-
mum with the law of the (honest) time at which the reflected Brownian motion has its
last passage through 0, and thus to use the results of the preceding section. In section 4
the insider is able to stop at the last passage of a level by a regular recurrent diffusion.
A time change argument allows to invoke the results of section 2 again. Another time
change argument is used in section 5 to show that the insider has free lunches if he can
stop at the time of the maximum of a regular recurrent diffusion whose volatility is
bounded below by a positive constant. The time of the maximum corresponds to some
random time for a Brownian motion which can be estimated below by the Brownian
motion’s time of maximum. This may be treated by the results of section 3.

1 The model and some basic facts

Our basic probability space is the 1-dimensional canonical Wiener space (€2, F, P),
equipped with the canonical Wiener process W = (W;);>o. More precisely, Q =
C(R4;R) is the set of continuous functions on R, starting at 0, F the o-algebra
of Borel sets with respect to uniform convergence on compact subsets of R, P Wiener
measure and W the coordinate process. The natural filtration (F;);>o of W is assumed
to be completed by the sets of P-measure 0.

The financial markets considered will have time horizon 1, be based on Brownian
motion, and described by simple one dimensional models. A financial market (b, o)
consists of a progressively measurable mean rate of return process b which satisfies
fol |bs|dt < oo P—a.s. and of a progressively measurable volatility process o satisfying
Jy o?dt < oo P—a.s. They determine a (stock) price process given by

s, _

t t
5 = /0 bydu + /0 o, dW,.

For convenience, we let Sy = 1. A progressively measurable process 7 is called a



portfolio process if
1
/ |T by dt < 00 P-a.s.
0

and .
/ T o2 dt < 0o P-a.s.
0

The excess yield process R and gains process G are given by the formulas

_dS,
dR; = g (1)

and

t
G, = /0 TudRy, (2)

0 <t < 1. The portfolio process is said to be tame if there is some constant ¢ € R such
that Gy > cforall 0 <¢ <1. Let

1
Ky, ={G, = / msdRs : m is tame}
0

and let Cyy denote the cone of functions dominated by elements of Ky, i.e. Cy = KO—Li.
Set C' = CyN L. The semimartingale R is said to satisfy the condition of no arbitrage
(NA) if C N LY = {0}, the condition of no free lunch with vanishing risk (NFLVR) if
for the closure C of C' in L™ we have C N L = {0}. It is well known that even in
an unconstrained Black-Scholes setting arbitrage strategies can be defined by allowing
poor integrability properties. See for example Musiela, Rutkowski [33], pp. 112, 113.

We shall assume that there are two agents, acting on the basis of asymmetric in-
formation levels. The regular agent’s information horizon is given by the filtration
F = (Fi)tefo,1) of the underlying Wiener process restricted to the trading interval [0, 1].
The insider possesses some additional knowledge which will consist in his ability to
stop at a random time L which is not accessible to the regular agent. His information
horizon will therefore be described by a filtration G = (G¢)sc[o,1) Which is larger than
the regular agent’s. In the terminology of the theory of grossissement de filtrations it
is a progressive enlargement which just makes the random time a stopping time to the
insider.

We now recall some basic facts about progressive enlargements of filtrations, follow-
ing Jeulin [28] or Yor [43]. Let L be a random time, i. e. a random variable with values
in [0, 1]. Then the progressive enlargement of (F;):cjo,1] with respect to L is defined as
follows. For t € [0,1], let

G =[FVo(LA)4,

and denote the enlarged filtration by G = (Gy)cjo,1- G is the smallest filtration (sat-
isfying the usual conditions) for which L is a stopping time. The computation of the
compensator of the Wiener process with respect to the enlarged filtration is of central
importance to what follows. We shall sketch it in the following remarks. The right
continuous version of the supermartingale P(L > t|F;),t € [0,1], will be denoted by



Z%. Let ML be the martingale in its Doob-Meyer decomposition. It is then well known
(e. g. Jeulin [28], p. 80) that the process
. t dIME WY,
Wt = WL/\t - /() ].[(),L](S)%ds, te [0, 1],

is a G—Wiener process before L. We trivially have W, = Wy, t € [0, 1].

For a special class of random times we can say more. A random time L is called
honest time if L is the end of a previsible set, i.e. there is a previsible set I' C [0, 1] x ©
such that

L(w) = sup{t : (t,w) € T'},

where sup ) = 0. If L is an honest time, the above decomposition formula extends in a
simple way beyond L. In fact, the process

a(ME W), Q(M W)
Wt Wt / ]_ Td +/ 1 1L, 1 %ds, te [0, 1],
is a G—Wiener process. Let us set
4 ME W 4 (MEW
ap = 1o,1(%) alM, W) 7L e 1]L,1](t)7dt<1 — >t, t €[0,1].

l

To find answers to the question, whether the insider can have a free lunch or even
exercise arbitrage, we have to take his point of view. Formally, this way we obtain a
new financial market (l~), &) with by =b+0r04, 6, =0y, t € [0, 1], with respect to the
G—Brownian motion W. In the following statements we refer to the point of view of
the insider, i. e. we argue for the G—Brownian motion W, and the financial market
(b, &). Formally, the (NFLV R) condition in this market is given by the statement of
the fundamental asset pricing Theorem by Delbaen, Schachermayer [12], [10]. It is
related to the question whether there exists a measure () equivalent with P such that
under @, the excess yield process R is a martingale. Since we have

R:/O'atthJr/O'btdt:/O'atthJr/o'Btdt,

R satisfies (NFLV R) if and only if there exists an equivalent probability measure @

such that with 6, = U—‘ = g—t + oy we have
dQ o
T lo, = exp(- /9 AW, — /095 ds), telo,1].

From this we immediately obtain that the insider will have free lunch opportunities if
we can show that on a set of positive P—measure, we have

fﬁﬁ:m. (3)

Namely, this condition implies that dQ = 0 on a set of positive P—measure (see for
example Delbaen, Schachermayer [11] or Revuz, Yor [37]). In [24] we saw that in
a particular case, (3) is a consequence of a similar non-integrability property of the
pseudodrift a. We next show that this relationship is, in fact, much more general.
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Proposition 1.1 Let t €]0,1]. Suppose that

t
/ a? ds =00, on a set of positive measure.
0
Then we also have
o
/ 0ids = co, on a set of positive measure.
0

Proof:
Write ¢; = Z—‘t and suppose for simplicity ¢ = 1. Let us assume that

1
/ 02 dt < oo (4)

0
P—a.s.. Note that ¢ is F—adapted. Hence, by conditioning on F; we get for t € [0, 1]

el < E(16:][F) + E(|ou|| 7). (5)

If we can show

[ BaddiF) e < o, )

(5) and Jensen’s inequality imply [y ¢ dt < oo, and therefore the contradiction
1 1 1
/ of dt < 4[/ c? dt+/ 0?dt] < oo P—as..
0 0 0

Now note that by the very definition of Z% we have for ¢ € [0, 1]

d
E(|ay||F) = a(ML,WM,

so that the inequality of Kunita-Watanabe yields the estimate
1
| (Bl 7)) dt < (7).,

But the boundedness of Z¥ clearly justifies that (M"); is finite P—a.s.. This proves
(6) and thus the proof is complete. O

2 The last level crossing before maturity by Brow-
nian motion

We shall now consider several particular cases of honest times. The questions we
address concern possibilities of free lunches or even arbitrage for insiders who are able

to stop at the considered time. We start with the last level crossing by the Brownian
motion for some fixed level, before time 1 (maturity). We shall see that the model
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allows for free lunches and arbitrage for quite general price processes. Fix a € R, and
let
L=sup{0<t<1:W;=a}.

It is obvious that L is an honest time, the end of the (previsible) time set the Wiener
process spends on the level a. We shall now calculate «, or rather give a short argument
employing time reversal to prove the well known formula, given for example in Yor [43].

Proposition 2.1 Let F; be the distribution function of the law of |[Wy|, t € [0,1]. Then
for t € [0,1] we have
ZE=1-F_ (W, —al).

Proof:
By a simple spatial shift with a, we may assume a = 0. Fix 0 < ¢ < 1, and define

B, =W, -Wi,_,, L= sup B,.
0<s<t

We have the following equation
{L<t}n{W, >0} = {L,,< B}
- {Ll—t < Wl}
= {Li— (W1 -W;) < Wi}
= {Li_y— Bi_y < W}

Next observe that the processes L — B and |B| have the same law (see Revuz, Yor [37],
p. 223). Since, moreover, |B;_| is independent of F;, we obtain

PH{L <t,W1 > 0} F) = P(|Bi| < Wi F) = Fo(WyF). (7)

(7) and a similar argument for the set {L < ¢t} N {WW; < 0} finally yield the desired
equation. O

Given the description of Proposition 2.1 it is easy to obtain an explicit formula for
Q.

Proposition 2.2 Fort € [0, 1], let p; be the density of the law of |Wy|, Fy its distribu-
tion function. Then we have for t € [0,1]

pi-([Wi —a)
1-— Flft(‘Wt — a‘)

p1(|W; — al)
Fy (W, — al)

ay = —1po,(t) sgn(Wy — a) — 1j1.41(2) sgn(Wy — a).
Proof:
The formula follows immediately from the preceding Proposition, and It6’s and Tanaka’s

formula

¢
Wy —al —|a| = /0 sgn(Ws —a)dW,+ L, te]0,1],

with the local time L} at level a. O



Possibilities of arbitrage and free lunch according to the fundamental asset pricing
theorem will, just as in Imkeller, Pontier, Weisz [24], be related with integrability
properties of the information drift process «. Since it is well known that for honest
times the semimartingale property is conserved in passing to the enlarged filtration,
we do not have to care about L' —integrability of . Let us next show that the process
is not square integrable on a set of positive measure.

Proposition 2.3 For any t €]0,1], we have

t
/afds:oo
0

on a set of positive measure.

Proof:
Fix 0 <t < 1. Assume without loss of generality that a = 0. By Proposition 2.2, the
following estimate holds

p1_5(|”5|) 0
asl >1 — =1 — In Fi_,(|W € 10,1].
‘ S‘ el ]L,l](s) Fl—s(|”rs|) ]L,l](s) ) 1 8(‘ S|)’ S [Oa ] (8)

By Williams’ path decomposition (see Revuz, Yor [37], (4.9) Theorem), we can deduce
from (8) a critical lower bound for «, at least for times immediately after L. For this
purpose, let

1
A:{L§§t, T1<1},
where T} = inf{s > L, W, = 1}. Clearly A has positive probability. The process
ps:Ws—l—La OSSSTI_La

is a piece of a BES(3). Hence on the set A

t (Ti=DACEL) py_o(ps)
2 s\Ps) \2
o ds > / ———)*ds. 9
f)ezds> | o) 0
But the quotient %&’;}3 is pathwise asymptotically equivalent with p% as s | L. And

it is well known that [j' p% ds = oo P—a.s. for all u €]0,1]. See for example Revuz,
Yor [37], Chapter VI, (3.19) exercise. Therefore (9) implies the desired equation. O

To show that the insider being able to stop at the last passage through a before
maturity can have free lunches with no risk, we just have to combine the preceding
result with Proposition 1.1.

Theorem 2.1 Let a € R. Suppose the insider’s filtration G is the progressive enlarge-
ment of F with L, the last passage through a before time 1. Then in the insider’s model
R does not satisfy the condition (NFLVR).



Proof:
Combine the Propositions 2.3 and 1.1. O

Remark:

To prove that (NFLVR) is not satisfied, we use the fundamental theorem of asset
pricing. Now the direction of the equivalence of this condition with the non-existence
of an equivalent martingale measure we need uses the Hahn-Banach theorem, hence is
nonconstructive. It is natural to ask if in our special model class there is a constructive
way to prove the failure of (NFLVR). Of course this can be done by exhibiting explicit
arbitrage strategies, as it happens below for a still special class of price processes. At
the moment we have no general constructive argument.

We can go a little further and show that there are even arbitrage strategies (see
Karatzas, Shreve [31]) , at least for a large class of price processes. Intuitively, according
to the strategy exhibited in the following example, the insider makes use of a very subtle
effect. While the regular trader cannot stop at the random time L, and therefore will
perceive the price process as a Wiener process, the insider will see an effective decay of
the price after time L for a short while, perceiving it as the negative of a 3-dimensional
Bessel process. He is able to take advantage of this observation.

Example 1:
Suppose that there exists p > 2 such that (2)~ € L,([0, 1]). Then arbitrage possibilities
exist.

To show this, denote first by ¢ the conjugate exponent to p. Holder’s inequality gives

t by 1, [t by 1
[y ds<t=1)s () () yds)s. (10)
L O L O
The crucial point for our argument is the following observation. If A, p are given as in
the proof of Proposition 2.3, an argument as in the proof of Theorem 4.3 of Imkeller,
Pontier, Weisz [24] precising the local path behaviour of BES(3) processes and using
(10) shows that, at least on A we have

limL1 =00 for g<2. (11)
tlL (t _ L)E
Hence the G—stopping time
t b 1 W,
r=if{t>L: [ (Z) ds+=(t—L)>-L}Al (12)
L Oy 2 2

is strictly bigger than L on A. Using this stopping time, we may define our tame
strategy. Let

t b, 1
T; =exp(—/ —ds — Wy — =t),
0 O 2
and choose T
=1 (t) 1 L telo,1].
T = 1iz,n(t) R+(Wt)TL 5 1€ [0,1]



Then we obtain for ¢ € [0, 1]

tAT bs 1
Gt = [exp(/L —d$+Wt/\7——E(t/\T—L))—l]lR+(WT)

Os
> -1

and

Gy

v

W,
[eXp(T) - 1] 1R+(WT)
> 0 and >0

at least on the set A which has positive measure. This shows that 7 is an arbitrage
strategy and therefore the proof is complete.

We remark that the conditions of the preceding example are fulfilled in case g is

bounded below by a constant.

3 The time at which Brownian motion reaches its
maximum

We next consider the time when the Brownian motion on [0, 1] takes its maximum.
Again, we shall prove that the model then allows for free lunches or arbitrage for
insiders who can stop at this time. For ¢ € [0, 1] let

Sy = sup Wi,

0<s<t
and
o=sup{0 <t<1: W, =5}

Let 7 be the time W reaches its maximum in [0, 1]. Then it is well known that o = 7
P—a.s. Hence 7 is obviously an honest time. Now let

p = sup{0<t<1:|W =0}
= sup{0<t<1:W,=0}.

Since (S; — Wi)i>0 and (|]Wy])i>0 have the same law, we also know that 7 and p have
identical laws. Denote by

Ly = sup (Wi — Wi),

0<h<s
s >0, and let G be the law of S;,t > 0. Then

P(T > t‘.ﬁ) = P(i/l_t + W, > St|‘7:t)
= P(Li¢> S — WiF)
== Gl—t(St — Wt)

So we obtain a simple characterization of the density of the compensator in the following
proposition.
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Proposition 3.1 Fort € [0,1], let Gy resp. q; denote the law resp. density function
of S;. Then for 0 <t <1 we have

QI—t(St - Wt)
1 —_ Gl—t(St —_ Wt)

Cll—t(St - Wt)
Gl—t(St - Wt).

— 1jr1(2)

o = —1p0,1(t)

Proof:
The random variables S; and |W;| are equal in law. Write p; for the density of W;.
Then we have for ¢t € [0,1],z € R

Hy(z) = /i pe(y) dy =2 /Ow p(y) dy.

Hence we have
Hy(r) = Gi(|z]), ze€R, te€l0,1]

So the result of Proposition 2.2 may be paraphrased as

o = —lpr (t)l — H,_,(W,) e )Hl—t(Wt)
G-+ (|We) ¢-+([Wi))
= —lpn(t ~ LW e =y
LA e 7] R A e 73]

Note that L corresponds to p. Now it remains to apply the equality of laws of (S; —
Wi)eo0 and (|W;])¢>o to obtain the desired result. O

Proposition 3.2 For any t €]0,1], we have

t
/a?ds:oo
0

on a set of positive measure.

Proof:
This again is an immediate consequence of Proposition 2.3 and the equality of the laws
Of (St — Wt)tZO and (|Wt‘)t20 O

So we obtain the main result of this section.
Theorem 3.1 Suppose the insider’s filtration G s the progressive enlargement of F
with T, the time at which W reaches its maximum. Then in the insider’s model R does

not satisfy the condition (NFLVR).

Proof:
This is a combination of Propositions 3.2 and 2.1. O

For large classes of price processes it is equally easy to exhibit arbitrage strategies.
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Example 2:
Suppose that there exists p > 2 such that (2)* € L,([0,1]). Then there is arbitrage.
To show this, we proceed as in the previous example. Let 7 again be the random time
when W reaches its maximum, ¢ the conjugate exponent to p. Holder’s inequality gives

t bs 1 ¢ bs 1
[ Cyrds <t =m)e ([ () pds)s, (13)
T 0-3 T O-S
Our argument relies upon the following observation. Given 7, the process (p; = (W, —
Wit : 0<t<1-—7)isaBes(3) process. Another argument as in Example 1 therefore
gives
. Pt
lgir(r)lt—% =oo0 for ¢g<2. (14)
(13) and (14) together imply that on a random, small but nontrivial time interval
just after 7, we have
t b
/ ()t ds < W, — W,
T Og
Hence the G—stopping time
1 W, - W,

t b
=inf{t > :/ =)t —(t —
p=inf{t > T(as) ds—|—2(t T) > 5

Al (15)

is strictly bigger than 7. Using this stopping time, we may define our tame strategy.
Let

T, = exp(— /t bs g5 —w, — Ly,
0 O 2
and choose
T = —1p(t) i, teo,1].
’ T’r ¢

Then we obtain for ¢ € [0, 1]

EALRR 1
Gi = [exp(— [ Zds+ (W = Winy) = 3t Ap—7) 1]
> -1

and

G W, — W,

v

)—1]

[exp(
> 0 and >0

with positive probability. This completes the proof.

4 The last zero crossing by a recurrent diffusion
Let (Xi)i>0 be a recurrent regular diffusion on R, given by a stochastic differential
equation

dXy = c(Xy) dt + 7(Xy) AW,

12



where 72 > 0 and -5 is locally integrable on R. Define

L=sup{0<t<1:X;,=0}
the last crossing of zero before time 1. Obviously, we again treat an honest time. We
shall derive conditions on the Feller characteristics of X under which the insider has
free lunch or arbitrage possibilities. According to Revuz, Yor [37], p. 321, we have for

reld 7E = §(X,),

where
é(x) = Po(L > 0) = Py(m < 1).

Here 1y denotes the first hitting time of 0 by X. To estimate ¢ for small x, we use
classical diffusion theory. It6, Mc Kean [25], p. 215, yields

¢(z) — [(u(z) —w(0)) ny(1) + 1] = o(u(z) —u(0)) as 2 =0, (16)

where

0>ny(l) = /loo ny(du) > —o0
and n, is the Lévy measure appearing in the formula
Eo(efat_;l(t)) — et f0°°(1fe—al)n+(dz)’
with the local functional
t2' (1) =As: X5 > 0,79 < s < L7()),

and the inverse local time L™! at 0. u denotes the scale function of X. Let us first give
some estimates for the martingale part of Z~. For this purpose, recall that under our
assumptions v is continuously differentiable, V; = u(X;) — u(0),t > 0, is a martingale
(see Karatzas, Shreve [30], p. 340), and denote ¥(y) = ¢(u"(y +u(0))),y € [u(—o0) —
u(0), u(o0) — u(0)].

Lemma 4.1 9 is a convex function, ¥' is right continuous at 0 with limit ny (1), and
we have

t>0.

Proof:
The statement is implicit in the derivation on pp. 124, 215 of It6, Mc Kean [25]. O

With the help of Lemma 4.1 we can now give a lower estimate of the information
drift coefficient a.
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Proposition 4.1 For any t € [0,1] we have

t
/afds:oo
0

on a set of positive measure.

Proof:
By Lemma 4.1, we may estimate for s € [0, 1]

—¢'(Yo) v (™ (Y5)) [v(u™ (V)|
1—(Yy) '

Since 7' is increasing with limit n (1) at 0, and by (16), we may continue this estimate
by

los| > 131,11(8)

/Ot a2ds > /LWL LA G )i (L)) I 0,1].

V2
We proceed by defining the random time change

¢
A= [ @ (00) T (V) ds, e [0,1].
0
Since A = (Y'), the process
Wt:YAglﬁ OStSAl,

is a Wiener process. Moreover, by strict monotonicity of A, the random time Ay, is the
last zero crossing of the Wiener process W before time A;, and we may write

Yazds> [ Ly 17
/Oozss_AL Wfs' (17)

We may now continue our argument as in the proof of Proposition 2.3. O
Again, the insider may have free lunches without risk, as our main result shows.

Theorem 4.1 Suppose the insider’s filtration G is the progressive enlargement of F
with L, the last passage through zero of a reqular recurrent diffusion Y satisfying the
stochastic differential equation

dY, = y(Y;) dW, + c(Y;) dt,

with coefficients v and ¢ such that ¥* > 0 and ;—z 1s locally integrable on R. Then in
the insider’s model R does not satisfy the condition (NFLVR).

Proof:
Combine Propositions 4.1 and 1.1. O

14



5 The time at which a recurrent diffusion reaches
1ts maximum

Let as in the preceding section (X;);>o be a recurrent regular diffusion on R, given by
the stochastic differential equation

dXt = C(Xt) dt + ")/(Xt) th

Assume in addition that the volatility of X is bounded below, i.e. there is a positive
constant p such that 72 > p and 5—2 (and thus also 5) is locally integrable on R. Let

Sy = sup Xj,
0<s<t
and
T=sup{t <1:X; =5}

Then 7 is again P—a.s. equal to the time at which X takes its maximum. We shall
show that there are free lunch and arbitrage possibilities again. Our argument is based
on a time change which takes X into a Brownian motion. Then we will be able to
adapt the results of section 3. One has to be rather careful, however. At first glance,
one might be tempted to conjecture that (S; — X;)i>o is equal in law to the reflected
diffusion (|X}|)s>0, to resume the arguments of section 3. But this is true only under
additional assumptions (see Revuz, Yor [37]).

We start by remarking that our assumptions on ¢ and « allow to assume that ¢ =0
altogether. This can be seen by an application of a Girsanov change of probability
measure. Furthermore, another simple argument shows that if the result is proved for
a martingale diffusion X, it holds for a nontrivial constant multiple of X as well. This
remark allows us to assume that v? > 1.

Define for t > 0 .
A= / Y*(X,) ds.
0

Then A is continuous and strictly increasing with inverse process A=!, and 72 > 1
implies A; > 1. It is well known that

Y, = XAt—l, t>0,
is a Wiener process with respect to the filtration
Ht = fA;17 t Z 0.
We consider the time of the maximum of Y corresponding to 7. For this purpose, let

Ty= sup Y;, t2>0,
0<s<t

and define
& =sup{s < A;: Y, =Ts}.

15



Then it is easy to see that
A, =&

Since A; is not necessarily deterministic, £ is not necessarily an honest time for the
Wiener process Y. But since A; > 1, we can fortunately compare it to the honest time

§o=sup{s <1:Y, =T}

We trivially have
§0 S 67

and we know that & and & agree on the set of positive measure {7} = sup,,«4, Y;}-
We finally need the counterpart of & in the original scale. It is given by the random
time

o =sup{t < A7': X; = S;}.

Recall the supermartingale Z7, and let correspondingly
7™ = P(ry > t|F), Z°=P(£>tHy), Z% =P(& > t|Hy), t>0.

In this notation, we have

Zl =275, t>0. (18)

t’
We shall now investigate Z¢, roughly by comparing it to Z%, which we know better
from section 3. Let

ZT=M"—-B"

be the Doob-Meyer decomposition of Z7 with a martingale M” and a bounded in-
creasing process B”. By the predictable representation property w. r. t. the filtration
(Ft)i>0, there exists an adapted process

d

f = %(MT,W>

such that we have

. ot
M _/0 fdeS_/O oy X (19)

The Doob-Meyer decomposition of Z¢ with respect to (H:i)e>0 is then given by
78 — ME¢ — B¢ ’

where

A7t t 1
BS=BT. Mf=M_, :/ R L
' o y(X) o v(Y)

Moreover, we have

d
= fy-1 = —(MEY).

For the associated supermartingales Z™ and Z% we obtain in the same way analogous

decompositions with increasing processes B™, B¢,

o_d
dt

d
<MT0:W>790 = f,g*l = _<M£07Y>'

/ dt
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Due to convexity of —In, we know that In ; In are submartingales with

1
Z§ 1 1-Z%
respect to the filtration (H;)i>0, as well as ln — ZT,ln ﬁ are submartingales with
respect to (F)i>o. 1t6’s formula in the filtration F and in the enlarged filtration G

yields for any ¢ > 0,0 <t < 1

1 1
In —1In
1- Z;r - Z7,T'-+C
b s b fs 1 b s o
= dw, — BT+
- T+c1—ZTd > T
t A . t ; 1 rt A
= J dW, J dBI — = ( J )% ds. (20)

7'—|—c]_—ZsT s 7'—|—c]_—Z:9r s 2 T—|—C]-_Zg

To transfer this formula into the scale t = A,, we remark that on ]£, 1] we may write

dW. =
W, AW, + - ngt
1 Tt
= dX; + ————dt
yx) 177
= s+ ‘Zs ds.
v(Yy) (1= Zs5)v2(Y5)
Hence if we define .
¥, gs
V,=Y, + / Ligaf(s) ——=—ds, 21

we see that Y is a Wiener process with respect to ((H; V o(€ At))y)ss0 on J€,1[. This
however allows us to give the following time transform of (20). For any ¢ > 0,0 < ¢ <
A; we have

1 1

In —In———
1—Z; 1-Z¢,,
t s - t s 1 t s
By R o S

Formulas analogous to (20) and (22) for 75 and & with respect to Z™, Z% hold. Now
& < & implies that for any ¢ > 0

1 1
In <In at least on {& = ¢}.

& 3
1- Z§3+c 1- Z§+c

As a consequence of proposition 3.2 for any 0 < ¢ <1

/é:( 9s )2ds = oo

1_Zfo

on a set of positive probability in {§ = &}. By 7 > 1 the same holds true for

fgo (W)st. Now by the relationship between the set of finite quadratic variation

17



and martingale convergence (see Revuz, Yor [37], p.183), arguing by contradiction, we

must have 1
0o = limlIn — & < limIn — (23)
o 1 — 78 o 1—Z¢,

on a set of positive probability in {&, = £}. By the same relationship (22) now entails

t s 205 — oo
ey il

for any 0 < ¢ < 1 on a set of positive probability in {£, = £}. Retransferring this to
the original scale finally yields the desired statement

[ L= @4

for any 0 < ¢t < 1 on a set of positive probability. We obtain the required degeneracy
result.

Proposition 5.1 For any t € [0,1] we have

t
/ a’ds = oo
0
on a set of positive measure.
Proof:
On |, 1], a = # On a set of positive probability intersecting non-trivially with the

one fixed above, 7 < t. O

Our main result claims again that the time of the maximum of X allows for arbitrage
possibilities.

Theorem 5.1 Suppose the insider’s filtration G is the progressive enlargement of F
with 7, the time at which the reqular recurrent diffusion Y satisfying the stochastic
differential equation

4Y, = 1(Y2) dW, + o(Y;) d

takes its mazimum. The coefficients v and c are such that v* > p for some positive
2 . . . . .

constant p and fr—Q 1s locally integrable on R. Then in the insider’s model R does not

satisfy the condition (NFLVR).

Proof:
Combine Propositions 5.1 and 1.1. O
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