Barrier crossings characterize stochastic
resonance

Samuel Herrmann
Technische Universitat Berlin,

MA 7-5, Str. des 17. Juni 135, 10623 Berlin, Germany
herrmann@math.tu-berlin.de

Peter Imkeller
Institut fiir Mathematik, Humboldt-Universitat zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

imkeller@mathematik.hu-berlin.de

ABSTRACT. - In a two-state Markov chain with time periodic dynamics, we study
path properties such as the sojourn time in one state between two consecutive jumps
or the distribution of the first jump. This is done in order to exhibit a resonance
interval and an optimal tuning rate interpreting the phenomenon of stochastic res-
onance through quality notions related with interspike intervals. We consider two
cases representing the reduced dynamics of particles diffusing in time periodic po-
tentials: Markov chains with piecewise constant periodic infinitesimal generators
and Markov chains with time-continuous periodic generators.

The physical concept of stochastic resonance was discovered around 1980
in the study of a very simple stochastic climate model: an energy balance
model designed to give a qualitative interpretation of paleoclimatic data
describing glacial cycles in the terrestrial history. While its physical under-
standing - based on transition laws observed very early by Eyring [5] and
Kramers [13] which interpreted the prefactor in Arrhenius’ law [1] - was
deepened in numerous papers finding it in a big variety of areas of natu-
ral sciences (see Maier, Stein [14] and Gammaitoni et al. [8] for a review),
its rigorous mathematical background is being clarified only recently. In
mathematical terms, stochastic resonance describes the optimal response or
tuning with respect to the noise intensity parameter of a noisy system the
deterministic dynamics of which is characterized by the presence of finitely
many metastable states between which it is bound to move through a peri-
odic forcing of large period T'. One of the simplest mathematical models of
this type is encountered in the following stochastic differential equation

dX; = — <U/()(t) + @ sin ?) dt + \/dBy. (1)

Here U is a double well potential with wells of equal depth, () and ¢ are



some small positive parameters, T is a large one and B is an one-dimensional
Brownian motion. It describes the motion of a physical quantity X; in a
periodically changing potential landscape

(m,t)HU(m)—l—Qsin%

in which ¢ mainly contains the amplitude of very slow periodic variation
of period T of the potential wells, perturbed by a white noise B of inten-
sity €. In this simple framework, the problem of stochastic resonance can
be paraphrased into the following terms. Fix a small periodic modulation
amplitude @), and a large period T. Can one then choose the noise intensity
parameter € = £(7') in such a way that the trajectories of the diffusion X in
(1) look ”as periodic as possible”?

Freidlin [7], in a more general framework, gives a first partial answer to this
question. The mathematical underpinning of the Eyring-Kramers law he
finds using large deviations theory (see [6]) leads him to the following con-
clusion: if ¢ is above a critical threshold determined by the typical depth a
of the shallower potential well, more precisely if ¢ is such that 7" < exp(%),
the diffusion is able to show quasi-deterministic behavior - on an exponential
scale. More precisely, under this condition the amount of times ¢ so that the
diffusion at time ¢7 is not in a small neighborhood of the discontinuous de-
terministic curve describing just the position of the bottom of the deeper well
is negligible in the large period limit T — oo. In other words: Freidlin deter-
mines the lower bound of the interval [%+, oo[ in which an ”optimal tuning
intensity” ¢ = £(7T') has to be found. If, for a fixed intensity ¢ we paraphrase
this into a statement about finding an optimal period length T' = T'(¢) above
the critical threshold exp(2), it is clear that we are discussing times beyond
the typical large deviations scale. The extensive pathwise investigations of
periodicity and transition phenomena in Berglund, Gentz [2], [3], and the
forerunner paper Eckmann, Thomas [4] for two-state Markov chains, con-
fined to smaller time scales, therefore cannot tackle the problem of finding
an optimal tuning or resonance point. This is done in Imkeller, Pavljukevich
[10] for time discrete two-state Markov chains, and in Pavljukevich [17], and
Imkeller, Pavljukevich [11] for diffusions flipping periodically between two
spatially antisymmetric states of a potential with wells of unequal depth.

Of course, for the purpose of optimizing periodic tuning of diffusion tra-
jectories, relevant quality measures have to be defined. In Pavljukevich [17],
as well in the framework of diffusions in periodically changing double-well
potentials as for dynamically adapted two-state Markov chains jumping in
continuous time between the metastable states 1 of the diffusions and thus



describing the reduced dynamics of the diffusions, the physicists’ favorite
quality measure, spectral power amplification (SPA), has been investigated
thoroughly. SPA measures the energy of the spectral component of the av-
eraged trajectory corresponding to the periodic forcing frequency % of the
potential, where the average is taken with respect to the equilibrium measure
of the process. For the reduced dynamics models, Pavljukevich [17] inves-
tigates a number of different quality measures of periodic tuning including
entropy notions measuring chaoticity of the averaged trajectories instead.
The main result is that optimal tuning with respect to SPA in the Markov
chain framework happens for e(T) ~ ﬁvgv, if the different depths of the
potential wells are given by % and 7. This is seen to extend to the diffusion
only if small fluctuations near the potential valley bottoms are suppressed.
In particular the notion of SPA to measure stochastic resonance is not ro-
bust for transitions between the diffusion model and its reduced dynamics
Markov chain. This also implies that physical reduced model studies such as
Mc Namara, Wiesenfeld [15] only appear to give the right picture if notions
for measuring periodic tuning are used which are more robust when passing
between diffusion and reduced chain.

This observation is one of the main motivations for the present study.
As it happens, also applications in neurophysiological models (see [8]) and
in particular rather recent applications in simple reduced climate systems
strongly suggest another type of measure of quality of tuning which appears
more robust. Rather than taking into account all small fluctuations during
the long time periods the process spends near the valley bottoms it is based
more directly on transition times between the metastable states of the sys-
tem given by the valley bottoms. It measures the statistics of the interspike
intervals, i. e. the interval distribution between consecutive barrier cross-
ings. A particularly recent appearance of these ideas is related to the analysis
of the Greenland ice core record. The statistical properties of spontaneous
intermediate warmings which are commonly known as Dansgaard-Oeschger
events, were found to be consistent with stochastic resonance phenomena.
It is observed that besides the metastable ice and warm age temperature
states with transition times around multiples of 10* — 10° years there is an-
other metastable state at an intermediate temperature accessible from the
glacial state. Transition intervals cluster around integer multiples of 1500
years. Ganopolski and Rahmstorf (see [9]) reproduce these observations by
a simulation based on the CLIMBER coupled ocean-atmosphere model of
moderate complexity established by the Potsdam group. A stability anal-
ysis shows the existence of the intermediate metastable state, and suitable



small periodic and random excitations of the salinity balance of the North
Atlantic as one of the system variables produce temperature curves with
abrupt transitions of the observed type. The empirical distribution of the
interspike intervals is seen to be a function of the noise amplitude and other
system parameters.

In this paper we shall tackle a mathematical underpinning of the investi-
gation of spontaneous transitions and stochastic resonance by means of the
notion of interspike intervals. This will be done in the simple framework
of two-state continuous time Markov chains. One should always think of
these objects as representing the effective reduction of more complex diffu-
sion models, a paradigm which will shed light on still more complex models
such as the ones resulting from the CLIMBER example. So, in the case of a
time periodic potential function jumping after every half period between the
two antisymmetric potential states with wells of depth % at —1 and depth
7 at 1, and v < V, the transition rates in the (J—matrix defining the in-
finitesimal generator will also be piecewise constant on half period intervals
and will be given by the following: to exponential order, the one from —1
to 1 will be determined as ¢ = exp(—%) and from 1 to —1 by exp(—%). In
particular, we shall investigate a notion of optimal tuning (resonance point)
based on the intensity of the first peak. More precisely, the probability that
the first transition, in scale T, happens in a fixed neighborhood of 1, will be

maximized in € using uniform large deviation estimates.

The paper is organized as follows. In section 1 we will study the law of
the jump times for the case of a piecewise constant time periodic infinites-
imal generator. In section 2, the infinitesimal generator matrix is allowed
to have a continuous time periodic variation, thus corresponding to a diffu-
sion of a physical quantity in a one-dimensional potential landscape varying
periodically continuously in time. In both cases we characterize the distri-
bution of the first jump time after fixed times in scale T for large periods
T in terms of geometric laws, and show that optimal tuning rates for the
first peak in this distribution correspond to the tuning rates found in [10].
The generalization of our asymptotic results to diffusion models is left for
forthcoming research.



1 Two-state Markov chain with piecewise constant
infinitesimal generator

1.1 Introduction

In this first section, we describe some properties of the stochastic resonance
model introduced by Pavlyukevich [17]. Let us consider a time-continuous
Markov chain {¥;, ¢ > 0} on the state space S¥ = {—1,1} (Yo = —1), where
the infinitesimal generator is temporally periodic with period 27 :

_ | TP ¥
Q1_< y _¢) for 0<t < T,

and

Q2:<_w I’/J) for T <t < 2T,
¥ ¢

periodically continued on IR4.

Here ¢ = pe=V/e, 1) = ge=/¢ with p,¢>0and 0 < v < V < 4o0.

In order to understand the parameters appearing in the infinitesimal genera-
tor of the Markov chain, let us recall that, in the small noise limit ¢ — 0, for
a time homogeneous diffusion in a double well potential, the mean transition
time between the wells is given by Kramers’ law. If the diffusion startsin the
minimum of one well, the mean exit time is equivalent to exp —@, where
AU is the height of the barrier between the respective minimum and the
saddle separating the wells of the potential. Hence % is the barrier height if
the diffusion starts in the deep well, and 3 corresponds to the height of the

shallow one (see Figure 1).

V/2 v/2
Figure 1: Double-well potential

The states £1 of the chain represent the two metastable states of the sys-
tem, which are given by the positions of the minima of the potential. The



remaining two parameters p and ¢ play the roles of prefactors of smaller
than exponential order appearing in asymptotic expansions of the laws of
transition times or invariant densities. They are beyond the scope of large
deviation theory. They are well known to be related to the geometry (cur-
vature) of the potential in the minima and the saddle point of the potential
landscape (see Maier, Stein [14]) and given by

p= oo VDO g = oo U0

In what follows we shall let p and ¢ be arbitrary positive numbers. The
depencence of the main results on these parameters will be explicitly exhib-
ited.

Let us denote by 7}, the time of the nth jump from one state to the other (if
n is odd, the Markov chain jumps from —1 to +1 and the opposite happens
if n is even). Then we define the normalized time of jump:

Tp 1= %, for n € IN. (2)
Due to the periodic changes of the potential (matrix of infinitesimal prob-
abilities) the law of the nth jump depends strongly on the position of the
Markov chain and on the time of the last jump.

We define |u| to be the largest integer less than or equal to the real number
u. For the intuitive understanding of the formulas in the following state-
ment, let us remark that for n € IN, u > 0 the formal condition 7,1 = u and
(—I)LUH” = +1 just means that the number n of the following jump and
the half period interval in which it occurs have "equal parity”, i.e. either
the jump goes to 1 and the corresponding position of the potential has the
shallow well at 1 or the same statement with —1 replacing 1 holds. The
condition 7,_1 = u and (—1)[uJ+” = —1 analogously expresses ”unequal
parity”. The conditional law of 7, is then given by the following

Lemma 1 Let u > 0.

o Given 7,_1 = u and (—1)l1¥" = 11, the conditional density p,(t) of the
law of T, is equal to

pi(t) = &Te I ey () (3)
k

§ et ul-uT S & T exp — (ij_1T+€kT(t - LtJ)) Ir, (¢)
k>0 7=1

with Iy ={t€e Ry : |u|+k+1<t<|u]+k+2}
andfk:{w if k is even,

¥ otherwise.



o Given 7,_ = u and (—1)l*1+" = 1, the conditional density p_(t) of the
law of T, is equal to

p_(t) = €0T€_§O(t_u)T]I{u§t<|_uJ+1} (t) (4)
k
+ €_§O(I+|_HJ_H)T Z€k+1TeXP_ (Zé]T‘}'fk-}-lT(t - LtJ)) ]Irk(t)
k>0 J=1

Proof: Straightforward, since, for a constant matrix of infinitesimal prob-
abilities, the first time the Markov chain, starting in one state, reaches the
other one, is exponentially distributed. QED
Remark: In fact, the conditional law depends only on u (time of the last
Jjump) and on the expression (—1)L“J+” which gives the following informa-
tion: the process is in the deep well at time u or not. Furthermore, since
Y is a Markovian process, the density of the time of the first jump after a
given normalized time u > 0 is equal to py if Yyr = +1 and p_ otherwise.

1.2 Asymptotic behaviour

Obviously the conditional densities p4 and p_ depend on €. Let us therefore
study more closely the behaviour of the jumps probabilitites if € changes.
Since the period is large and the variance € small, we assume that 7' = T'(¢)
eventually depends on € to get only one scale.

The following result states that the asymptotic behaviour of the Markov
chain depends on the ratio between T and &;, i € {0,1}. Recall that &; is
the transition rate from —1 to 1if ¢ = 0 and from 1 to —1 if ¢ = 1. In fact, we
shall see that asymptotic properties of the products of ;T will determine the
asymptotic laws for transitions in the small noise limit ¢ — 0. For instance,
the condition lim._q &;T = 0 requires the jump rate to go to 0 exponentially,
while T may or may not depend on . It may for example be a fixed constant
of order 1. In contrast, the condition lim._q &1 = 0,lim._q& T = ¢ for
some ¢ > 0 requires that 7' = T'(¢) be asymptotically equal to cqgexp(Z) and
actually implies the weaker first statement since the exponential decay of
exp(—Y) is stronger due to V > v.

Top state our main result on the asymptotic laws of jumps let us define S,
to be the normalized time of the first jump of the process Y after time uT.

Theorem 1 Letn > 2. Then, ase — 0,

o if ll_l)r(l)fZT = 400 for i € {0,1}, the law of S, — u converges to the Dirac
measure d.

o if ll_l)% &T =0 for i € {0,1}, the measure of probability of S, tends weakly
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to the null measure.
o if lin})foT = 0 and lin})flT = +oo, the law of S, — u tends to &, if
e— e—

(—1)L“JYuT =+1, and to &, _, |41 otherwise.
e if for some ¢ > 0 lin%foT =c and lin% &T = 400, the law of S, — u, tends
e— e—

to 8o, if (~1)Y,r = 41, and, otherwise, to the law of inf(G, |u] + 1 — u)

where G is an exponentially distributed random variable with parameter c.

o if HH(I) &T = 0 and if for some ¢ > 0 lirr(l) &§T = ¢, the law of S, tends to
- e~

the ]?ollowing law:

—if (~)Y,p = —1: the law of A+ |u] + 1 where A is exponentially dis-
tributed on the interval [2€,2E +1] with parameter c. Here £ is a geometrical
random variable on IN with parameter e=¢ independent of A,

-if (=)Y,r = +1: the law of B defined as follows:

B lu| +& if & €[l —u+ |ul,o0
) u+ & otherwise.

Here &1 is exponentially distributed on Ry, & is exponentially distributed on

[2G,2G + 1], both with parameter ¢, and G is a geometrical random variable

on IN* with parameter e~ ¢, and &1,E2,G independent.

Interpretation: 7) In the first case described in the statement of the propo-
sition, the asymptotic behaviour of the Markov chain is characterized by
instantaneous jumps on an exponential scale. This just means that a clock
ticking in units of T will record all jumps of the process as instantaneous,
since they occur on a smaller scale.

2) In the second case, the time scale 7" is too small compared to the tran-
sition rates. Consequently no transitions will be observed, and the process
never jumps on this scale.

3) In the third case we encounter a mixture of the preceding two. A clock
ticking in units of T under the conditions of this case, i.e. ll_l}% &T =0 and

lin% &T = 400, will be still too slow for observing transitions from the shal-
e—

low well and too fast for transitions from the deep one. Therefore the former
will be recorded as instantaneous jumps, while for the latter we just have
to wait until the potential state switches, before recording an instantaneous
jump. This happens as soon as the half period has passed.

4) If il_r)r(l) &T = c and li_r)l%flT = +o0, the behaviour is similar to the pre-

ceding case, except that the clock runs on the right scale for jumps from
the deep well. So if the process starts in the deep well, it does not have
to wait for jumping: the jump is exponentially distributed on the interval



[0, |u]|4+1—wu], and then, if the process has not jumped before the half period
has elapsed, it jumps at that time.

5) Let us now interpret the last case. Here the clock on scale T' runs too
slowly for seeing transitions from the deep well, and just has the right speed
for transitions from the shallow one. So if we start in the deep position, i.e.
Yur = —1, in units of 7" we will have to wait until time |u] + 1, after which
we choose one of the intervals during which the process is in the shallow
well, i.e. every second half period interval, according to an exponential law
(represented by &), to be the one in which the jump occurs. Once this inter-
val is chosen, the jump from the shallow well inside it is again exponentially
distributed (represented by .A). So in particular £ and A are independent. If
we start in the shallow position, the process may jump with exponential law
before the next half period interval during which it is in the deep position
(described by & during [u, [u] 4+ 1]). If it does not jump during this period,
the preceding statements apply.

\\\\ N

05 25 45 6.5 85 05 15 35 55 75

Figure 2: Asymptotic distributions of S, — u for ¢ =1 and |u] = 0.5

The following definition singles out the window of scales for which the
Markov chain can be said to show periodic behaviour. Given our stepwise
constant transition dynamics which clearly exhibits the two scales given by
the Kramers times to leave a shallow well of depth ¢ and a deep well of
depth ¥ as extreme scales, the definition might seem complicated at first

sight. 2For analogy with a similar notion in more complex models in the
subsequent section we prefer to leave it in this form.

Definition: Let us assume that 7'(¢) = exp /e, p € R, and let Eg)(/\)
be the Laplace transform of the law of S, given (—1)L“JYUT = =41, where
the dependence of this transform on p resides in the scaling of time. Then

the interval

Ir={p:forall u€ Ry, all A€ Ry lim £M(\) £ 0, lin%ﬁ(_")(/\) £ e}
e— e—



is called interval of resonance.

In this interval, characterized by the last three cases developed in the state-
ment of the Theorem, the asymptotic behaviour of the chain is almost pe-
riodic: with probability one, during each half period, the process spends
positive time in the deep well. Moreover in these scales, its asymptotic
jumping does not happen instantaneously. Here the interval is clearly given
by [v, V] (see Figure 1). The scales corresponding to the interval boundaries
just correspond to the Kramers times to exit from the shallow resp. deep
well, if as usual our Markov chain is considered as the reduced dynamics of
a potential diffusion.

Proof of Theorem 1: i) Let us first compute the Laplace transform of the
law of Sy, given the position of Y,r, using the densities (3) and (4) and the
Markov property of Y. We obtain, for u > 0,

0y = Bl (-l = 1] (5)
_ 8T i T+ [ul—w)= M) +1)y =€ T(1+|u]—u)
= T (e e )+e
G T(1 — e 1T :
X exp — ET+AM|u|l+k+1) ],
]; gk-l-lT + /\ ]z::l J (L J )
and we obtain a similar result for
£ ) =1 [e%| (-1 Y,r = 41] (6)

replacing in formula (5) all even indices by odd ones and vice versa.

We shall let ¢ tend to zero and describe the limit of the Laplace transform,

according to the limit of &;7T.

i) If ll_l}T%) &T = +oo for i € {0, 1}, then, obviously lli}% E(iu)(/\) = e M, We

deduce that the law of the normalized time of the first jump after time uT

tends to the Dirac measure 6,.

iif) If lim &7 = 0 for i € {0,1}, then lim £57()) = 0, which implies the

weak convergence to the null measure.

iv) If lim &7 = 0 and lim &7 = +oo, we get lim Ef)()\) = ¢~ M. This
e—0 e—=0 e—0

means that the law of S, — u tends to the Dirac measure in the origin if

(-D)Y,r = 4+1. Otherwise li_l)r(l)ﬁ(f)()\) = e MU+ 5o that the law of

S, — u tends to the Dirac measure in |u| + 1 if (=1)l4Y,7 = —1.

v) If li_r}réfoT = ¢ (and then lii}%ng = +00), we obtain, on one hand,

(u)

lin% LY'(N) = e, so the same conclusion holds as in iv). On the other
e—

10



hand, we get

Coa) oy € A el t—u) =L +1)
Il N = T ' ()

Let us consider an exponentially distributed random variable G with pa-
rameter ¢ (we write G ~ £(c)) and define Y = inf (G, () for [ > 0. Then

l
Ele Y] = / ce M dt 4 e MNP (G > 1)
0

_ C_}C_ )\(1 _ e—)\l—cl) 4 emc=N 8)

Dividing E(_u)(/\) in (7) by e=** and identifying the result with (8) we obtain

that the limit of S, —u has the same law as inf (G, |u]+1—u) where G ~ &(c¢).

vi) If lin% &T = 0 and lin% &T = c then, by (5), we obtain the following
e— E—

limit

: (u) _ € A(lul+)1 _ —c—r —ck—2)\k
ll_r)r(l)ﬁ_ (A) P (I—e )];)e
_ p—Cc—A
e 1T (9)

c+ A1 —e—c2A

Let us now define a random variable A which is exponentially distributed
on the interval [2€,2E + 1] with parameter v and £ is a geometric random
variable with parameter p. Then we get

4 2k+1 pe—vi-At
E[e ] = Z/% — s 1P (E = §)
k>0

v 1—e AV
= ey e
v+ A 1—e 0

v 1—p 1—e Y
v+ A1l —pe2r 1 —e v

By identification with equation (9) we obtain v = ¢ and g = e~¢ which leads
to the announced result. Moreover we also obtain a limit for the Laplace
transform £:

. (u) . c v —c(|u]+1—uw)=A(|u]+1)
m L7 = (e € ) (10)

—c=A
L ¢ l-e o=+ u)—u)=A[u]
c+ X 1—ec2A

11



Let us define the random variable B as in the statement of Proposition 1
and let us compute its Laplace transform. We get

1—u+|u]
E[e 8] = / e ct= M= gy
0

2kl = M—ct=A|u]

(1t [u])
+ e ]; /Zk e—2ke _ e—(?k—l—l)c dt.

Then, by straightforward computation, we obtain the expression (10). This
implies the announced convergence result. QED

1.3 Optimal tuning using escape-time distribution

As mentioned in the introduction, stochastic resonance may be based on
measures of quality of periodic tuning given by the entropy H(e,T') of the
equilibrium measure (see Pavljukevich [17]) of the system considered. In this
context, optimal tuning is expressed by minimality of ¢ — H (e, T), so that
the resonance point corresponds to the noise intensity value for which the
system in equilibrium has minimal entropy. Nature is believed to eventually
choose parameter values such as this one, see Neiman et al. [16]. If not
necessarily in the example of Dansgaard-Oeschger events mentioned in the
following subsection, where we actually are confronted with a particular
choice of a tuning parameter, this fact stresses the significance of resonance
points in physical applications quite generally.

In this subsection, we shall concentrate on a measure of quality of peri-
odic tuning which is based on the interspike distributions investigated above,
and find the time scales for optimal tuning, in the small noise limit ¢ — 0.
Following [12], in physical jargon, we consider the intensity of the first peak
of the escape time distribution. Mathematically, in our setting this intensity
may be described by the probability to jump for the first time from the
initial state —1 at time 0 corresponding to the deep well to the other state
1 during the normalized time interval [1 — 5, 1+ 7], for n > 0 small enough.
In the original scale, it means tuning the noise intensity to a value which
maximizes the probability to observe the first jump in an exponentially wide
time interval. As we shall see, the resonance point corresponds to findings in
[17]. It is known from diffusion models that the relaxation time for the jump
descreases with decreasing noise intensity (see Berglund, Gentz [2]). But at
the moment we do not know if for our optimization problem we can do with
shrinking intervals centered at 1 in scale T. We believe that our notion of
tuning quality will prove to be robust when passing from reduced Markov

12



chains back to potential diffusions. Of course, the subsequent peaks in the
escape time distribution are able to provide analogous notions of quality of
tuning. We remark at this place that the optimal time scales found for later
peaks differ from the one determined in the following Proposition. We recall
that 7 is the normalized time of the first jump of the Markov chain Y.

Proposition 1 Set A(T) := IP(ry € [1 — 5,1+ n]). Then A(T) reaches a
mazximum for

1 ‘ y
T, = In £F91 (11)
n(e+9)  e(l-n)
Hence, as € — 0, Ty is equivalent to exp Y Moreover,
neq €
-am) = VI e o)
— — € ¢ .
enq

Proof: By the expression of the density (4), we get
A(T) e=#T=n) _ g=eT 4 o=¢T (1 — ¢=¥T)

e—¢T(=n) _ —¢T—-ynT

Hence

A(T) = —p(1 = )T 4 (o gm)e T =77,
We deduce that A’(T) = 0 if, and only if, Tj satisfies (11). Since A(T) > 0,
limr—o A(T) =0 and lim7_. A(T) =0, A is maximal in Tp. QED
We can also study the variation of the kth peak of the density, considering
the following probability

Ap(T) =P(m € 2k —1—1n,2k—147]).

By similar computations as those used to prove Proposition 1, we obtain
an equivalence, as € — 0, of the tuning maximizing the intensity of the kth
peak:

k)

eu/s n

In(14+ ——).
nq n(+ k— 1)
We deduce that, for k£ large enough, the optimal frequency grows like a
constant times (k — 1). Let us note that this property was already pointed
out in the context of residence-time: average of escape times for a large
number of periods (see [8]).

13



1.4 Distribution of sojourn times

This subsection is devoted to the study of the law of the entire sojourn time
of our Markov chain in one state. Qur main result in particular explicitly
describes the dependence of the law of sojourn times on the parameters T, V
and v of the model, and, linked through the passage to the effective dynam-
ics in the metastable states, to the few parameters related to the geometry
of a potential in the diffusion setting. In physical systems modeling for ex-
ample the encoding of acoustic information on the primary auditory nerve
of mammalians (see [8]) this law resembles the distribution of interspike in-
tervals, i. e. the length of intervals between subsequent spikes in a long
spike train, for instance for sinusoidally stimulated auditory nerves. It also
reminds of histograms found in the treatment of reduced climate systems de-
scribing paleoclimatic phenomena such as Dansgaard-Oeschger events (see
Ganopolski and Rahmstorf [9]) describing measured or simulated sojourn
times in intermediate warm states during the last ice age. The knowledge
of the law may thus open a way to rigorously interpret stochastic resonance
related phenomena expressed through interspike histograms - though in this
context the term noise induced transitions seems to fit better than stochastic
resonance, since the parameter dependence of the effect is not optimized.
In fact, if we choose T large, but finite, and £ small so that our limiting
law is a good approximation for the law of the first transition, we obtain
a principal agreement of our density curve for example with the shapes of
histograms of duration of Dansgaard-Oeschger events clustering at multiples
of 1500 years. The parameter ¢ controls the overall decay of the limiting
law. Its value could be statistically inferred from the real paleoclimatic data
presented by Ganopolski, Rahmstorf [9]. This may give a first idea about
the parameters steering spontaneous transitions in a simple model for these
events. But at this stage the conclusion might seem still premature: data
and simulations rather indicate a tri-stable model than a two-stable one; at
this stage we also do not have error estimates available for the goodness of
approximation of our limiting distribution at given finite parameters T" and

e.
Tn — Tn—lJ

2
the to be the number of entire periods the process sojourns in one state. Let

So let us study a large number n € IN of jumps. We define W,, = [

N be the point process defined by

E>1

14



Proposition 2 W, is independent of 7,_1 and is a geometric random vari-
able with parameter (¢ + ¥)7T.

Proof: Using the density (3), we obtain, for r € IN,

F(T‘) = P (Tn - Tp—1 2> T‘l Tph—1 = u and (—1) lu]+n — —|—1)
o] 7 1
= OOHUTS P exp — S 6T / —¢Tug,
) j:rgj o (2:15 ' ) 0 ‘ v

r—1

1
_|_5T_IT6—51(1+|_uJ —u)T exp — (Z fi—lT) / e~&r—1Tw g
u—|u|

=1
r—1
= exp (—flT — Z€¢_1T — (& =&)T([u] - u))
=1
If r is even, then

F(r) = exp =5 (60 + )T

We observe that this probability neither depends on n nor on 7,_1, and an
analogous computation applied to the density (4) leads to the same result.
QED

Corollary 1 N has the same law as N defined by
~ Sn
N = Z O,
j=0

where (£;) o<j<n is a sequence of i.i.d geometrically distributed random vari-
ables with parameter (¢+)T, independent of the binomial random variable

S~ B(n,exp—(p + ¢)T).

2 Two-state Markov chain with continuous gener-
ator

2.1 Introduction

The aim of this section is to generalize results obtained for piecewise constant
time periodic infinitesimal generators to the time continuous case. But at
the same time we widen the scope of diffusion models the effective dynamics
of which is described by the two-state Markov chains we consider. Let us
return for a moment to their parent models, diffusions moving in periodically
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changing potential landscapes. In the last section the potential was assumed
to switch discontinuously between two states which are spatially symmetric
with respect to the origin. To put it differently, the transition rates ¢, ¥ from
—1 to 1 resp. from 1 to —1, considered as functions of time are periodic of
period 2T, and the second one has a time lag ¢ = T with respect to the
first one, i.e. ¥(t) = @(t + ¢),t > 0. In this section, besides continuous
variation, we generalize the periodic motion of the potential to a swinging
with a time lag ¢ € [0,27]. So, as opposed to the previous section, we now
suppose, keeping in mind that transition rates of the Markov chain come
from Kramers’ times of the diffusion, that while the minimum depth and
thus the barrier height in 1 is proportional to the rate ¢(t), the depth of the
minimum —1 corresponds to (¢t + ¢),t > 0. ¢ is a continuous 27 —periodic
function, the shape of which will be specified further below.

So, let us consider a time-continuous Markov chain {Y;, ¢ > 0} in the state
space 8Y = {—1,1} with initial data Yy = —1. The infinitesimal generator

is given by
o ( ) e )
plt+¢) —¢lt+9) |

Its nondiagonal entries describe slowly continuously varying transition rates
between the metastable states £1 as before. For instance, for small A > 0,
the quantity ¢(¢)h(¢(t + ¢)) asymptotically corresponds to the probability
to jump from —1 to 1 (from 1 to —1) during the time interval [¢,¢ 4+ h]. In
order to stay close to the bistable diffusion paradigm of stochastic resonance
in [8], we choose a particular rate function ¢ according to the rules:

(1) = exp D), (12)
with btV Vo
K(t)= 5 + 5 cos(mt). (13)

As in the first section, we define 7, to be the normalized time of the nth
jump.

In the following lemma, for 0 < u < ¢ we describe the (¢—dependent)
probability densities of the law of 7, given that 7,1 = w and (-1)" =1
resp. (—1)" = —1 by p4(¢) resp. p_(t). So for instance p4 (t)dt will give the
probability that on time scale 27 jump number n from 1 to —1 happens in
[t,t + dt], given that the previous jump happened at time w.

16



Figure 3: Definition of K

Lemma 2 The density py+ of 7, given 7,_1 = u and (—1)" = %1 is equal
to

pe) = TelTt+6) Tz esp =T [ oTs +o)ds,  (14)

P (1) = To(T) Lsy () exp T [ ()i (15)

Based on the preceding result, in the following lemma we shall give
explicit descriptions of the Laplace transforms of the transition times con-
ditioned on the times at which the previous ones occured.

Lemma 3 The Laplace transform of 1, given 7,_1 = u and (-1)" = —1,
is equal to

-1

E(_u)(/\) = <1 — exp {—T /02 o(T's)ds — 2/\}) (16)
X /:H Te(tT) exp{—T/ut p(Ts)ds — )\t} dt.

A similar expression can be obtain for (—1)" = 1, it suffices to replace ¢ by
»(-+ ¢) in expression (16).
Proof: By (15),
LU0 = B
00 t
= / Te(Tt) exp{—T/ p(Ts)ds — /\t} dt

u+2
_ Z/ To(Tt)e M2

k>0

X exp {—T /utgo(Ts)d.s — kT/O2 go(Ts)ds} dt

Tpo1=u, (—1)"=—1]

17



Using the equality

E:exp{—%ﬂiézg(T@ds—QAk}::<1—eXP{—41£2¢(T$d5_2A}>_I

k>0

we obtain the expression (16). QED

2.2 Asymptotic behaviour

Since the density of 7,, given 7,,_1 depends on € and T, following the example
of the preceding section, we shall consider the asymptotics of transition
densities as ¢ — 0 and eventually 7 = T'(¢) — oco. So, let us introduce
analogous scales by defining

T=T()= expg with p > 0. (17)

Then, by the definition (12) of ¢ the Laplace transform £_ becomes

LYy = (1—exp{—1£2exp{£i:éigﬁ}(h——QA})_l (18)
X/uu+2exp{'u%m —/utexp{'u%l((s)}ds— /\t} dt

As in the preceding section, we define S, to be the normalized time of the
first jump after the normalized time u. Since the process is Markovian, the
Laplace transform of S, given Y,7 = %1 is equal to Ei‘“). To motivate the
main asymptotic results of the following Theorem, let us briefly return to the
flip potential model of the preceding section. In the framework of Theorem
1 the choice of T'(¢) made above results in the following simpler relevant

conditions:
p<v, p=v, v<p<V, p=V, VIpu

For instance, v < ¢ < V corresponds to the former condition lim._o &7 =
0,lime0&4T = 00, p =V to lim._0 &T = ¢, lim.0&T = 00. So case 2 of
the following Theorem comprises cases 3 and 4 of Theorem 1. As opposed
to the piecewise constant case, however, there are now other relevant scales
for the Markov chain. For « > 0, define

ay(u) =1inf{t >u : p— K(t) > 0}. (19)

Remember that we are arguing on scale T. Suppose we freeze the potential
in its state it has at time a,(u). Then the Kramers escape time for the
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resulting barrier height %ﬂ is precisely 1. Jumps are consequently likely to
occur on this scale. Choosing a scale just a little below a,(u) would make
the time scale too small to lead to recording escapes over a potential barrier
which just too high according to Kramers’ law. So a,(u) provides a critical

scale at which transitions across a barrier of height MQQ become noticeable.

Theorem 2 Let € tend to zero. Then

o if u >V the law of S, — u tends to the Dirac measure in the origin.

e if i €]v, V] the conditional law of S, given Y,7 = —1 tends to the Dirac
measure in the point a,(u). If Y7 = 1 then the same result holds with the
Dirac measure in the point a,(u). @ is defined as a, but for the function
K(-+ ¢/T) instead of K.

o if u < v, then the probability measure of S, tends weakly to the null
measure.

Proof: i) Let us first study the case u > V. By (18), the numerator of the
Laplace transform is equal to

u+2 " 3 "
N.(A) = / Wa(t, A) (=K 4 ) exp{_ / ew—fws»/msw} dt,

(=K (8))/e

Wa(t7 A) — —e(}ll—f’f(t))/a + A

Let us fix A > 0. Since p > sup;sq K (t), we get, as ¢ — 0, uniformly with
respect to the variable ¢

1—o(e) < Wa(t,\) < 1.

Hence, asymptotically as ¢ — 0, the numerator is equivalent to

u+2 P
exp(—Au) — exp {— / =K /=g — \(u+ 2)}

M a5 ¢ tends to zero. Moreover the denominator of the

Laplace transform obviously tends to 1. So lin% E(_u)(/\) = ™. The same
E—

which tends to e~

limit can be obtained for the Laplace transform £;. We deduce that the
law of S, — u tends to the Dirac measure in the origin. This proof can be
extended to the case y =V.

i) In the second case pu € [v, V[, decomposing the integral f02 eln=K()/= g
into integrals on disjoint intervals, we obtain that the denominator of the
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Laplace transform tends to 1, exponentially fast if ¢ > v and, otherwise,using
the Laplace method, with a speed of order 1/ since

K(n)— K1)~ (V —v)r*(n—1)3/2 for |p—1| small.
The numerator will be decomposed into three parts:

NE(/\) = R1(€, /\) + Rg(e’i, /\) + R3(€, /\),

- K t .
Ri(e, A) :/ A(u,t,e)dt:/ exp{%ﬁ(t) —/ e KD/egs — /\t} dt

where Ay = [u,u+2]N{t >0 : pu— K(t) < —/e},

Ay =[u,u+2]N{t>0 : pu—K(t) >0}

and Ag =[u,u+2]N{t >0 : —/e<pu—K(t) <0}.

By the definition of Ay, we get Ry(e, A) < 2e~1/V= which tends to zero as
¢ decreases. Otherwise R3(g, ) < |As| = O(y/) where |.| is the Euclidean
length. It remains to determine the limit of the expression Rs(e, A).

We notice that if g = v then Ay = (). This implies that, in this case, the
Laplace transform tends to 0: the measure of 7, given 7,,_1 tends to the null
measure. Let us now assume that p > v and that a,(u) > u (the function
a, is defined by (19)) ; we postpone the study of the case: a,(u) = u. There
exists § > 0 small enough, independent of ¢, such that

Ra(e, X)) = / A(p,t e)dt + A(p,t,e)dt.
[2p(u),au(u)+4] AzNfap(u),ap(u)+8]°
The second integral can be bounded above by
apu(u)+é
e Nanu)48) o / O Ko e g,

u

Using Laplace’s method, we get that this expression tends to zero, as e — 0.
Furthermore, the first integral satisfies the inequalities

e Ao+ f < / A, t,€)dt < el ],
[ap(u),apu(u)+d]

with

I = exp <_ / () e(M—K(S))/EdS> ~exp (_ / R K (o)) ds) _

I tends to 1 as e — 0 (6 fixed). Hence lim._,o E(_u)(/\) = el for Y,r =
—1.
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If u > v and a,(u) = u, we denote by ¢§ the first time greater than u such
that K(8) = p. By the definition (19), we get § > u. Let us decompose the
expression Ry(e, A) as follows:

Ra(e, ) = / A(p, t,e)dt + A(p, t,e)dt.
[u,8] AsN[u,8]e

The second term is bounded above by
a,(8)
2¢~ % exp —/ : )e(“_K(t))/adt.

This term tends to zero as € — 0. Using the arguments presented in 1), we
obtain that the first expression tends to e=*% .

All the results of ii) can be proved for Y,7 = 1 using the function K(-+¢/T)
instead of K.

iii) In the case p < v, it is straightforward to prove that ll_r)% Eg)(/\) =0.
We deduce that the measure of probability of S, converges weakly to the
null measure. QED

As in the case of a piecewise constant infinitesimal generator, we can
define in the continuous case an interval of resonance.
Definition: Let us assume that T(¢) = e#/, recall that the dependence of
the Laplace transforms on the parameter p resides in the scaling of time,
and let

Ly={peR: lir%ﬁ(_u)(/\) #0, forall A€ Ry, u € R4},
e—

L={pelR: {uel0,2],lim.0o E(_u)(/\) = lim.0 E$L)(A) = e M
for all A € R4} = 0}.

Then Ig := Ig N I is called interval of resonance.

The abstract definition given above translates the following intuitive facts.
The interval of resonance is set to contain those exponential scales in which
the process on the one hand asymptotically cannot stay always in the same
state with positive probability, and on the other hand cannot jump instan-
taneously from one state to the other. In the continuous case, the interval
of resonance depends on the phase between the infinitesimal probabilities.
Indeed, on the set of scales given by

Q:={te[0,2[: p—K({t)<0}n{te[0,2]: p— K(t+¢/T) <0}
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the process will asymptotically exhibit instantaneous jumping back and forth
between £1. So the interval of resonance should be equal to the set of all
p €]v, V] for which the set © of instantaneous jumping in both directions is
empty. This is exactly what led us to the definition of I; above. Figure 4
presents a u €]v, V] such that Q has a positive Lebesgue measure.

K(-+¢/T)

asymptotic behaviour

of the Markov chain

K

intervals of instantaneous jumping

Figure 4: Instantaneous jumping

By (12), the set of all p belonging to this particular interval satisfies the
conditions
Vv 2T arccos(2-Y=1)

Vov <9< Vou and p>wv. (20)
T T

2T (m — arccos(

Let us now assume that ¢ = T'. The behaviour of the two-state Markov chain
then imitates the barrier crossings of a diffusion in a double-well potential.
Here the potential is like U(z)+x cos(nt/T), where U is a symmetric double-
well potential (this case has a physical meaning, see [8]). Indeed, whether
the diffusion starts in the deepest position of the left well at time ¢ or starts
in the right well at time ¢+ 7T, it has to cross a barrier of the same height to
reach the other well. So the phase between the infinitesimal rate of jumps
of the associated Markov chain has to be equal to T'. In this particular case,
we obtain the following interval of resonance:

v—I—V]
5 .

Ip = ]v,
The time scale corresponding to the upper bound is of the same order as

the mean exit time of one well (Kramers’ rate), by the diffusion starting in
the deepest position of this well, for the symmetric double-well potential U.
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This potential is, in fact, the average potential of U(z) + z cos(nt/T’) over
one period.

Let us note that pg = # is a bifurcation point: for p < pg the asymp-
totic behaviour has no instantaneous jump part, for g > pg instantaneous
jumping occurs.

2.3 Distribution of sojourn times

Let us consider a large number of jumps n € IN. We define as in section 1.4
W, = [

Tn — Tn—1

(75, is the normalized time of the nth jump).
2

Proposition 3 W, is independent of 7,_1 and is a geometric random vari-

2
able with parameter T/ p(T's)ds.
0

The proof of this proposition is similar to the one in the previous section.
Moreover we can also obtain an equivalence in law with a particular point
process: it suffices to replace ¢ + 9 by f02 ¢(T's)ds in the statement of
Corollary 1.

2.4 Optimal tuning using escape-time distribution and large
deviations

Again following the preceding section, we next determine an optimal tuning
rate for stochastic resonance. It will again be based on the density of the
first jump, in particular the intensity of its first peak, which we propose as a
new measure of quality of tuning. The optimal time scale will be determined
by a combination of a large deviations result concerning the first jump of
the Markov chain parametrized by the logarithmic scale p of time, and a
maximization problem for the uniformly obtained large deviation rates.

By (19), a, is well defined on the interval [v, V]. We extend this function
continuously to | — oo, V]: a, = a, for p < v.

For 1 <V and § > 0, A% will be the event defined by

|71 — (a,(0) +2k)| >4, forall ke IN. (21)

The following Theorem, proved by large deviations methods, essentially
determines exponential rates of probabilities for As, in particular if the
exponential scale g is in the resonance interval. Its primary result (formula
(22)) states that the main contribution to this probability of jumping comes
from the instant during the time interval under consideration at which just
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the minimal barrier height is obtained. Its exponential rate is given by the
remaining barrier height to overcome.

Theorem 3 o If yu €]v, V[ and § < sup(a,(0),T/2 - a,(0)), then
lim ¢ In P(A%) =y — K(a,(0) —90), (22)
e If 1 < v then, for § small enough,

lim e In P(A%) = K (a,(0)) — K (a,(0) - §). (23)

e—0

Proof: Using the expression (15) for the density, we get

P = [

t
Te(Tt) exp —T/ p(T's)ds dt,
Ds 0

where Ds ={t >0, |t — (a,(0)+2k)| > 6, Vk e IN}. Then, for § small,

a,(0)—6 t
P(A%) = /0 T@(Tt)exp—T/O ©(Ts)ds

exp — foa“(o) To(Ts)ds
1—exp—T [ o(Ts)ds

x /52_5T¢(T(a#(0) 4 1)) exp —T/Otgo(T(a#(O) +5))ds dt.

Then P(A%) = A+ B x C, where

A:l—exp—/
0

exp — foa“(o)"_‘g e(n=K(5))/= g
1—exp— f02 en=K(s))/eds '

-4
C=1-exp-— /2 en=K(s+au(0)))/egg.
5

WO k() e g,

o If 11 €]v, V[, then, using Laplace’s method to get equivalents of the integrals
as € tends to zero, we obtain

IP(.AS) N (1 ~exp— /L’LM(O)_S e(“_K(s))/st) N /au(O)—S =K (s)/e g
0 0

2¢e .
(1=K (@ 0)-9)/e
7V — o) sin(r(a,(0) = )¢ ' (24)
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o If u < v, then, again by Laplace’s method, as ¢ — 0, we get

EIn(A) ~ (1 — K (a,(0) = 8), =In(B) ~ (K (a,(0)) - p),
and eIn(C) ~ (p — K(a,(0) — 4)). Hence
lim £ In P (A%) = sup (u — K (a,(0) — &), K(a,(0)) — K(a,(0) —5)).

e—0

We deduce (23) for 6 small enough. QED

Let us now describe the optimal tuning rate corresponding to the stronger
first peak of the density of the first jump. Let us also recall our remark that
we optimize the probability for the first jump to occur in an exponentially
wide interval of rescaled width §. The optimal rate will be seen to have a
dependence on ¢ which is not desirable, but rather weak. At the moment
we do not know how (by eventual reduction of the interval) this dependence
can be ruled out.

Theorem 4 Let [a,b] Clv,V[. For § small, we define T§ := expﬂs—g such
that

po = inf{a <X <b, IP(ry € [a\(0) — 6,a,(0) + 6]) is mazimal }.

: Vv V—v )
Then, lim._,o pg = “E — =57 sin F.

Remark: The optimal tuning for this particular observable belongs to the
resonance interval if the phase ¢ equals T. If # — %sin ”75 does not
belong to the resonance interval, then the optimal tuning in this interval is
equal to the right boundary (see the following proof).

Proof: Let us study the family of functions € In F, (i) where F, () is defined
as an integral like IP(A%) but on the domain {t > 0 : |t —a,(0)| > &}. We

get

ap(0)=3 -
FE(N) = 1- exp (_/0 e(ﬂ—l\(s))/ads)

L e (— / ““(O)Hew—f«’(s))/sds) |
0

In order to study maximality of IP(r; € [a)(0) — 6,a\(0) + §]) in £, we
determine the minimum of eln F.(x) on the interval [a,b]. By Theorem 3
and due to the result concerning the interspike distribution (Proposition 3),
we get the simple convergence of the sequence of functions

limeln F.(p) = pp — K(a,(0) —4).

e—0
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Let us now prove uniform convergence. By Ascoli’s theorem, it suffices to
prove that the derivative with respect to the variable y is bounded as e — 0.
There exists a constant C' > 0, such that

eF'(,u)‘ _1 (/%(0)—5 K
— < CF; =K (s)/egey
Fg(ll/) — (H) 0

b el Ken(©-9)/=90(0) (gem—fx'(am)—@/a)) _
op

We deduce that this derivative is bounded using the arguments related to

(24). In order to finish this proof, we shall point out that the limit function

p — K(a,(0) — §) reaches its minimum in only one point. Let us recall that
v+V V-vw

K(z)= 5 + 5 cos(mz).

We deduce that

1 2u—v—
a,(0) = — arccos <HV+UV> .

Hence the minimum of y — K (a,(0) — 4) is reached iff

20 —v—=VY\ 7
arccos (VT) = 5(1 +4),

— )
ie. iff ,u():VQ v cos(%—l—%)—l—v—gv.

Finally let us note that the limit function p— K (a,(0) —6) is decreasing for
a <t < pg. Hence, if pg does not belong to the interval of resonance i.e. if
there exists r < pg such that Ir =]v,r], the optimal tuning in this interval
is r. QED

Extensions of the results proved here for the reduced dynamics of two-
state Markov chains to the full dynamics of one-dimensional potential dif-
fusions can be obtained, and will be dealt with elsewhere.
Acknowledgement: We are much indebted to an anonymous referee for
very constructive and knowledgeable criticism.

References

[1] S. Arrhenius. .J. Phys. Chem., 4:226, 1889.

26



[2]

[10]

[11]

[12]

[13]

[14]

N. Berglund and B. Gentz. A sample-paths approach to noise-induced
synchronization: Stochastic resonance in a double-well potential. 2000.
to appear in Ann. Appl. Prob.

N. Berglund and B. Gentz. Metastability in simple climate models:
Pathwise analysis of slowly driven langevin equations. 2001. to appear
in Stochastics and Dynamics.

J.-P. Eckmann and L. E. Thomas. Remarks on stochastic resonance.
J. Phys. A, 15:1.261-L.266, 1982.

H. Eyring. The activated complex in chemical reactions. Journal of
Chemical Physics, 3:107-115, 1935.

M. Freidlin and Wentzell A. Random perturbations of dynamical sys-
tems. Springer-Verlag, New York, second edition, 1998.

M. I. Freidlin. Quasi-deterministic approximation, metastability and
stochastic resonance. Physica D, 137:333-352, 2000.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic
resonance. Reviews of Modern Physics, 70(1):223-287, 1998.

A. Ganopolski and S. Rahmstorf. Abrupt glacial climate changes due
to stochastic resonance. Phy. Rev. Letters, 83(3), 2002.

P. Imkeller and 1. Pavlyukevich. Stochastic resonance in two-state
Markov chains. Arch. Math. (Basel), 77(1):107-115, 2001.

P. Imkeller and I. Pavlyukevich. Model reduction and stochastic reso-
nance. to appear in Stochastics and Dynamics, 2002.

P. Jung, F. Moss, and T. Zhou. Escape-time distributions of a period-
ically modulated bistable system with noise. Phy. Rev. A, 42(6):3161-
3169, 1990.

H. A. Kramers. Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica, 7:284-304, 1940.

R. S. Maier and D. L. Stein. Escape problem for irreversible systems.
Physical Review F, 48(2):931-938, 1993.

B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Phys-
tcal Review A, 39:4854-4869, 1989.

27



[16] A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-
Geier, and J. Freund. Dynamical Entropies Applied to Stochastic Res-
onance. Physical Review Letters, 77:48514, December 1996.

[17] 1. Pavlyukevich.  Stochastic resonance. PhD thesis, Humboldt-
Universitat zu Berlin, 2002.

28



