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A deeper understanding of the distribution of the variant call fre-
quencies at heterozygous loci innext-generation sequencing (NGS)
data sets is a prerequisite for sensitive variant detection. We model
the crucial steps in a second generation sequencing protocol as a
stochastic branching process and derive the expected distribution
of alleles at heterozygous loci after measurement. We confirm our
theoretical results by analyzing technical replicates of human ex-
ome data and demonstrate that the variance of allele frequencies
at heterozygous loci is higher than expected by a simple binomial
distribution. Due to this high variance, mutation callers relying on
binomial distributed priors are less sensitive for heterozygous vari-
ants that deviate strongly from the expected mean frequency. Our
results also indicate that error rates can be reduced to a greater
degree by technical replicates than by increasing sequencing depth.
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Second generation DNA sequencing has revolutionized
many biomedical areas, it especially accelerated the dis-

covery of disease genes in Medical Genetics [1, 2] and is now
about to enter diagnostics [3]. In order to translate this tech-
nology into a reliably tool for molecular diagnostics for human
genetics and other fields, it will be necessary to further reduce
error rates of sequence variant detection. Understanding the
process of how the high-throughput sequencing data arises is
crucial for the development of sensitive genotype calling algo-
rithms. It is well known in the field that especially the error
rates in detecting heterozygous mutations in diploid genomes
are still considerably higher than the comparable error rates of
homozygous variants - even at high levels of sequence coverage
[4, 5].

It is currently widely assumed that the frequencies of calls
at heterozygous sites in NGS data is binomially distributed,
an assumption that has been incorporated into many variant
calling programs for NGS data [6, 7, 8]. We were motivated
to question this assumption by observations of more extreme
probability distributions in whole-exome sequencing (WES)
data sets, as well will demonstrate in this paper. We there-
fore analyzed the key steps in NGS data generation from a
stochastic point of view and identified the amplification of se-
quence fragments during library preparation before measure-
ment as crucial for the distribution of allele frequencies at
heterozygous genomic loci.

We reasoned that the generation of fragments can be de-
scribed as a Bienayme-Galton-Watson branching process with
discrete time steps, which is a model that has been widely
used by physicists and mathematicians in population genet-
ics [9, 10, 11]. In this work we provide a detailed descrip-
tion of the fragment amplification process. We then show
that our model accurately reflects allele frequencies in real
WES datasets. One prediction of our model is that techni-
cal replication is more effective in reducing error rates than
merely sequencing more reads from the same library, which we

confirmed on a data set with nine technical WES replicates.
Our results have important implications for understanding the
causes of false-negative errors in NGS diagnostics.

Results
Fragment Amplification as a stochastic branching process.
Suppose that we have a tube that initially contains a set of
different alleles such as illustrated in Fig. 1A. We now perform
K cycles of a polymerase chain reaction (PCR) on these alle-
les, which basically means adding a certain number of copies
of these alleles to the tube at discrete time steps. This is an
essential part of current NGS library preparation protocols
that are used to enrich adapter-ligated DNA fragments [12].

We will start by describing this process for a heterozygous,
single nucleotide position in the genome as an inhomogeneous
Markov chain (although we deal in this paper only with bial-
lelic single nucleotide polymorphisms (SNPs) the process gen-
eralizes to all sequence variants). The preparation of a ge-
nomic DNA sample starts by shearing the chromosomal DNA
into sequence fragments of a few hundred base pairs. We will
discuss in the following only fragments that contain a vari-
able base of a SNP, which means we can distinguish between
two possible classes of fragments, those containing the base of
allele a1 and those that contain the base of allele a2. We con-
sider the fragmentation as random and unbiased. This means
the extensions into both directions from the variable position
is uniform and only limited by fragment size. We also as-
sume that the numbers n1 and n2 of the fragments containing
allele a1 and a2 are equal after fragmentation, as the DNA
originates from many cells of a single diploid genome. Before
sequencing (at time step k = 0), adaptor oligomers are ligated
to the fragments and a PCR is run for K cycles. For successful
amplification, adaptors must be attached to both ends of the
fragment. The initial number of amplifiable fragments, n1(0)
and n2(0), is in the order of dozens. For each such fragment
the attachment of the polymerase to the adaptor is a prereq-
uisite for amplification. We assume that the probability of
this event depends only on the total number of polymerase
molecules, which remains the same in every PCR cycle k, and
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the sum of amplifiable fragments, n1(k) + n2(k), but is inde-
pendent of the variant itself. For not too large K we may as-
sume that polymerase is always in excess of n1(k)+n2(k), and
thus a constant fraction of fragments will be bound by poly-
merase. We will use the parameter p in the main manuscript
to describe the cycle and allele-independent probability that a
fragment is copied (in the supporting information we perform
the calculations for allele specific amplification probabilities,
p1 and p2). We now describe the probabilities of the three
possible transitions of a random allele in PCR cycle k:

Pr((n1(k), n2(k))→ (n1(k) + 1, n2(k)) =
n1(k)

n1(k) + n2(k)
p

Pr((n1(k), n2(k))→ (n1(k), n2(k) + 1) =
n2(k)

n1(k) + n2(k)
p

Pr((n1(k), n2(k))→ (n1(k), n2(k)) = 1− p
[1]

The whole system thus transitions to:

(n1(k + 1), n2(k + 1)) = (n1(k) + b1(k), n2(k) + b2(k)) [2]

where (b1(k), b2(k)) are binomially distributed random vari-
ables B(n1(k), p) and B(n2(k), p) (see Fig 1 A).

The quotient n1(k)
n1(k)+n2(k)

describes the proportion of al-

lele a1 after the kth amplification cycle and this is the allele
frequency that we expect to measure by sequencing multiple
read fragments of this pool (note, that sequencing itself will
contribute to the totally measured variance. Sequencing itself
may be understood as a random sample of finite size - which is
the sequencing depth - on the allele pool after amplification).
We are thus primarily interested in the distribution of the
random variable Q(k) describing the ratio of alleles after am-
plification. All transitions meet the Markov condition, stating
that the distribution of alleles after step k solely depends on
the distribution of alleles in step k − 1:

P ((n1(k), n2(k))|(n1(k − 1), n2(k − 1))

(n1(k − 2)n2(k − 2)), ..., (n1(0), n2(0))) =

= P ((n1(k), n2(k)))|(n1(k − 1), n2(k − 1))),

[3]

The entire process is determined by the offspring of a prob-
ability generating function h and Q(k) approaches a normal
distribution [10]. We derived the first and second moments
of the offspring distribution (see Supporting Information for
a detailed calculus) to compute the variance of Q(k):

V ar (Q(k)) =
2(1 + p)−1 − (1 + pi)

−k−1 + (1 + p)−k − 1

8N
[4]

with N = n1(0) = n2(0)
According to a standard NGS protocol, we simulated the

amplification process of our model depicted in Fig.1A for
K = [1, 30], N = [1, 25], for p ranging from 0 to 1 and a
sequencing depth of 20x. We computed the variance of the
resulting allele frequency quotient for 10,000 SNPs (Fig.1B)
which is the expected order of magnitude for heterozygous
variant calls in a human exome. The behavior of the variances
sampled from our simulations is well described by function [4]
adapted by the additional contribution of variance introduced
by sequencing. For fixed p and N the variance increases with
a growing number of PCR cycles K and approaches a con-
stant level for K > 15. For fixed K and N the variance has
its maximum around p = 0.2 and decreases for p towards 1.
This is clear as with perfect amplification, we expect the ini-

tial ratio of n1(0)
n1(0)+n2(0)

≈ 0.5 to remain constant. For fixed

K and p the variance decreases with an increasing number of
alleles before amplification. Intuitively speaking, its easier for
one allele to gain predominance in the pool that is sequenced
if the initial allele set is small, the amplification efficiency is
low and enough PCR cycles are run.

High Variance of Heterozygous Allele Frequencies in real hu-
man exome data sets. After modeling the amplification step
as stochastic process, we analyzed the distribution of allele
frequencies at heterozygous genomic loci in real human ex-
ome data that were generated following a standard protocol
with 18 PCR amplification cycles. In order to compare the
empirically measured frequencies with our simulated data all
heterozygous SNP positions that were covered by more than
20 reads, were downsampled to 20 reads per position. The
allele frequencies were derived from these read sets. The vari-
ance of the measured reference allele distribution is 0.017 and
thus markedly larger, than the variance of 0.012 that is ex-
pected for hypothetical sequencing before amplification (this
is the variance of a Binomial distribution where n represents
the sequencing depth and the success parameter is the ratio
of the alleles in the starting solution, Fig. 2A). Thus, the
sequence fragments in a short read alignment, on which the
variant call is performed, are not properly represented by a

random sample of the initial ratio of n1(0)
n1(0)+n2(0)

, but the effect

of the amplification process on this distribution has to taken
into account.

Our model assumes a constant amplification efficiency
over all PCR cycles, which seems to be a reasonable simplifi-
cation given the relatively low number of PCR cycles used in
NGS library preparation protocols. A value of p ∈ [0.3, 0.5]
yielded a variance for the allele frequencies, that is close to
the value determined on the real exome data (Fig. 1B and
2A). We measured the amount of fragmented DNA used as
input in our WES experiments at k = 0 (5ng) and measured
about 5 − 10µg after k = 18 cycles of amplification. This
corresponds to an amplification by a factor of 1− 2 · 103, and
thus values of p ∈ [0.3, 0.5] are realistic.

As already discussed, with fixed p and N the variation is
approaching a limit for increasing K and for K > 15 it hardly
changes. To check this experimentally we sequenced the ex-
ome of the same individual that was amplified with 36 PCR
cycles instead of 18. As expected, no significant increase in
the variance could be detected (Suppl. Fig. 2B).

Influence of allele frequency variance on error rates in het-
erozygous variant detection. Assuming comparable read qual-
ities, the variant call is based on a random sample drawn from
the set consisting of all alleles a1 and a2 after amplification
which is of size n1(k) + n2(k). The coverage or sequencing
depth at a variant site is equivalent to the size of the random
sample that the call is based on. We hypothesized that a cer-
tain rate of true heterozygous alleles will not be called due to
the high variance in allele frequencies after amplification (i.e.,
false-negative call). To test this, we generated nine exome
replicates of the same individual and classified genomic loci
as heterozygous if they were called heterozygous in at least
six out of nine replicates by two accepted calling algorithms
(see Material and Methods). Fig. 3A shows the common poly-
morphism rs539412, that was called as heterozygous variant in
the first four replicates, but failed to be called as heterozygous
variant in the fifth replicate due to low frequency. Using this
as a gold standard, we then measured the false-negative rate
for calls based on each of the single WES datasets. Over the
whole exome we measured a false negative rate between 1%
and 3% depending on the coverage and the calling algorithm
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(Fig 3B). In a usual exome one expects between 10,000-15,000
heterozygous variants. Our results indicate that one will miss
around a hundred heterozygous variants by sequencing an ex-
ome just a single time simply due to the stochastic fluctua-
tion of the allele frequencies after amplification. Furthermore
a variant calling approach that is simply based on a heterozy-
gous allele frequency interval f with [14% < f < 86%], as
suggested in [15], is more sensitive than a more sophisticated
variant calling algorithm that uses the wrong prior distribu-
tion for the allele frequencies independent of the coverage (Fig
3B). Additionally for a sequencing depth above 30x the false
negative rate does not decrease further. Thus, once a sufficient
sequencing depth has been reached, only technical replication
is able to further reduce the total error rates in a substantial
fashion.

Discussion
In this work we studied the distribution of alleles at heterozy-
gous genomic positions as measured in next generation se-
quencing data sets. A solid knowledge of distribution and
variance of allele calls at heterozygous loci is important as
it is essential prior information for many variant calling ap-
proaches. In this work, we have demonstrated that the am-
plification step contributes significantly to the total variance
of this distribution. We demonstrated that the amplification
step contributes significantly to the total variance of allele fre-
quencies. We modeled the fragment generation process as a
Bienayme-Galton-Watson branching process and showed that
the variance is accurately described by equation (4). For typ-
ical values of the efficiency of the amplification process (p)
and sequencing depth, this is substantially higher than the
variance of the binomial distribution (Fig. 2A). Clearly, the
higher the variance of allele calls at heterozygous loci, the
higher the false negative error will be.

From our analytical results one may draw some conclu-
sions about how to reduce the stochastic fluctuactions coming
from the amplification step: Increasing the efficiency of the
adaptor ligation (which is increasing N), increasing p and re-
ducing the number of PCR cycles K in a second generation
protocol will all help to reduce the variance of heterozygous
alleles. Ultimately calling errors arising from stochastic events
during library preparation and fragment amplification will be
avoided in single molecule sequencing techniques of the future
[19].

Next-generation technologies such as whole-exome and
genome sequencing are beginning to be used for diagnostic
purposes. In this setting, it is critical to provide an estima-
tion of the false-negative rate of the methodology. Clearly, it
is important to report the regions of the exome that are not
sufficiently covered for reliable variant calling. Our results
suggest that it is also important to evaluate the variance at
heterozygous SNP positions as it might serve as an indicator
for the overall false-negative error rate in an experiment.

Materials and Methods
Exome Sequencing and Variant Detection. Human blood or tissue samples of

17 anonymized donors were used for exome sequencing. For one of these individuals

nine technical replicates were generated. This means nine independent samples of the

same individual were collected and further processed independently. For each sample

genomic DNA was enriched for the target region of all human CCDS exons [13] with

Agilent’s SureSelect Human All Exon Kit and subsequently sequenced on a Illumina

Genome Analzyer II with 100bp single end reads. The enrichment of adapter-modified

DNA fragments before sequencing includes an amplification step of 18 PCR cycles

in the standard protocol. For one exome 36 cycles of PCR were run to analyze the

effect of the cycle number onto the allele frequency distribution. For The raw data of

≈ 5 GB per exome was mapped to the haploid human reference sequence hg19 with

novoalign [14] resulting in a mean coverage of the exome target region of 50x. In

this study heterozygous sequence variant detection was restricted to positions of high

human variability as defined by dbSNP132 positions, in order to decrease the proba-

bility of false positive calling errors. A genomic position was called as a heterozygous

variant, if more than 20 sequence reads covered this position in the reference based

sequence alignment and if the ratio of the alternating allele to the sum of the alter-

nating allele and the reference allele was in between 0.14 and 0.86. This heterozygous

detection algorithm was shown to be highly sensitive for a coverage above 20 [15].

For the replicates we classified a locus as truly heterozygous, if it was classified as

heterozygous by the above described calling criterion and by samtools [18] in at least

six out of nine replicates.

Heterozygous Allele Frequencies. The reference allele frequency at a genomic

position that was classified as heterozygous as described above is defined as the num-

ber of fragments that map to this position, cover the variable base and show the

reference allele, divided by all fragments covering this site. There are two well known

biases that shift the detected mean reference allele frequency from the expected value

of 0.5 to slightly higher values but do not influence the variance of the distribution:

SureSelect baits that were used for exon enrichment are designed as 120 bp antisense

oligonucleotides to the haploid reference sequence of the latest Human Genome Build.

This means DNA hybridization between sample DNA fragments containing common

variants, that differ from the reference sequence, may be weaker as compared to

hybrids without mismatches. This may lead to a slightly more effective enrichment

of sequence fragments containing the reference allele. After sequencing, all short

sequence reads are mapped to the haploid reference sequence. Sequence fragments

containing non-reference allele variants have a lower mapping quality. For short read

lengths, reads with low base quality, and low sequence complexity, this may result in

a slightly reduced mapping ratio of non-reference allele fragments [16, 17]. Due to

these in vitro as well as in silico biases, the detected mean reference allele frequency

was shifted from 0.5 to 0.54 in our analyzed exome data sets.

Distributions of Heterozygous Allele Frequencies are position- and individual-
independent. The dependency of the allele frequency distribution on genomic

position as well as on the individual was tested on human exome data sets. Posi-

tion dependency was tested by comparing the distribution of all heterozygous allele

frequencies in an individual to a smaller random subset of these positions (see sup-

porting Fig S2). The comparison between these distributions did not show significant

differences by Chi-square testing. The dependency on the individual was tested by

comparing the differences of heterozygous allele distributions between different indi-

viduals and technical replicates of the same individual. The difference in frequency

distributions between different individuals is not significant and fluctuations in these

distributions are comparable to those observed in technical replicates of the same

individual.
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Fig. 1. A) The amplification of heterozygous alleles before se-
quencing is similar to drawing balls from an urn and replacing
these balls by adding some additional balls of the same color–
diesen Satz wohl loeschen, er macht ohne Polya nicht mehr soviel
Sinn!. The distribution of the allele frequencies depends on parameters p that represents the

efficiency of the PCR reaction and the probability that an allele is amplified, the cycle number

K, and on the initial number of alleles N B) The variance of the allele frequency after am-

plification was sampled from simulations for p ranging from 0 (no amplification) to 1 (perfect

duplication in each PCR cycle), for different cycle numbers K and numbers of starting alleles

N . The measurement process of sequencing was simulated for a read coverage of 20x. The

variance sampled from 10,000 simulated heterozygous SNPs and depicted as black circles (o),

is well approximated by the analytical results of eq. 4 (black line). For a cycle number of

K > 20 the variance does not change significantly. The variance reaches its maximum for an

amplification probability around p=0.3. For an increasing number of alleles before amplifica-

tion the variance approximates a fixed level, explained solely by the variance introduced by the

measurement process of sequencing.

k=36 amplification cycles
k=18 amplification cycles

VAR=0.017

VAR=0.018

B

VAR=0.012

VAR=0.017

A

Fig. 2. Variance of the measured allele frequency at heterozy-
gous genomic positions in NGS exome data sets A) The distribution of

heterozygous allele frequencies measured in exome data sets at 20x coverage (blue) compared

to the theoretical distribution expected before amplification (red). The variance of the real

distribution after amplification is significantly larger. B) An exome of the same individual was

sequenced following 18 and 36 cycles of amplification. As expected from theory the variance of

the allele frequencies only sightly increases after the additional 18 cycles of amplification.

Footline Author PNAS Issue Date Volume Issue Number 5



B

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5

rs539412A

Fig. 3. Influence of variance in measured allele frequency on vari-
ant calling A) The genotype at the SNP position rs539412 has been called as heterozygous

variant in the first four replicates, but was not detected in the fifth replicate due to low fre-

quency B) The false negative error rate decreases with increasing sequencing depth. At low

total sequencing depth the error rate is markedly reduced by considering pools of technical

replicates. The classification of a genotype as heterozygous based on a simple frequency inter-

vall (heterozygous if alternating allele frequency is inbetween 14% and 86% ) is more sensitive

than a calling algorithm that uses a binomial prior distribution as default setting for the allele

distribution.
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