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1. Introduction

Dynamical systems subject to small random perturbations receive much attention both

in the physical and mathematical literature. Most of the interesting questions relate to

the problem of the first exit from a domain and the corresponding problem of transitions

between domains of attraction of the underlying deterministic dynamical system and

meta-stability. The properties of the random system are mainly determined by the

nature of the noise. The study of perturbations by white Gaussian noise has the longest

history (see e.g. [1, 2]), and richest bibliography. The standard mathematical reference

on this subject is the book [3].

Recently non-Gaussian, in particular Lévy noises with heavy tails — Lévy flights

(LFs) — have been introduced in many systems of sciences and economics. They are

observed for instance in Greenland ice core measurements (see [4]), and thus used to

model important qualitative features of paleoclimatic processes through low-dimensional

dynamical systems. In biology Lévy flights are observed for example in the behavioural

pattern of certain species such as albatrosses [5] or anchovies [6]. They are used to

account for the uncertainties in price fluctuations in dynamical models of financial

markets [7]. Lévy flights also naturally appear in particle evolutions along polymer

chains [8, 9].
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In this paper we give a purely probabilistic description of small scale Lévy flights

in an external potential, i.e. we investigate equations of motion of overdamped particles

perturbed by small discontinuous noise processes with heavy tails. In the limit of small

noise intensity we derive the exit law from a potential well, the analogue of the Kramers’

law for Gaussian diffusions, and then obtain some meta-stability results. The rigorous

proofs of the results formulated in this paper can be found in the forthcoming works

[10, 11]. In the present paper we restrict ourselves to heuristic arguments and refrain

from presenting the technical details.

2. Lévy Flights

Lévy flight is a synonym for symmetric stable Lévy process. Mathematically it describes

a random Markov process L = (Lt)t≥0 with independent stationary increments and

marginals with symmetric stable laws of index α ∈ (0, 2). The Fourier transform of the

marginal Lt, t ≥ 0, has a very simple form,

EeiλLt = e−c(α)t|λ|α , c(α) = 2

∫ ∞

0

1− cos y

y1+α
dy. (1)

In case α = 2 we set c(2) = 1
2
, and (1) becomes the Fourier transform of a standard

Brownian motion. However, due to the divergence c(α) ↑ ∞ as α ↑ 2, Brownian motion

cannot be seen as a weak limit of LFs. The properties of the sample paths of L, in fact,

are quite different for α = 2 and α < 2. Firstly, LFs are discontinuous (pure jump)

processes whereas the Brownian motion has continuous paths. Secondly, Brownian

motion has moments of all orders, whereas E|Lt|γ < ∞ iff γ < α. One can also show

that the tails of Lévy flights are heavy, i.e. P(Lt > u) ∼ u−α, u →∞, quite the opposite

of the exponentially light Gaussian tails. Further, for α ∈ (0, 1), the path variation of

Lévy flights is bounded on finite time intervals, and unbounded for α ∈ [1, 2).

Even if the form of the Fourier transform (1) is very simple, the marginals’ density

p can be expressed by elementary functions only in two cases, namely for

α = 1, where p(x) =
1

π

1

x2 + 1
, and α = 2, where p(x) =

1√
2π

e−x2/2. (2)

In the first case, L is called Cauchy process. More generally, for all α ∈ (0, 2), stable

densities and distribution functions are known in terms of higher transcendental Meijer’s

G- and Fox’s H-functions (see [12, Chapter 6]).

Although LFs are very well understood (see e.g. [13, 14] for a general theory), it

is much more difficult to describe their behaviour in an external potential U (see e.g.

[15, 16]). The dynamics is then given by a stochastic differential equation

Xε
t = x−

∫ t

0

U ′(Xε
s−) ds + εLt, , x ∈ R, t ≥ 0, (3)

where the positive parameter ε denotes the noise intensity. A frequently used approach

to this problem consists in investigation of the corresponding Fokker-Planck equation

which is a partial differential equation fractional in the spatial coordinate. This study
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is a difficult task, and analytically accessible solutions can be derived only for a few

particular potentials and values of α (see [15, 17, 18]).

We study the process Xε by probabilistic methods in the limit as the scale parameter

ε → 0. Thus, equation (3) becomes a natural generalisation of the Smoluchovski

approximation of the Langevin equation for non-Gaussian stable noises. However, due

to the heavy-tail nature of random perturbation, the limiting dynamics of Xε differs

drastically from its Gaussian counterpart.

Finally we stress that our approach uses neither special properties of LFs such

as the scaling property, nor involves analysis of the Fokker-Planck equation, and thus

can be generalised to a larger class of driving processes. Firstly, we can add to L a

Brownian component and a constant drift considering a process Lt + aBt + bt, a ≥ 0,

b ∈ R. Secondly, it is enough to require that the heaviest tail of the Lévy measure ν is

regularly varying with some negative index, i.e. E|Lt|γ < ∞ for some positive γ which

is not necessarily smaller that 2.

3. Typical Behaviour of LFs in External Potentials

In this section we assume that the potential U has ‘parabolic’ form, i.e. xU ′(x) ≥ 0,

U ′(x) = 0 iff x = 0 and U ′′(0) = M > 0. We also impose the regularity condition

U(x) = |x|2+c, x → −∞. Under these assumptions, the deterministic dynamical system

X0
t = x−

∫ t

0

U ′(X0
s ) ds (4)

has a unique asymptotically stable attractor at the origin. Let I = [−b, a] be a bounded

or unbounded interval containing zero, −∞ ≤ −b < 0 < a < ∞.

In this section we give a path-wise description of LFs in a potential U for small

values of the scale parameter ε.

As a main tool of our analysis, we decompose LFs L into sums of ε-dependent

small and large jump components. This can be done with the help of the Lévy-Khinchin

formula for infinitely divisible distributions (see [14]). Indeed, the Fourier transform (1)

can be represented in the following more complicated integral form

EeiλLt = exp

{
t

∫

R\{0}

[
eiλy − 1− iλy1{|y|≤1}(y)

] dy

|y|1+α

}
, (5)

where the indicator function of a Borel set A ⊆ R is given by 1A(y) = 1 if y ∈ A and

1A(y) = 0 otherwise. The most important ingredient of the representation (5) is the so

called Lévy measure of the random process L given by

ν(A) =

∫

A\{0}

dy

|y|1+α
, A Borel set in R. (6)

The Lévy measure controls the intensity and sizes of the jumps of the process. If we

denote by ∆Lt = Lt−Lt− the jump size of L at time t, t > 0, and the number of jumps

on the time interval (0, t] belonging to the set A by

N(t, A) = ]{s : (s, ∆Ls) ∈ (0, t]× A}, (7)



Letter to the Editor 4

it turns out that N(t, A) has a Poisson distribution with mean tν(A) (which can possibly

be infinite). For any α ∈ (0, 2), the Lévy measure of any neighbourhood of 0 is infinite,

hence LFs make infinitely many very small jumps on any time interval. Moreover, the

tails of the density |y|1+α determine big jumps of LFs. Thus big jumps have finite mean

for α ∈ (1, 2), and infinite mean for α ∈ (0, 1].

Let us now decompose the process L into the sum of two independent processes

with relatively small and big jumps. We introduce two new Lévy measures by setting

νε
ξ (A) = ν

(
A ∩ {x : |x| ≤ ε−1/2}) , (8)

νε
η(A) = ν

(
A ∩ {x : |x| > ε−1/2}) , (9)

and two Lévy processes ξε and ηε with the corresponding Fourier transforms:

Eeiλξε
t = exp

{
t

∫

R\{0}

[
eiλy − 1− iλy1(|y| ≤ 1)

]
νε

ξ (dy)

}
, (10)

Eeiληε
t = exp

{
t

∫

R\{0}

[
eiλy − 1− iλy1(|y| ≤ 1)

]
νε

η(dy)

}
. (11)

It is clear that Lt = ξε
t + ηε

t since ν(A) = νε
ξ (A)+ νε

η(A), and the processes ξε and ηε are

independent. Let us investigate them in more detail.

First, since νε
ξ (R) = ∞, the process ξε

t makes infinitely many jumps on each time

interval. Its jumps are, however, bounded by the threshold ε−1/2. Thus ξε
t has finite

variance, and more generally moments of all orders.

On the contrary, the Lévy measure of the process ηε is finite, and we note

βε = νε
η(R) =

∫ −ε−1/2

−∞

dy

|y|1+α
+

∫ ∞

ε−1/2

dy

y1+α
= 2

∫ ∞

ε−1/2

dy

y1+α
=

2

α
εα/2. (12)

Hence, ηε is a compound Poisson process with jumps of absolute value larger than ε−1/2.

Let τ ε
k and W ε

k , k ≥ 0, be the jump arrival times and jump sizes under the convention

τ ε
0 = W ε

0 = 0. Then the inter-arrival times T ε
k = τ ε

k − τ ε
k−1, k ≥ 1, are independent and

exponentially distributed with mean β−1
ε , and the probability distribution function of

W ε
k is given by

P(W ε
k < u) =

1

βε

∫ u

−∞
νε

η(dy) =
1

βε

∫ u

−∞
1{|y|>ε−1/2}(y)

dy

|y|1+α
. (13)

Consider now the process Xε given by equation (3). On the inter-arrival intervals

[τ ε
k−1, τ

ε
k), k ≥ 1, it is driven only by the process εξε, and at the time instants τ ε

k it

makes a jump of the size εW ε
k . Recall that the jumps of εξε are bounded by

√
ε. Since

the variance of εξε vanishes in the limit of small ε, the random trajectory Xε
t should not

deviate much from the deterministic trajectory X0
t of the underlying dynamical system

on the intervals [τ ε
k−1, τ

ε
k). Indeed, in case of the bounded interval [−b, a] the following

estimate holds true:

P( sup
t∈[0,T ε

1 )

|Xε
t (x)−X0

t (x)| ≥ εγ) ≤ exp(ε−r), ε ↓ 0, (14)

for some positive γ, r, and x ∈ (−b, a). The rigorous proof of this inequality is a tedious

task, so we just sketch the idea in the case when the process Xε is an Ornstein-Uhlenbeck
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process. In this case, the potential function satisfies U(x) = Mx2/2, and equations (3)

and (4) have a closed form solution given by

Xε
t (x) = xe−Mt + ε

(
ξε
t −M

∫ t

0

ξε
s−e−M(t−s) ds

)
, (15)

X0
t (x) = xe−Mt. (16)

Consequently, for any t ≥ 0,

sup
s∈[0,t]

|Xε
t (x)−X0

t (x)| ≤ 2 sup
s∈[0,t]

|εξε
t |. (17)

Then, from the independence of ξε and T ε
1 and the reflection principle for symmetric

Lévy processes we obtain

P

(
sup

t∈[0,T ε
1 )

|Xε
t (x)−X0

t (x)| ≥ εγ

)
≤ P

(
sup

t∈[0,T ε
1 )

|εξε
t | ≥

εγ

2

)

≤ 4

∫ ∞

0

βεe
−βεtP

(
εξε

t ≥
εγ

2

)
dt (18)

≤ max
t∈[0,ε−α/2−δ]

P

(
εξε

t ≥
εγ

2

)
+ 4

∫ ε−α/2−δ

0

βεe
−βεt dt = O(exp(ε−r))

for some δ > 0, where the exponential estimate for the probability in the last line follows

from Chebyshev’s inequality. For details see [10, 11].

Inequality (14) means that on the inter-arrival periods, the random trajectory Xε
t

follows the deterministic trajectory X0
t with probability close to 1. Due to the properties

of the potential, for any starting point x, X0
t (x) converges to 0 as t →∞. Let us consider

a εγ-neighbourhood of the origin and estimate the relaxation time T (x, ε) that X0
t (x)

needs to reach it, starting from x ∈ (−b, a). Solving equation (4) results in

T (x, ε) ≤ max

{
−

∫ −εγ

−∞

dy

U ′(y)
,

∫ a

εγ

dy

U ′(y)

}
≤ R|ln ε|, ε ↓ 0, (19)

for some positive R. Here we have used that |U ′| increases faster than linearly at −∞
so the integrals in the previous formula converge. It is of crucial importance for our

argument to notice that the relaxation time has logarithmic order in ε and compares to

the average time between jumps through

T (x, ε) ¿ ET ε
1 =

1

βε

=
α

2εα/2
, ε ↓ 0. (20)

This implies that with probability close to 1, before the arrival time τ ε
k the process Xε

has relaxed to a small 2εγ-neighbourhood of 0.

Now we can describe the typical behaviour of the sample paths of Xε(x). Indeed,

starting at x ∈ (−b, a), Xε(x) follows the deterministic trajectory X0(x) until the first

arrival time τ ε
1 . Due to the inequality (20), just before the big jump the process is

located near the origin, i.e. Xε
τε
1−(x) ≈ 0. Consequently its new location is also known

and given by

Xε
τε
1

= Xε
τε
1− + εW ε

1 ≈ εW ε
1 . (21)
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Figure 1. Predominant behaviour of Lévy Flights in external ‘parabolic’ potential.

From now on, Xε follows the deterministic trajectory starting at Xε
τε
1
, and at the next

jump time τ ε
2 it jumps to the neighbourhood of εW ε

2 , etc. (see Figure 1).

Thus we can summarise the pathwise behaviour of Xε as follows: Xε
0(x) = x, with

high probability Xε
τε
k
(x) ≈ εW ε

k , k ≥ 1, and on the intervals [τ ε
k−1, τ

ε
k), Xε follows the

deterministic trajectory X0.

4. Kramers’ Law for Lévy Flights

We next discuss the law and the mean value of the first exit time form the interval

I = [−b, a]

σx(ε) = inf{t > 0 : Xε
t (x) /∈ I}, x ∈ (−b, a), ε > 0. (22)

This can easily be achieved now with the results of the previous Section.

Indeed, we note that Xε can roughly leave [−b, a] only at one of the time instants

τ ε
k while jumping by the distance εW ε

k from a small neighbourhood of 0.

The probability to jump out of the interval [−b, a] can be calculated explicitly from

(13), to yield the formula

P (εW ε
1 /∈ [−b, a]) =

1

βε

(∫ − b
ε

−∞

dy

|y|1+α
+

∫ ∞

a
ε

dy

y1+α

)
=

εα

αβε

[
1

aα
+

1

bα

]
. (23)

We can therefore calculate the mean value of σ(ε) using the previous formula, the

independence of jump sizes and the fact that τ ε
k = T ε

1 + · · ·+ T ε
k . We obtain

Exσ(ε) ≈
∞∑

k=1

Eτ ε
k ·Px(σ(ε) = τ ε

k)

≈
∞∑

k=1

k · ET ε
1 ·P(εW ε

1 ∈ I, . . . , εW ε
k−1 ∈ I, εW ε

k /∈ I)
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= βεP(εW ε
1 /∈ I)

∞∑

k=1

k(1−P(εW ε
1 /∈ I))k−1

=
βε

P(εW ε
1 /∈ I)

=
α

εα

[
1

aα
+

1

bα

]−1

. (24)

Similar arguments allow to estimate the law of the first exit time. Indeed, for all

k ≥ 1, τ ε
k has a Gamma(βε, k) law with density at time t given by βεe

−βεt (βεt)k−1

(k−1)!
. Hence

we may write for u ≥ 0

Px(σ(ε) > u) ≈
∞∑

k=1

P(τ ε
k > u) ·Px(σ(ε) = τ ε

k)

≈
∞∑

k=1

P(τ ε
k > u) ·P(εW ε

1 ∈ I, . . . , εW ε
k−1 ∈ I, εW ε

k /∈ I)

=
∞∑

k=1

∫ ∞

u

βεe
−βεt (βεt)

k−1

(k − 1)!
dt · (1−P(εW ε

1 /∈ I))k−1 ·P(εW ε
1 /∈ I)

= βεP(εW ε
1 /∈ I)

∫ ∞

u

e−βεt

∞∑

k=1

(βεt)
k−1(1−P(εW ε

1 /∈ I))k−1

(k − 1)!
dt

= βεP(εW ε
1 /∈ I)

∫ ∞

u

e−βεteβεt(1−P(εW ε
1 /∈I)) dt

= exp (−uβεP(εW ε
1 /∈ I)) = exp

(
−u

εα

α

[
1

aα
+

1

bα

])
. (25)

This can be paraphrased by saying that in the limit of small ε, the exit time σx(ε) is

exponentially distributed with mean described by (24).

P. Ditlevsen in [19] determined the rate of the mean value of σx(ε) as a function of ε

using some discrete time approximation of equation (3) and analysing the Fokker-Planck

equation.

The exit problem from the potential well was also studied in [20] for LFs with

α ∈ [1, 2). The analytically derived asymptotic results in the Cauchy case α = 1 are in

agreement with our (24) whereas numerical estimates for α ∈ (1, 2) seem to be not very

conclusive yet.

It is instructive to compare the results just obtained with their well-known

counterparts for diffusions driven by Brownian motions of small intensity ε. Together

with (3) consider the diffusion X̂ε which solves the stochastic differential equation

X̂ε
t = x−

∫ t

0

U ′(X̂ε
s ) ds + εWt, (26)

where W is a standard one-dimensional Brownian motion, and U is the same potential

as in (3). For the diffusion X̂ε we define the first exit time from the interval I by

σ̂x(ε) = inf{t ≥ 0 : X̂ε
t (x) /∈ [−b, a]}, x ∈ (−b, a). (27)

Then the following statements hold for σ̂(ε) in the limit of small ε.



Letter to the Editor 8

1. The first exit time σ̂x(ε) is exponentially large in ε−2. To state the law more

precisely, assume that U(a) < U(−b). Then for any δ > 0, x ∈ (−b, a), according to [3]:

Px(e
(2U(a)−δ)/ε2

< σ̂(ε) < e(2U(a)+δ)/ε2

) → 1 as ε → 0. (28)

Moreover, ε2 lnExσ̂(ε) → 2U(a).

The mean value of the first exit time in the small noise limit (Kramers’ law) can

be calculated more explicitly by (see [2, 21])

Exσ̂(ε) ≈ ε
√

π

U ′(a)
√

U ′′(0)
e2U(a)/ε2

. (29)

For its understanding note that the boundary points a and −b are non-characteristic,

i.e. U ′(a), U ′(−b) 6= 0. This leads to a somewhat different formulation of Kramers’ law

compared with the formula in the original paper [2].

2. The normalised first exit time is exponentially distributed [22, 23, 24]: for u ≥ 0

we have

Px

(
σ̂(ε)

Exσ̂(ε)
> u

)
→ e−u as ε → 0, (30)

uniformly in x on compact subsets of (−b, a).

As we see, σ̂(ε) and σ(ε) have essentially different orders of growth as ε → 0. The

exit times of the processes driven by α-stable noise are much shorter because of the

presence of large jumps which occur with probability polynomially small in ε. To leave

the interval, the diffusion X̂ε has to overcome a potential barrier of height either U(−b)

or U(a). So in the case considered here, X̂ε
σ̂(ε) = a with an overwhelming probability.

The diffusion has to ‘climb’ in the potential landscape. This also explains why the pre-

factor in (29) depends on geometric properties of U such as the slope at the exit point

and the curvature at the local minimum, the place where the diffusion spends most of

its time before exiting.

The process Xε on the contrary uses the possibility to exit the interval at one large

jump. This is the reason why the asymptotic exit time depends mainly on the distance

between the stable point 0 and the interval’s boundaries. The potential’s geometry does

not play a big role for the low order approximations of the exit time σ(ε). Although it

is important for the proof, it does not appear in the pre-factors of the mean exit time

in (24) and remains hidden in the error terms.

5. Meta-stable Behaviour

Assume now that the potential U has two wells with minima located in −p and q, and a

saddle point at the origin, −p < 0 < q. We continue to assume that all extreme points

are non-degenerate, and U increases at infinity of the order |x|2+c for some positive c.

For example, one can consider a standard quartic potential U(x) = x4

4
+(p−q)x3

3
−pq x2

2
.

It is clear that for small values of ε the process Xε spends most of its time in small

neighbourhoods of the potential’s local minima jumping between the wells at random
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times. Since we have only two wells, the transition time is at the same time the exit

time from one of the wells.

In the previous section we have studied exit times for a well with non-characteristic

boundaries. The situation in the present Section is a bit more complicated. This is due

to the presence of the saddle point at which the force vanishes, and a simple comparison

of the random dynamics of Xε and X0 as before is not possible.

However we can reduce the exit problem to the one solved before by excluding

some small, say εγ-neighbourhood of the saddle point, and considering the exit from

the domains (−∞,−εγ] and [εγ,∞). The dynamics in these domains is not essentially

different from the typical behaviour described in Section 3. We only need to give an

estimate for the relaxation time T (x, ε) which takes into account the singularity at the

origin. Thus, for instance for the left well we obtain

T (x, ε) ≤ max

{
−

∫ −p−εγ

−∞

dy

U ′(y)
,

∫ −εγ

−p+εγ

dy

U ′(y)

}
≤ R1|ln ε|, ε ↓ 0. (31)

The relaxation time has again just a logarithmic order due to the non-degeneracy of the

potential’s extreme points.

We further notice that the probabilities to jump out of the domain (−∞,−εγ] and

into the domain [εγ,∞) are equal up to terms of higher order to the expression

P(εW ε
1 > p− εγ) ≈ P(εW ε

1 > p + εγ) ≈ εα/2

2pα
, (32)

whereas the probability to jump into the εγ-neighbourhood of the saddle point is

negligible and given by

P(εW ε
1 + p ∈ [−εγ, εγ]) ∝ εα/2+γ ¿ εα/2. (33)

(This explains why we should work with ε-dependent neighbourhoods.)

Finally, we conclude that the transition times from the left to the right well resp.

vice versa have mean values

Eτpq(ε) ≈ αpα

εα
and Eτqp(ε) ≈ αqα

εα
, ε ↓ 0, (34)

and are asymptotically exponentially distributed. Thus, the main features of the process

Xε in the small noise limit are retained by a Markov jump process, and on the time scale

ε−α we obtain the following convergence in the sense of finite dimensional distributions:

Xε
t/εα(x) → Yt, t > 0, ε ↓ 0, (35)

where Y is a Markov process on the state space {−p, q} with the following matrix as

infinitesimal generator

1

α

(−p−α

q−α

p−α

−q−α

)
and Y0 =

{
−p, if x < 0,

q, if x > 0.
(36)

Again, let us compare the result obtained with its Gaussian counterpart. Here we

refer to [25], where this problem was first studied.

Let us again consider a Gaussian diffusion X̂ε which solves equation (26). Since

it is well known that in the Gaussian case the height of the potential barriers plays a
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crucial role, we assume that U(0) = 0, U(−p) = −H, U(q) = −h and 0 < h < H, i.e.

the left well is deeper. Then due to Kramers’ law, the system has two different intrinsic

time scales, given by the mean exit times from the wells (compare with (34)):

Eτ̂pq(ε) ≈ 2π√
U ′′(−p)|U ′′(0)|e

2H/ε2

and Eτ̂qp(ε) ≈ 2π√
U ′′(−q)|U ′′(0)|e

2h/ε2

, ε ↓ 0. (37)

Exponentially different Kramers’ times lead to the following meta-stable behaviour of

X̂ε:

X̂ε
tλε(x) → Ŷt, ε ↓ 0, (38)

in the sense of finite dimensional distributions, where λε is such that λε/Eτ̂qp(ε) → 1,

and Ŷ is a Markov process on {−p, q} with the infinitesimal matrix
(

0

1

0

−1

)
and Ŷ0 =

{
−p, if x < 0,

q, if x > 0.
(39)

As we see, the main difference between LFs and Gaussian dynamics consists not only in

different intrinsic time scales — polynomial vs. exponential, — but also in qualitatively

different limiting behaviour. In the heavy-tail case, the states of the limiting process are

recurrent, whereas in the Gaussian case, the minimum of the deepest well is absorbing.

6. Conclusion

We determine the probability law and the mean value of escape times from a potential

well for all values of the stability index α ∈ (0, 2) in the limit of small noise. Escape

times have exponential distribution, and their averages increase as ε−α with pre-factors

depending on α and the distance between the potential’s local extrema.

In the case of a double-well potential, we determine a new time scale on which the

Lévy-driven diffusion converges to a two-state Markov process with some non-trivial

generator.

Our methods are purely probabilistic. They also work for all Lévy noises with

heavy (regularly varying) tails of any index.
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