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Abstract. We consider Lévy flights of stability index a € (0,2) in a potential
landscape in the limit of small noise parameter. We give a purely probabilistic
description of the random dynamics based on a special decomposition of the driving
Lévy processes into independent small jumps and compound Poisson parts. We prove
that escape times from a potential well are exponentially distributed and their mean
values increase as a power e~ % of the noise intensity . This allows to obtain meta-
stability results for a jump-diffusion in a double-well potential.
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1. Introduction

Dynamical systems subject to small random perturbations receive much attention both
in the physical and mathematical literature. Most of the interesting questions relate to
the problem of the first exit from a domain and the corresponding problem of transitions
between domains of attraction of the underlying deterministic dynamical system and
meta-stability. The properties of the random system are mainly determined by the
nature of the noise. The study of perturbations by white Gaussian noise has the longest
history (see e.g. [1, 2]), and richest bibliography. The standard mathematical reference
on this subject is the book [3].

Recently non-Gaussian, in particular Lévy noises with heavy tails — Lévy flights
(LFs) — have been introduced in many systems of sciences and economics. They are
observed for instance in Greenland ice core measurements (see [4]), and thus used to
model important qualitative features of paleoclimatic processes through low-dimensional
dynamical systems. In biology Lévy flights are observed for example in the behavioural
pattern of certain species such as albatrosses [5] or anchovies [6]. They are used to
account for the uncertainties in price fluctuations in dynamical models of financial
markets [7]. Lévy flights also naturally appear in particle evolutions along polymer
chains [8, 9].
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In this paper we give a purely probabilistic description of small scale Lévy flights
in an external potential, i.e. we investigate equations of motion of overdamped particles
perturbed by small discontinuous noise processes with heavy tails. In the limit of small
noise intensity we derive the exit law from a potential well, the analogue of the Kramers’
law for Gaussian diffusions, and then obtain some meta-stability results. The rigorous
proofs of the results formulated in this paper can be found in the forthcoming works
[10, 11]. In the present paper we restrict ourselves to heuristic arguments and refrain
from presenting the technical details.

2. Lévy Flights

Lévy flight is a synonym for symmetric stable Lévy process. Mathematically it describes
a random Markov process L = (L;);>¢ with independent stationary increments and
marginals with symmetric stable laws of index a € (0,2). The Fourier transform of the
marginal L;, t > 0, has a very simple form,

: o 1 —cosy

AL —c(a)t|A

EeMt = 7@ ¢(q) = 2/ o Y- (1)
0 Y

1
2
Brownian motion. However, due to the divergence ¢(«) T 0o as o T 2, Brownian motion

In case a = 2 we set ¢(2) = 3, and (1) becomes the Fourier transform of a standard
cannot be seen as a weak limit of LFs. The properties of the sample paths of L, in fact,
are quite different for « = 2 and o < 2. Firstly, LFs are discontinuous (pure jump)
processes whereas the Brownian motion has continuous paths. Secondly, Brownian
motion has moments of all orders, whereas E|L;|" < oo iff v < a. One can also show
that the tails of Lévy flights are heavy, i.e. P(L; > u) ~ u~%, u — 00, quite the opposite
of the exponentially light Gaussian tails. Further, for o € (0, 1), the path variation of
Lévy flights is bounded on finite time intervals, and unbounded for « € [1,2).

Even if the form of the Fourier transform (1) is very simple, the marginals’ density
p can be expressed by elementary functions only in two cases, namely for
%x?;—kl’ and a = 2, where p(z) = Le_””?/? (2)

V2r

In the first case, L is called Cauchy process. More generally, for all o € (0,2), stable

a =1, where p(z) =

densities and distribution functions are known in terms of higher transcendental Meijer’s
G- and Fox’s H-functions (see [12, Chapter 6]).

Although LFs are very well understood (see e.g. [13, 14] for a general theory), it
is much more difficult to describe their behaviour in an external potential U (see e.g.
[15, 16]). The dynamics is then given by a stochastic differential equation

t
Xf:x—/U’(Xj_)ds+eLt, ZER, t>0, (3)
0

where the positive parameter € denotes the noise intensity. A frequently used approach
to this problem consists in investigation of the corresponding Fokker-Planck equation
which is a partial differential equation fractional in the spatial coordinate. This study
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is a difficult task, and analytically accessible solutions can be derived only for a few
particular potentials and values of « (see [15, 17, 18]).

We study the process X© by probabilistic methods in the limit as the scale parameter
e — 0. Thus, equation (3) becomes a natural generalisation of the Smoluchovski
approximation of the Langevin equation for non-Gaussian stable noises. However, due
to the heavy-tail nature of random perturbation, the limiting dynamics of X¢ differs
drastically from its Gaussian counterpart.

Finally we stress that our approach uses neither special properties of LFs such
as the scaling property, nor involves analysis of the Fokker-Planck equation, and thus
can be generalised to a larger class of driving processes. Firstly, we can add to L a
Brownian component and a constant drift considering a process L; + aB; + bt, a > 0,
b € R. Secondly, it is enough to require that the heaviest tail of the Lévy measure v is
regularly varying with some negative index, i.e. E|L;|” < oo for some positive v which
is not necessarily smaller that 2.

3. Typical Behaviour of LFs in External Potentials

In this section we assume that the potential U has ‘parabolic’ form, i.e. zU'(z) > 0,
U(x) =0iff x = 0 and U"(0) = M > 0. We also impose the regularity condition
U(x) = |z|*"¢,  — —oo. Under these assumptions, the deterministic dynamical system

X =x— /t U'(X?)ds (4)

0
has a unique asymptotically stable attractor at the origin. Let I = [—b, a] be a bounded
or unbounded interval containing zero, —oco < —b < 0 < a < 0.

In this section we give a path-wise description of LFs in a potential U for small
values of the scale parameter ¢.

As a main tool of our analysis, we decompose LFs L into sums of s-dependent
small and large jump components. This can be done with the help of the Lévy-Khinchin
formula for infinitely divisible distributions (see [14]). Indeed, the Fourier transform (1)
can be represented in the following more complicated integral form

. . . dy
Ee* 't = exp {t/ [ =1 — Ayl <1y (y)] m} ) (5)
R\(0} ||

where the indicator function of a Borel set A C R is given by 14(y) = 1 if y € A and
14(y) = 0 otherwise. The most important ingredient of the representation (5) is the so
called Lévy measure of the random process L given by

v(A) = / d_y) A Borel set in R. (6)

Aoy [y[He

The Lévy measure controls the intensity and sizes of the jumps of the process. If we
denote by AL, = L; — L, the jump size of L at time ¢, t > 0, and the number of jumps
on the time interval (0,¢] belonging to the set A by

N(t,A) =t{s: (s,ALs) € (0,t] x A}, (7)
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it turns out that N (¢, A) has a Poisson distribution with mean tv(A) (which can possibly
be infinite). For any a € (0,2), the Lévy measure of any neighbourhood of 0 is infinite,
hence LFs make infinitely many very small jumps on any time interval. Moreover, the
tails of the density |y|'*® determine big jumps of LFs. Thus big jumps have finite mean
for a € (1,2), and infinite mean for « € (0, 1].

Let us now decompose the process L into the sum of two independent processes
with relatively small and big jumps. We introduce two new Lévy measures by setting

vi(A) = v (AN {a: fa <7, ®)
vi(A) = v (AN {x:[af > =72), ®)
and two Lévy processes £ and n° with the corresponding Fourier transforms:
Ee™* = exp {t/ [e? —1 —idyl(ly| < 1)] V£€<dy)} ) (10)
R\{0}
Eci = exp {t/ [ —1 —idy1(Jy| < 1)] V5<dy>} : (11)
R\{0}

It is clear that L; = & +nj; since v(A) = v¢(A) +1;(A), and the processes §° and 7° are
independent. Let us investigate them in more detail.

First, since v (R) = oo, the process & makes infinitely many jumps on each time
interval. Its jumps are, however, bounded by the threshold /2. Thus & has finite
variance, and more generally moments of all orders.

On the contrary, the Lévy measure of the process 7 is finite, and we note

1/2

- dy < dy < dy 2
— 15(R) = A =9 = 222 (12
B. = v (R) /_OO y[ire + /81/2 yl+a /51/2 ylt+a o (12)

1/2.

Hence, n® is a compound Poisson process with jumps of absolute value larger than e~
Let 7; and Wg, k > 0, be the jump arrival times and jump sizes under the convention
= Wy = 0. Then the inter-arrival times T} = 7; — 7;_;, k > 1, are independent and
exponentially distributed with mean $-!, and the probability distribution function of
Wy is given by
v 1 [ dy
PVi<u) = [ vl =7 [ Lgpeom@its  03)
B ) ne Be ) o ly[**

Consider now the process X¢ given by equation (3). On the inter-arrival intervals
[76_1,75), k > 1, it is driven only by the process €€, and at the time instants 7; it
makes a jump of the size eW¢. Recall that the jumps of €€ are bounded by /. Since
the variance of €£° vanishes in the limit of small €, the random trajectory X; should not
deviate much from the deterministic trajectory X? of the underlying dynamical system
on the intervals [75_;,75). Indeed, in case of the bounded interval [—b, a| the following
estimate holds true:

P( sup |X(x) = X0(x)| > &) exp(="), =10, (14)

t€[0,T¢)
for some positive v, r, and x € (—b,a). The rigorous proof of this inequality is a tedious
task, so we just sketch the idea in the case when the process X°¢ is an Ornstein-Uhlenbeck
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process. In this case, the potential function satisfies U(z) = Mx?/2, and equations (3)
and (4) have a closed form solution given by

t
Xi(x) =aze M 4 ¢ (ff - M/ €8 e M=) ds) , (15)
0
X (x) = we Mt (16)
Consequently, for any ¢ > 0,
sup | X; (v) — X7 (w)] < 2 sup [e&]. (17)
s€[0,t] s€[0,t]

Then, from the independence of & and 7T} and the reflection principle for symmetric
Lévy processes we obtain

P ( sup | X7 (2) — XP(2)] > 8”) <P ( sup [e€;| = Q)

te[0,T%) t€[0,T7) T2
< 4/ B PP <5§f > 5) dt (18)
0
8’7 e—a/2—6
< max P (5§f > —) + 4/ Bee Pt dt = O(exp(e™"))
te[0,e—/2-9] 2 0

for some § > 0, where the exponential estimate for the probability in the last line follows
from Chebyshev’s inequality. For details see [10, 11].

Inequality (14) means that on the inter-arrival periods, the random trajectory X;
follows the deterministic trajectory X with probability close to 1. Due to the properties
of the potential, for any starting point x, X?(x) converges to 0 as t — co. Let us consider
a &7-neighbourhood of the origin and estimate the relaxation time T'(z,¢) that X} (x)
needs to reach it, starting from x € (—b, a). Solving equation (4) results in

—e7 dy a dy
T(z,e) < max{—/oo U’(y)’/ﬂ U’(y)} < R|lne|, ¢]0, (19)

for some positive R. Here we have used that |U’| increases faster than linearly at —oo

so the integrals in the previous formula converge. It is of crucial importance for our
argument to notice that the relaxation time has logarithmic order in € and compares to
the average time between jumps through

T(z,¢) < BT = % - ﬁ elo. (20)
This implies that with probability close to 1, before the arrival time 7; the process X¢
has relaxed to a small 2¢7-neighbourhood of 0.

Now we can describe the typical behaviour of the sample paths of X¢(z). Indeed,
starting at x € (—b,a), X¢(x) follows the deterministic trajectory X°(z) until the first
arrival time 75. Due to the inequality (20), just before the big jump the process is
located near the origin, i.e. Xflg_(x) ~ 0. Consequently its new location is also known
and given by

X2 = X+ Wi ~ W5, (21)
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Figure 1. Predominant behaviour of Lévy Flights in external ‘parabolic’ potential.

From now on, X¢ follows the deterministic trajectory starting at Xilg, and at the next
jump time 75 it jumps to the neighbourhood of eWs, etc. (see Figure 1).

Thus we can summarise the pathwise behaviour of X< as follows: X§(z) = x, with
high probability XZ.(z) ~ eW}, k > 1, and on the intervals [r;_, 77), X© follows the
deterministic trajectory X©.

4. Kramers’ Law for Lévy Flights

We next discuss the law and the mean value of the first exit time form the interval
I =1[-b,d

o.(e) =inf{t >0: X;(x) ¢ I}, z€(-bya), €>0. (22)

This can easily be achieved now with the results of the previous Section.

Indeed, we note that X¢ can roughly leave [—b, a] only at one of the time instants
7; while jumping by the distance eW; from a small neighbourhood of 0.

The probability to jump out of the interval [—b, a] can be calculated explicitly from
(13), to yield the formula

. 1 ot dy Cody e 1.1

We can therefore calculate the mean value of o(¢) using the previous formula, the

independence of jump sizes and the fact that 7, =17 +--- + T7. We obtain
E,o(e) ~ Z E7; - P.(o(e) =7)
k=1

~> k-ETf-P(EW;el,....eWi, €W ¢ 1)
k=1
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P(eWs ¢ )Y k(1 —P(eW; ¢ I))*!
k=1
B 8. a1l o177
Pl = [a—a * b_a} - (24)

Similar arguments allow to estimate the law of the first exit time. Indeed for all
k> 1, 75 has a Gamma(f., k) law with density at time ¢ given by B.e =5 (fg ) il . Hence
we may write for u > 0

Po(o(c) > u) ~ 3 P(rf > ) - Pu(o(e) = )
k=1
i P(r > u) - PW € 1,...,eWf , € LW ¢ I)
_Z/ Boot 66_1) (1=P(eW: ¢ I))FL - P(eWE ¢ 1)

k 1 o 3 k—1
— BP(eWE ¢ / — Z (Bt (1 (k_(ﬁlng gDt

= B.P(eWs ¢ ])/ o PetoPet(1=P(EWFED)) 1t
ba

This can be paraphrased by saying that in the limit of small €, the exit time o,(¢) is

exponentially distributed with mean described by (24).

—exp (B P ¢ 1) = (0 | g ). (25)

P. Ditlevsen in [19] determined the rate of the mean value of 0, (¢) as a function of ¢
using some discrete time approximation of equation (3) and analysing the Fokker-Planck
equation.

The exit problem from the potential well was also studied in [20] for LFs with

€ [1,2). The analytically derived asymptotic results in the Cauchy case o = 1 are in
agreement with our (24) whereas numerical estimates for a € (1,2) seem to be not very
conclusive yet.

It is instructive to compare the results just obtained with their well-known
counterparts for diffusions driven by Brownian motions of small intensity . Together
with (3) consider the diffusion X¢ which solves the stochastic differential equation

t
Xf=z-— / U'(XE)ds + W, (26)
0

where W is a standard one-dimensional Brownian motion, and U is the same potential
as in (3). For the diffusion X¢ we define the first exit time from the interval I by
Go(e) =inf{t >0 : X:(x) ¢ [~b,a]}, x € (=b,a). (27)

Then the following statements hold for ¢(¢) in the limit of small .
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1. The first exit time 6, () is exponentially large in e 2. To state the law more

precisely, assume that U(a) < U(—b). Then for any 6 > 0, z € (—b, a), according to [3]:
P, (ePV@=0/ < 5(c) < U@/ 1 a5 ¢ — 0. (28)

Moreover, e2In E,6(g) — 2U(a).
The mean value of the first exit time in the small noise limit (Kramers’ law) can
be calculated more explicitly by (see [2, 21])

E.6(c) ~ VT vty (29)
U'(a)y/U"(0)
For its understanding note that the boundary points a and —b are non-characteristic,
i.e. U'(a),U’'(—b) # 0. This leads to a somewhat different formulation of Kramers’ law
compared with the formula in the original paper [2].
2. The normalised first exit time is exponentially distributed [22, 23, 24]: for u > 0
we have

P, (E‘:Ef(l) > u) et as e— 0, (30)

uniformly in z on compact subsets of (—b,a).

As we see, d(¢) and o(e) have essentially different orders of growth as ¢ — 0. The
exit times of the processes driven by a-stable noise are much shorter because of the
presence of large jumps which occur with probability polynomially small in €. To leave
the interval, the diffusion X< has to overcome a potential barrier of height either U (—b)
or U(a). So in the case considered here, X 5(z) = @ with an overwhelming probability.
The diffusion has to ‘climb’ in the potential landscape. This also explains why the pre-
factor in (29) depends on geometric properties of U such as the slope at the exit point
and the curvature at the local minimum, the place where the diffusion spends most of
its time before exiting.

The process X on the contrary uses the possibility to exit the interval at one large
jump. This is the reason why the asymptotic exit time depends mainly on the distance
between the stable point 0 and the interval’s boundaries. The potential’s geometry does
not play a big role for the low order approximations of the exit time o(¢). Although it
is important for the proof, it does not appear in the pre-factors of the mean exit time
in (24) and remains hidden in the error terms.

5. Meta-stable Behaviour

Assume now that the potential U has two wells with minima located in —p and ¢, and a

saddle point at the origin, —p < 0 < q. We continue to assume that all extreme points

are non-degenerate, and U increases at infinity of the order |z|*™¢ for some positive c.
1.4

For example, one can consider a standard quartic potential U(z) = % +(p— q)% — pq%.

It is clear that for small values of € the process X¢ spends most of its time in small
neighbourhoods of the potential’s local minima jumping between the wells at random
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times. Since we have only two wells, the transition time is at the same time the exit
time from one of the wells.

In the previous section we have studied exit times for a well with non-characteristic
boundaries. The situation in the present Section is a bit more complicated. This is due
to the presence of the saddle point at which the force vanishes, and a simple comparison
of the random dynamics of X and X° as before is not possible.

However we can reduce the exit problem to the one solved before by excluding
some small, say €”-neighbourhood of the saddle point, and considering the exit from
the domains (—oo, —¢7] and [¢7,00). The dynamics in these domains is not essentially
different from the typical behaviour described in Section 3. We only need to give an
estimate for the relaxation time 7'(x,¢) which takes into account the singularity at the
origin. Thus, for instance for the left well we obtain

—p—e? dy —eY dy
T(x,e) < max —/ —,/ —}gRlne, €10 (31
( ) { —00 Ul(@/) —p+e? U/(y) 1’ ‘ ( )

The relaxation time has again just a logarithmic order due to the non-degeneracy of the
potential’s extreme points.

We further notice that the probabilities to jump out of the domain (—oo0, —&7] and
into the domain [¢7, 00) are equal up to terms of higher order to the expression

a/2
PeW;>p—e")=PW; >p+e") = c

32
o (32)

whereas the probability to jump into the e7-neighbourhood of the saddle point is
negligible and given by

P(eWE +p € [—€7,¢7]) o /27 < /2, (33)

(This explains why we should work with e-dependent neighbourhoods.)
Finally, we conclude that the transition times from the left to the right well resp.
vice versa have mean values
ap® aq®
Er,(c) ~ EL; and Er,(c) ~ gia 10, (34)
and are asymptotically exponentially distributed. Thus, the main features of the process
X¢ in the small noise limit are retained by a Markov jump process, and on the time scale
£~% we obtain the following convergence in the sense of finite dimensional distributions:

Xjjea(z) =Y, t>0, €0, (35)

where Y is a Markov process on the state space {—p, ¢} with the following matrix as
infinitesimal generator

1 [ —p@ —o —p, if x <0,
- < p p ) and Yy = b ) (36)
Q g —q*° q, if > 0.

Again, let us compare the result obtained with its Gaussian counterpart. Here we
refer to [25], where this problem was first studied.

Let us again consider a Gaussian diffusion X which solves equation (26). Since
it is well known that in the Gaussian case the height of the potential barriers plays a
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crucial role, we assume that U(0) =0, U(—p) = —H, U(q) = —h and 0 < h < H, i.e.
the left well is deeper. Then due to Kramers’ law, the system has two different intrinsic
time scales, given by the mean exit times from the wells (compare with (34)):

A 27 2H /e? A 2 2h/e?
E7,,(c) ~ NGEEDIIET )‘e and E7,(e) = NGEEIET )‘e , €10.(37)

Exponentially different Kramers’ times lead to the following meta-stable behaviour of
Xe:
Xie(x) =Y, e]0, (38)

in the sense of finite dimensional distributions, where A° is such that A\°/E7,,(e) — 1,
and Y is a Markov process on {—p, ¢} with the infinitesimal matrix

. —p, ifz <o,
(0 O> and Yoz{ P 1x (39)

1 -1 q, if > 0.

As we see, the main difference between LFs and Gaussian dynamics consists not only in
different intrinsic time scales — polynomial vs. exponential, — but also in qualitatively
different limiting behaviour. In the heavy-tail case, the states of the limiting process are
recurrent, whereas in the Gaussian case, the minimum of the deepest well is absorbing.

6. Conclusion

We determine the probability law and the mean value of escape times from a potential
well for all values of the stability index o € (0,2) in the limit of small noise. Escape
times have exponential distribution, and their averages increase as e~* with pre-factors
depending on « and the distance between the potential’s local extrema.

In the case of a double-well potential, we determine a new time scale on which the
Lévy-driven diffusion converges to a two-state Markov process with some non-trivial
generator.

Our methods are purely probabilistic. They also work for all Lévy noises with
heavy (regularly varying) tails of any index.
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