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Abstract

In this paper we consider a market driven by a Wiener process
where there is an insider and a regular trader. The insider has priv-
ileged information which has been deformed by an independent noise
vanishing as the revelation time approaches. At this time, the infor-
mation of every trader is the same.

We obtain the semimartingale decomposition of the original Wiener
process under dynamical enlargement of the filtration, and we prove
that if the rate at which the additional noise in the insider’s infor-
mation vanishes is slow enough then there is no arbitrage and the
additional utility of the insider is finite.
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1 Introduction

Financial markets inherently have asymmetry of information. That is, there
are different types of traders whose behavior is induced by different types
of information they possess (or not). In the classical setting for financial
markets one assumes that all traders share the same information which allows
the study of non-arbitrage and equilibrium conditions. In this article we
are interested in finding settings where a continuous time financial market
can accept continuous differences in information between traders. These
differences can disappear at certain revelation times. Our aim in this paper
is to show that one can construct such markets and still achieve non-arbitrage
under some restrictions on the trading strategies of the informed agents.

One of the aspects of this complex problem is to study the effects of
changes in information of different agents. One can find literature in mathe-
matical economics as well as in stochastic process theory dealing with prob-
lems of this nature. In the latter area the most frequently used techniques
are based on the enlargement of filtrations. A basic reference on this topic
is the series of papers in the Séminaire de Calcul Stochastique (1982/83) of
the University Paris VI published in 1985.

In the past few years we have seen expanding interest in this area. Ar-
ticles where the enlargement of filtrations technique is applied to portfolio
optimization of an insider are Karatzas and Pikovsky (1996), Imkeller (1996,
1997), Amendinger et al. (1998), Grorud and Pontier (1998) and Imkeller
et al. (2001). The setup in most of these works is to consider two small
agents who optimize their logarithmic utility. One considers the difference
of utility between these two agents supposing that one of them is better in-
formed than the other. One of the important conclusions of this body of
work is that if the information is generated by the initial knowledge of the
value of a random variable then the additional utility is the relative entropy
of this random variable with respect to the original probability measure, see
for instance remark 2.5 in Karatzas and Pikovsky (1996).

In most of these results the extra information of the insider can be clas-
sified into two types. In the first, the insider has direct access to the price of
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the underlying at some time in the future T . In this case the utility difference
is infinite and there is arbitrage which is realized at this future time T . In the
second, the insider knows the price of the underlying up to a perturbation
by a remaining independent noise which is constant through the time inter-
val [0, T ] (see Karatzas and Pikovsky (1996) and Amendinger et al. (1998)).
In this case the additional utility is finite. Nevertheless we encounter the
somewhat odd situation that the level of information is the same even at the
revelation time T .

In this article we propose to study situations in which the insider knows a
functional of the underlying deformed by an independent noise process which
tends to zero as T approches. This has obvious relations with the actual
evolution of information in markets. Mathematically, this shows the need to
develop a dynamical enlargement of filtrations. In our case this will follow
from a projection of the decomposition obtained through Jacod’s theorem.

Other approaches to insider’s effects in financial markets are made by
Kyle (1985), and Back (1992) in the context of an equilibrium theory, with
different kind of traders acting in the market, and by Baudoin (2001), where
the true model of stock prices is partially observed and where the insider’s
extra information consists of the knowledge about the law of some functional
of the future prices of stocks. Even though, in this latter case, enlargement of
filtrations techniques are not relevant due to the type of additional informa-
tion being considered, the author establishes the relationship, via Girsanov’s
theorem, with the case where the extra information is the value of a func-
tional of the future prices of stocks.

We treat different examples. The results in all our examples state that if
the rate at which the blurring noise disappears is suficiently slow then there
will be a finite additional logarithmic utility and no arbitrage. Therefore this
allows the construction of a stable market where insiders and regular traders
coexist.

This situation corresponds to a more natural situation where the informa-
tion retained by the insider is improving as times evolves. The minimum rate
at which the noise has to go to zero in order to achieve absence of arbitrage
could also be interpreted as the necessary noise that has to be generated by
noise traders, see Back (1992), in order not to reveal to ”market makers” the
information the ”true” insider possesses.

For simplicity, we restrict our analysis to the case of a one-dimensional
model, although our approach can be easily extended to a multidimensional
framework.
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The paper is organized in the following way. In Section 2 we analyze
the effects of the privileged information on the optimal portfolios and on the
viability of the market. Section 3 is devoted to finding a formula for the
compensator of the Wiener process under the new filtration. In Section 4 we
apply the previous results to several examples.

2 Gain and arbitrage possibilities under ad-
ditional information

Consider, for the sake of simplicity, a Black-Scholes model with one risky
stock S = {St, 0 ≤ t ≤ T}. Namely, S satisfies the stochastic differential
equation

dSt = µStdt + σStdWt, 0 ≤ t ≤ T, (1)

with some parameters σ > 0, µ ∈ R and initial condition S0, and where W =
{Wt, 0 ≤ t ≤ T} is a Brownian motion defined on a complete probability
space (Ω,A, P ).

We write F = (Ft)t∈[0,T ] to denote the P -completed natural filtration gen-
erated by the Wiener process. We also consider a riskless stock Bt = exp{rt},
where r is the instantaneous interest rate.

Assume that the additional information until time t is given by a family
of random variables {Ls , s ≤ t}. Suppose that these random variables have
the following structure:

Lt = G(X,Yt),

where X is an FT -measurable random variable, the process Y = {Yt, 0 ≤
t ≤ T} is independent of the σ-algebra FT , and G : R2 → R is a given
measurable function. WriteH = (Ht)t∈[0,T ] to denote the usual augmentation
of the filtration (Ft ∨ σ(Ls, s ≤ t))t∈[0,T ] (P -completed and right-continuous).

The filtration F gives the regular trader’s evolution of knowledge, whereas
the enlarged filtration H describes the insider’s filtration. The random vari-
able X contains the additional information available to the privileged trader,
and the random variables Yt represent a different (independent) noise that
perturbs this additional information. Therefore one expects in general that
YT = 0 and that the variance of the noise should decrease to zero as the
revelation time T approaches.

If under the new filtration H, Wt = W ∗
t +

∫ t
0 βsds, t ∈ [0, T ], where
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W = (W ∗
t )t∈[0,T ] is an H-Brownian motion and β = (βt)t∈[0,T ] is an H-

progressively measurable process, we can write

dSt = (µ + σβt)Stdt + σStdW ∗
t , 0 ≤ t ≤ T.

Then the market for the insider is simply a market with a different drift.
Therefore utility optimization or arbitrage possibilities for the insider can
be studied as utility optimization or arbitrage possibilities in a market with
different dynamics.

For instance, if we take the logarithmic utility function and we try to
maximize the expected utility of the terminal wealth of traders, for fixed
initial wealth, the difference between regular traders and insiders

max
π∈I

E(ln(Wπ
T ))−max

π∈R
E(ln(Wπ

T )),

can be obtained by solving the optimization problems with the two dynamics.
HereWπ

T is the value of the portfolio π at T , and I and R are, respectively, the
sets of admissible portfolios for insiders and regular traders. The solution
can be found in Amendinger et al. (1998), and this difference is given by

1
2
E(

∫ T

0
β2

t dt), (2)

where the optimal portfolio for insiders is such that the amount of money
invested in the risky asset is given by

(

µ− r
σ2 +

βt

σ

)

Wπ
t . (3)

We now consider arbitrage opportunities for insiders. As usual, we shall
say that a portfolio π is an arbitrage opportunity if Wπ

0 = 0 and P{Wπ
T ≥

0} = 1 with P{Wπ
T > 0} > 0. To avoid ”doubling strategies” we shall

impose the condition Wπ
t ≥ C a.s. for some constant C ∈ R and for any

t ∈ [0, T ], that is we only admit the so called tame portfolios.
Suppose that

∫ T
0 β2

t dt < ∞ a.s and that there exists a probability measure
Q∗ equivalent to P such that Wt = W ∗

t +
∫ t

0 βsds, t ∈ [0, T ], is anH-Brownian
motion. Then,

dSt = µStdt + σStdWt, 0 ≤ t ≤ T,
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where W is an H-Brownian motion with respect to Q∗. Now, we know that
there exists a probability measure Q equivalent to Q∗ such that

dSt = rStdt + σStdŴt, 0 ≤ t ≤ T,

where Ŵ is an H-Brownian motion with respect to Q. By composing the
two steps we have a probability measure Q equivalent to P , such that

Ŵt = W ∗
t +

∫ t

0
(
µ− r

σ
+ βs)ds, 0 ≤ t ≤ T,

is an H-Brownian motion with respect to Q, in other words, there is a risk
neutral measure for insiders. Then, according to Corollary 2 in Levental and
Skorohod (1995) insiders will not have arbitrage opportunities inH with tame
portfolios. So, we simply have to know whether or not there is a probability
measure Q∗ equivalent to P such that Wt = W ∗

t +
∫ t
0 βsds, t ∈ [0, T ], is an

H-Brownian motion with respect to Q∗.

3 Formulae for the compensator

We have seen in the previous section that the characteristics of the insider’s
view of market are determined by the decomposition Wt = W ∗

t +
∫ t
0 βsds,

where W ∗ is an H-Brownian motion and the drift β is an H-progressively
mesurable process. Then the problem is to find β. A useful fact is that if we
know the drift for the case Lt = X we can obtain the drift for the general
case. In fact, we have the following proposition.

Proposition 1 Let X be an FT -measurable random variable and assume
that there exists an integrable, F ∨ σ(X)-progressively measurable process
α = {αt, t ∈ [0, T )}, such that W−

∫ ·
0 αsds is an F∨σ(X)-Brownian motion.

Then W −
∫ ·

0 E(αs|Hs)ds is an H-Brownian for an appropriate version of
E(αs|Hs).

Proof. Since Y = {Yt, 0 ≤ t ≤ T} is independent of FT , then W̄t = Wt−
∫ t
0 αsds is a J -Brownian motion, with J = (Ft ∨ σ(X) ∨ σ(Ys, s ≤ t))t∈[0,T ).

We have that E(W̄t|Ht) = Wt−
∫ t
0 E (αs|Hs) ds, where we can consider anH-

progressively measurable version of E (αs|Hs) , s ∈ [0, T ) (see Dellacherie and
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Meyer (1980), page 113), also since Lt = G(X, Yt), Ht ⊂ Jt, and E(W̄t|Ht),
t ∈ [0, T ), will be an H-martingale. In fact, for 0 ≤ s < t < T

E(E(W̄t|Ht)|Hs) = E(W̄t|Hs) = E(E(W̄t|Js)|Hs) = E(W̄s|Hs).

Finally Lévy’s characterization theorem implies the result.
According to the preceding proposition, given an FT -mesurable X, it

is enough to compute the compensator α with respect to F ∨ σ(X).The
following proposition shows how to calculate α if we have a certain integral
representation of any functional of X, and the Clark-Ocone formula will
allow us, in many cases, to compute explicitly this representation.

Proposition 2 Suppose that X is an FT -measurable random variable. As-
sume that there exists a B[0,T ] ⊗ FT -measurable process ξ = {ξt, t ∈ [0, T ]}
such that

∫ T
0 E(|ξt|)dt < ∞, and that for any measurable and bounded func-

tion f we have

f(X) = E(f(X)) +
∫ T

0
Φf

t dWt

Φf
t = E (f(X)ξt|Ft) , (4)

for almost all (t, ω). Then, Wt −
∫ t

0 αsds is an F ∨ σ(X)-Brownian motion,
t ∈ [0, T ] where

αt = E(ξt| Ft ∨ σ(X))

for an appropriate version of the conditional expectation.

Proof. Let f be a bounded measurable function on R, let s ≤ t and
A ∈ Fs. Set F = f(X). Then we have

E ((Wt −Ws)1AF ) = E ((Wt −Ws)1Af(X))

= E
(

1A

∫ t

s
E (f(X)ξu|Fu) du

)

= E
(

1A

∫ t

s
f(X)ξudu

)

= E
(

1A

∫ t

s
f(X) E(ξu| Fu ∨ σ(X))du

)

= E
(

1AF
∫ t

s
αudu

)

.

Here, as in the proof of the previous proposition, we are considering the
F ∨ σ(X)-progressively measurable version of E(ξt| Ft ∨ σ(X)), 0 ≤ t ≤ T .
Finally, Lévy’s characterization theorem and the condition

∫ T
0 |ξt|dt < ∞ a.s.

imply the result.
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Remark 3 Note that if in Proposition 1 αt = E(ξt| Ft ∨ σ(X)), βt =
E(αt|Ht) = E(ξt|Ht) for adequate versions.

In fact, denote Y = (Ys1 , ..., Ysn) and EY (·) the conditional expectation
fixing Y = (ys1 , ..., ysn). Fix t ∈ [0, T ] such that E(|ξt|) < ∞ and B ∈ Ft,
h a bounded measurable function on Rn, s1 ≤ · · · ≤ sn ≤ t, and set
H = h(Ls1 , . . . , Lsn). Then, we have

EY (ξt1BH)
= E (ξt1Bh(G(X, ys1), . . . , G(X, ysn))
= E(E(ξt|Ft ∨ σ(X))1Bh(G(X, ys1), . . . , G(X, ysn))
= E (αt1B(X)h(G(X, ys1), . . . , G(X, ysn))
= EY (αt(X)1BH) .

In general (4) is obtained through an integration by parts and therefore
the process ξ need not be F -adapted. The next proposition gives a general
formula for β in the case of additive noise. In the sequel we consider the
particular case where G(x, y) = x + y and Yt = ZT−t, Z being a continuous
process with independent increments whose marginal Zt has density qt.

Proposition 4 Suppose that the assumptions of Proposition 1 are fulfilled.
Let for t ∈ [0, T ] the random variables Lt be given by Lt = X + Yt. Then we
have for t ∈ [0, T ]

βt =

∫

R αt(x) qT−t(Lt − x) Pt(dx)
∫

R qT−t(Lt − x) Pt(dx)
,

where we denote by Pt(dx) a regular version of the conditional law of the
random variable X given the σ-field Ft.

Proof. For t ∈ [0, T ] we may write, using the independence of FT and Y

βt = E(αt(X)|Ft ∨ σ(Ls : s ≤ t))
= E(αt(X)|Ft ∨ σ(Lt) ∨ σ(Yt − Ys : s ≤ t))
= E(αt(X)|Ft ∨ σ(Lt)).

Let Qt be a regular version of the conditional distribution of (X, X + Yt)
given Ft. Then for C ∈ B(R2)

Qt(C) =
∫

R2
1C(x, x+y) qT−t(y) Pt(dx) dy =

∫

R2
1C(x, l) qT−t(l−x) Pt(dx) dl.
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Hence for A ∈ B(R)

P (X ∈ A|Ft ∨ σ(Lt)) =

∫

A qT−t(Lt − x) Pt(dx)
∫

R qT−t(Lt − x) Pt(dx)
, (5)

and we obtain

E(αt(X)|Ft ∨ σ(Lt)) =

∫

R αt(x) qT−t(Lt − x) Pt(dx)
∫

R qT−t(Lt − x) Pt(dx)
. (6)

4 Examples

Example 1 Let Lt = X + W̃g(T−t), where X = F (WT ), F : R→ R is a
continuously differentiable function with E(F ′(WT )2) < ∞ and g : [0, T ] →
[0, +∞) is a strictly increasing bounded function with g(0) = 0. It is well
known that if X = WT , then αt(X) = WT−Wt

T−t , see for instance Jeulin (1980),
p. 49. Hence, by Proposition 1

βt = E(
WT −Wt

T − t
|Ht).

Now, for t ∈ [0, T ] we may write, using the conditional independence of
{Wr, r < s} and σ(Lr, r ≤ s) given Ws and the independence of W and ˜W

E(
WT −Wt

T − t
|Ht) = E(

WT −Wt

T − t
|Wt, σ(Ls : s ≤ t))

= E(
WT −Wt

T − t
|Wt, F (WT ) + Yt),

where Yt = W̃g(T−t). Let Qt be the regular conditional distribution of (WT −
Wt, F (WT ) + Yt) given Wt = x. Then for C ∈ B(R2)

Qt(C) =
∫

R2
1C(y, F (x + y) + z) φg(T−t)(z) φT−t(y) dzdy

=
∫

R2
1C(y, w) φg(T−t)(w − F (x + y)) φT−t(y) dwdy.
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Hence for A ∈ B(R), t < T

P (WT −Wt ∈ A|Wt, Lt) =

∫

A φg(T−t)(Lt − F (Wt + y)) φT−t(y) dy
∫

R φg(T−t)(Lt − F (Wt + y)) φT−t(y) dy

and

βt =

∫

R yφg(T−t)(Lt − F (Wt + y)) φT−t(y) dy
(T − t)

∫

R φg(T−t)(Lt − F (Wt + y)) φT−t(y) dy
.

Notice that y
T−tφT−t(y) = −φ′T−t(y). Hence, integrating by parts yields

βt =

∫

R(Lt − F (Wt + y)) F ′(Wt + y)φg(T−t)(Lt − F (Wt + y)) φT−t(y) dy
g(T − t)

∫

R φg(T−t)(Lt − F (Wt + y)) φT−t(y) dy

=
1

g(T − t)
E(YtF ′(WT )|Wt, F (WT ) + Yt).

Hence, applying Cauchy-Schwarz’s inequality we obtain

E(β2
t ) ≤

1
g(T − t)2E(Y 2

t F ′(WT )2) =
1

g(T − t)
E(F ′(WT )2).

Therefore we conclude,

E(
∫ T

0
β2

t dt) ≤ E(F ′(WT )2)
∫ T

0

dt
g(t)

,

and E(
∫ T

0 β2
t dt) < ∞ if

∫ T
0

dt
g(t) < ∞. This condition is satisfied, for instance,

in the case g(s) = Ksp with 0 < p < 1, K > 0.
Let us take

X = log(ST ) = log S0 + µ̃T + σWT ,

with µ̃ = µ− σ2/2. Then F is a linear function and as a consequence,

βt =
σ2(WT −Wt) + σW̃g(T−t)

σ2(T − t) + g(T − t)
=

σ(Lt − log(St)− µ̃(T − t))
σ2(T − t) + g(T − t)

,

and

E
∫ T

0
β2

t dt =
∫ T

0

σ2

σ2(T − t) + g(T − t)
dt.

Since β is a Gaussian process E(
∫ T
0 β2

t dt) < ∞ is a sufficient condition (see
Liptser and Shiryaev (1997)) to guarantee the existence of the equivalent

10



martingale mesure Q∗ (see section 2), then if we take g(s) = Ksp with
0 < p < 1, there are no arbitrage opportunities. But if g(s) = Ksp with
p ≥ 1 we have, by the law of the iterated logarithm and because W and W̃
are independent, that
(

σ2(WT −Wt) + σW̃g(T−t)

σ2(T − t) + g(T − t)

)2

= O((T−t)−1 log log(1/(T−t))) a.s., when t ↑ T,

and since
∫ T

0
t−1 log log(1/t)dt = ∞
∫ T

0
β2

t dt = ∞ a.s.

Levental and Skorohod (1995) have constructed an arbitrage opportunity for
this situation as exhibited in the proof of Theorem 1 of their paper.

Moreover, note that if 0 < p < 1,

σ2(WT −Wt) + σW̃g(T−t)

σ2(T − t) + g(T − t)
= O((T−t)−p/2√(log log(1/(T−t)p))) a.s., when t ↑ T.

Then limt→T |βt| = ∞ a.s and by (3), the insider becomes a large trader when
the revelation time T approaches.

Example 2. Let X = M = max0≤t≤T Wt, F (x, y) = x + y, Yt = W̃g(T−t)

and Lt = M + W̃g(T−t), t ∈ [0, T ]. Set Mt = max0≤s≤t Ws, t ∈ [0, T ], and

βt,T = max
t≤s≤T

(Ws −Wt) .

Then
M = Mt ∨ (βt,T + Wt) .

For any bounded and measurable function f on R we can write

f(M) = f(M)
(

1{M=Mt} + 1{M>Mt}
)

= f(Mt)1{M=Mt} + f (βt,T + Wt)1{βt,T +Wt>Mt}.

¿From this decomposition we can find a regular version of the conditional
law of M given Ft, t ∈ [0, T ]. Indeed,

E (f(M)|Ft) = E
(

f(Mt)1{M=Mt} + f (βt,T + Wt)1{βt,T +Wt>Mt}|Ft

)

= f(Mt)RT−t(Mt −Wt) +
∫ ∞

Mt−Wt

f(x + Wt)rT−t(x)dx,
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where rt and Rt denote the density and the distribution function, respectively,
of the maximum of the Wiener process in the interval [0, t], which are given
by

rt(x) =

√

2
πt

exp
(

−x2

2t

)

, x > 0

and
Rt(y) =

∫ y

0
rt(x)dx, y ≥ 0.

Hence,

Pt(dx) = δMt(dx)RT−t(Mt −Wt) + rT−t(x−Wt)1(Mt,∞)(x)dx. (7)

Then, it is known, see Jeulin (1980), p. 49, that

αt(x) = − rT−t(Mt −Wt)
RT−t(Mt −Wt)

1(x = Mt) +
x−Wt

T − t
1(Mt,∞)(x).

Then, Proposition 4 allows to deduce the following representation of β. We
obtain for t ∈ [0, T ]

βt =
−rT−t(Mt −Wt) qT−t(Lt −Mt) +

∫∞
Mt

rT−t(x−Wt) x−Wt
T−t qT−t(Lt − x)dx

RT−t(Mt −Wt) qT−t(Lt −Mt) +
∫∞

Mt
rT−t(x−Wt) qT−t(Lt − x)dx

.

(8)
Now similar techniques as in the previous example will be used in order to
assess the integrability properties of β. First of all, we note that

rT−t(x−Wt)
x−Wt

T − t
= − ∂

∂x
rT−t(x−Wt), x > Wt.

We use this formula to integrate by parts the second expression in the nu-
merator of the representation of βt. The result obviously is

∫ ∞

Mt

rT−t(x−Wt)
x−Wt

T − t
qT−t(Lt − x)dx

= rT−t(Mt −Wt) qT−t(Lt −Mt)

+
1

g(T − t)

∫ ∞

Mt

rT−t(x−Wt) (Lt − x) qT−t(Lt − x) dx.
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Substituting this in (8) gives the alternative representation

βt =
1

g(T − t)

∫∞
Mt

rT−t(x−Wt) (Lt − x) qT−t(Lt − x)dx

RT−t(Mt −Wt) qT−t(Lt −Mt) +
∫∞

Mt
rT−t(x−Wt) qT−t(Lt − x)dx

.

Then from (5) and (7) we have that

βt =
1

g(T − t)
E(Yt1{M>Mt}|Ht) =

1
g(T − t)

E(Yt1{M>Mt}|Ft ∨ σ(Lt)).

Applying Cauchy-Schwarz’s inequality yields

E(β2
t ) ≤

1
g(T − t)2E(Y 2

t 1{M>Mt}) ≤
1

g(T − t)2E(Y 2
t ) =

1
g(T − t)

.

Again E(
∫ T
0 β2

t dt) < ∞ if
∫ T

0
dt

g(t) < ∞. As before, this condition is satisfied
in the case g(s) = Ksp with 0 < p < 1, K > 0.

A sufficient condition to guarantee the existence of Q∗ is the Novikov
condition:

E(exp{1
2

∫ T

0
β2

t dt}) < ∞.

In our example we have

β2
t ≤

1
g(T − t)2E(Y 2

t |Ft ∨ σ(Lt))

≤ 1
g(T − t)2E( sup

0≤t≤T
Y 2

t |Ft ∨ σ(Lt)).

Then writing Ut = E(sup0≤t≤T Y 2
t |Ft ∨ σ(Lt)), and if

∫ T
0

1
g(T−t)2 dt < ∞ we

have

E(exp{1
2

∫ T

0
β2

t dt})

≤ E(exp{1
2

∫ T

0

Ut

g(T − t)2dt})

≤ E(exp{
sup0≤t≤T Ut

2

∫ T

0

1
g(T − t)2dt})

≤ E( sup
0≤t≤T

(exp{Ut

4

∫ T

0

1
g(T − t)2 dt})2)

≤ 4E(exp{UT

2

∫ T

0

1
g(T − t)2dt}) < ∞,
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since

UT = E( sup
0≤t≤T

(Y 2
t )|FT ∨ σ(LT )) = E( sup

0≤t≤T
(Y 2

t )|FT ) = E( sup
0≤t≤T

(Y 2
t )) < ∞.

Note that
∫ T
0

1
g(T−t)2 dt < ∞ is satisfied, for instance, in case g(s) =

Ksp with 0 < p < 1/2 and K > 0. In these cases there are no arbitrage
opportunities.

Example 3. Let (Xt)t∈[0,T ] be a one dimensional time homogeneous
Markov process with transition density pt(x, y), x, y ∈ R, t ∈ [0, T ], deter-
mined by a stochastic differential equation

dXt = b(Xt) dt + σ(Xt) dWt. (9)

This example can be seen as a generalization of example 1, disregarding the
case where the function F is not one-to-one, and it is an example where
Proposition 2 applies in a natural way. The stochastic equation (9) can be
consider as a generalization of the Black-Scholes model, where we assume
implicitly the existence of a riskless asset B that evolves as

dBt = Btrtdt, B0 = 1,

where r is an F -adapted process that represents the instantaneous interest
rate. Suppose that

∫ T

0

(

b(Xt)− rt)
σ(Xt)

)2

dt < ∞ a.s.

Then we could argue as before to study the arbitrage opportunities in the
insider filtration, but we shall only consider the utility gain of the insider.

Assume that the density function is continuously differentiable in x and
y and that there is a function γt(y, x), x, y ∈ R, which is also continuously
differentiable in x and y such that we have

∂
∂y

pt(y, x) = γt(y, x)
∂
∂x

pt(y, x), x, y ∈ R, t ∈ [0, T ].

Let then X = XT , the final value of the Markov process. Let Lt = X +
W̃g(T−t), t ∈ [0, T ], and use the notations of Example 1. This time the Markov
property yields for A ∈ B(R), t ∈ [0, T ] the equation

P (X ∈ A|Ft) =
∫

A
pT−t(Xt, x) dx,

14



whence the conditional density of X given Ft is given by

Pt(dx) = pT−t(Xt, x)dx, x ∈ R.

Now we compute αt(x) by Proposition 2. In fact, by the Clark-Ocone for-
mula, we have

Φf
t = E (Dtf(XT )| Ft) = DtE (f(XT )| Ft)

= Dt

∫

R
f(x)pT−t(Xt, x) dx

=
∫

R
f(x)DtpT−t(Xt, x) dx

=
∫

R
f(x)σ(Xt) γt(Xt, x)

∂
∂x

pT−t(Xt, x)dx.

= E(f(XT )σ(Xt) γt(Xt, XT )
∂
∂x

pT−t(Xt, XT )|Ft)

Therefore we may take

ξt = σ(Xt) γt(Xt, XT )
∂
∂x

pT−t(Xt, XT )

and
αt(x) = σ(Xt) γt(Xt, x)

∂
∂y

log pT−t(Xt, x).

One can use Proposition 4 to obtain the compensator β. First we use inte-
gration by parts to compute the numerator
∫

R
αt(x)qT−t(Lt − x) Pt(dx)

= σ(Xt)
∫

R
qT−t(Lt − x) γt(Xt, x)

∂
∂x

pT−t(Xt, x) dx

= σ(Xt)
∫

R
pT−t(Xt, x) [

∂
∂x

γt(Xt, x) + γt(Xt, x)
Lt − x

g(T − t)
] qT−t(Lt − x) dx

= σ(Xt)
∫

R
[
∂
∂x

γt(Xt, x) + γt(Xt, x)
Lt − x

g(T − t)
] qT−t(Lt − x) Pt(dx). (10)

Hence,

βt =
σ(Xt)

∫

R[
∂
∂xγt(Xt, x) + γt(Xt, x) Lt−x

g(T−t) ] qT−t(Lt − x) Pt(dx)
∫

R qT−t(Lt − x) Pt(dx)
.
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Let us next apply Cauchy-Schwarz’s inequality to the result of the integra-
tion by parts appearing in (10) and integrate with respect to the conditional
law of Lt given Ft. We obtain

E(β2
t )

=
∫

R
E

(

(
∫

R αt(x)qT−t(y − x)Pt(dx))2
∫

R qT−t(y − x) Pt(dx)

)

dy

≤ E
(∫

R

∫

R
σ(Xt)2[

∂
∂x

γt(Xt, x) + γt(Xt, x)
y − x

g(T − t)
]2 qT−t(y − x) Pt(dx) dy

)

= E
(

σ(Xt)2 [
∂
∂x

γt(Xt, XT ) + γt(Xt, XT )
Yt

g(T − t)
]2

)

.

Therefore we conclude

E(
∫ T

0
β2

t dt) ≤
∫ T

0
E

(

σ(Xt)2 [
∂
∂x

γt(Xt, XT ) + γt(Xt, XT )
Yt

g(T − t)
]2

)

dt,

and

E(
∫ T

0
β2

t dt) < ∞

if
g(s) = Ksp with 0 < p < 1, K > 0,

and

sup
0≤t≤T

E(σ(Xt)2 γt(Xt, XT )2) < ∞, sup
0≤t≤T

E(σ(Xt)2 ∂
∂x

γt(Xt, XT )2) < ∞.
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