Reduction of deterministic coupled atmosphere-ocean models to

stochastic ocean models: a numerical case study of the Lorenz-Maas

system
Ludwig Arnold Peter Imkeller and Yonghui Wu*
Institut fiir Dynamische Systeme Institut fur Mathematik
Fachbereich 3, Universitat, Postfach 33 04 40 Humboldt-Universitat zu Berlin
28334 Bremen, Germany 10099 Berlin, Germany
arnold@math.uni-bremen.de imkeller@mathematik.hu-berlin.de

yonghui@mathematik.hu-berlin.de

December 2, 2002

Abstract

Our starting point is the Lorenz-Maas coupled atmosphere-ocean model which was proposed by van der
Schrier and van Veen and couples the ocean model by Maas with the Lorenz-84 model of the atmosphere. This
6-dimensional model (3-dimensional slow ocean and 3-dimensional fast atmosphere) is, to the knowledge of the
authors, the simplest atmosphere-ocean model presently available which is derived from first principles in a

controlled manner.

This paper is an extensive numerical case study of the model, thereby implementing Hasselmann’s pro-
gram, i.e. applying the various mathematical techniques of reducing the fully coupled deterministic model to a
deterministic or stochastic model for the ocean alone, namely to

e the (deterministic) statistical model, using the method of averaging,
o the linear stochastic model, based on the central limit theorem for the error in averaging,

e the nonlinear stochastic model, also known as Hasselmann’s equation.

The long-term and bifurcation behavior of these models are studied and compared. The general result is
that in most situations the nonlinear stochastic model outperforms the other one’s.
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1 Introduction. Reduction of multiscale climate models

A characteristic feature of climatic records is their pronounced wvariability, meaning that climatic time series have
a positive continuous power spectrum (spectral density) over the whole range of frequencies. This ubiquitous
variability is also shown by computer data produced by the most advanced deterministic General Circulation
Models. In short, most output data look like random noise. An understanding of the origin of climatic variability
from extreme ice age changes to seasonal anomalies is still a primary goal of climate research.

Hasselmann in his visionary 1976 paper [12] attributes climate variability to the existence of various time scales,
more precisely to the internal forcing by the short time scale “weather” (all variables with period up to 15 days,
say, mainly related to atmospheric processes). Slowly responding components of the system (such as the ocean,
the cryosphere and the biosphere) act as integrators of this input in much the same way as a pollen grain in a
liquid integrates the short time impact of the molecules to yield Brownian motion. In short, the “weather” drives
the “climate” through internal random forcing. Arnold [1] has recast Hasselmann’s program of reducing complex
deterministic multiscale climate models to simpler stochastic models for the slow variables in modern mathematical
language to which we come back in Section 2.

After a first burst of stochastic modelling papers in the years following Hasselmann’s article [12] in which the
viability of the concept was demonstrated using very simple “toy models” there was a lull of work in this field
which we attribute to disillusionment of the meteorology community as the program did not seem to live up to its
original expectations.

We have witnessed a resurgence of interest in stochastic climate models in recent years. This is due, on the one
hand, to the possibility of carrying out numerical studies of more realistic climate models, and, on the other hand, to
the availability of new mathematical reduction methods. See the Proceedings volume on Stochastic Climate Models
[17] edited by P. Imkeller and J.-S. von Storch, and the Special Issue of the journal Stochastics and Dynamics, also
entitled Stochastic Climate Models, edited by P. Imkeller and A. Monahan [16].



We also refer to the work of Majda, Timofeyev and Vanden-Eijnden [35, 36] about general strategies of replacing
the unresolved degrees of freedom in atmosphere-ocean models by noise and for the treatment of several rather

complex illustrative examples.

The present paper is, to our knowledge, the first systematic implementation of Hasselmann’s program for a
two-scale atmosphere-ocean model of moderate complexity which is derived from first principles in a controlled
manner (hence is not a toy model). It is necessarily a numerical study as it seems to be hopeless today to aim at
rigorous results. Moreover, we will freely use mathematical methods, concepts and statements whose applicability
cannot be rigorously justified for our model.

We nevertheless believe that this numerical case study is interesting and was worthwhile to be carried out as it
is the first one to systematically compare the performance of the various stochastic reduction methods (including
the nonlinear diffusion approximation which was only recently understood) for a non-trivial fully coupled two-scale
model.

The paper is organized as follows: In Section 2 we describe the three mathematical reduction methods we
will consider. Section 3 is devoted to the presentation of the 6-dimensional Lorenz-Maas model. In Section 4
we study the dynamical and bifurcation behavior of the full Lorenz-Maas model as well as of the 3-dimensional
Lorenz atmosphere subsystem with frozen ocean, resp. of the 3-dimensional Maas ocean subsystem with frozen
atmosphere. Section 5 is devoted to the calculation of the ingredients of the stochastic models. Section 6 is a
systematic bifurcation analysis of the reduced statistical ocean model (obtained via averaging). The heart of the
paper is Section 7 in which we numerically compare the performance of the original unreduced model with the
three reduced models. section 8 contains our conclusions and a discusion of the main findings of our study.

2 Mathematical reduction methods: averaging, linear and nonlinear

diffusion approximation

Let
z = h(z)

be an ODE in some Euclidean space. In many applications we can naturally separate the variables as

z=(z,y)

with strongly differing “response times” 7, ~ € < 7, & 1, so that y is the vector of fast variables, while z is the
vector of slow variables. Introducing the small scaling parameter € into the equation Z = h(z) yields the equivalent
coupled system of the two ODE

& = f(af,45), @5=x€R’, (2.1)
, 1
g = —9@nup), yo=yER™ (2.2)

The general problem of model reduction consists of approximating the slow part z5(z,y) of the solution of (2.1,2.2)
as accurately as possible (and on a time interval as long as possible) not by solving (2.1,2.2) explicitly, but by using
only some long-term “statistical” properties of y;(x,y) in order to obtain an equation for the slow variables alone.

This is of course part of a now classical program: It started with the method of averaging centuries ago, although
the rigorous mathematical foundation was provided only some 40 years ago by Bogolyubov and Mitropolskii [3].

However, this program has been only partly implemented, in particular for the fully coupled case (2.1,2.2).

To provide the reader with “clean” and proven statements we first deal in detail with the case where y is not
coupled to z, in fact is a fast stationary stochastic process (Subsection 2.1). The rather complete results for this
case (which we call classical) can serve as a guideline and to direct our “wishful thinking” for the fully coupled
case which is much more involved and which we treat in Subsection 2.2.



2.1 The classical case

Consider
ig:f(wiagt/s)a ,:cﬁ:.’L'ERd, te [O’T] (23)

Here &; is an ergodic stationary stochastic process on some probability space (2, F,P) with values in R™, cadlag
(i-e. right-continuous with left-hand limits) trajectories and invariant probability distribution P{&; € -} = p(:). The
vector field f : RY x R™ — R? is continuous in (z,£), f(-,€) is globally Lipschitz-continuous uniformly with respect
to &, and f(0,-) is bounded.

We can average out the fast process & /. from (2.3) keeping the slow variable x “frozen” and arrive at the
averaged vector field

_ 1 [T

@) =Bf@) = [ f@0pde) = i 7 [ f@e)d Pas., (2.49)
RrRm —00 0

which is again globally Lipschitz continuous and of at most linear growth in z.

Hence the ODE (2.3) as well as the averaged model (A) (in climatology also named statistical climate model)
described by the ODE

-:.Et = f('i.t)a To=1T€ Rd: (25)
both have global solutions z§(z) resp. Z;(z) for any initial value z € R? and ¢ € [0, T] which we want to compare.

A novel feature of our presentation is that we will determine the order of magnitude of the L?-error between
the various reductions and the original in terms of powers of the smallness parameter €. This will enable us to
decide whether a certain approximation is “better” than another one.

Theorem 2.1 (Averaging Principle (A))

Let the above assumptions on f and & be satisfied, and let =5 (x) be the solution of (2.3) and T¢(z) the solution
of (2.5). Assume that the d x d covariance (or correlation) matriz

Ry (t) = cov(f(x,&), f(z,&)) = E(f(z,&) — f(2))(f(z, &) — f(2))’ (2.6)

satisfies
tlim R,(t) =0 for all z € RY. (2.7)
—00

Then for each T > 0 there exists a constant Cr independent of x and € such that for all x € R and ¢ > 0

f(z) — T 2 < . .
E max [|o(2) — 2(z)|[* < Or e (28)

The fact that Emaxo<¢<7 ||25 (2) — Z(z)|| = 0 as € = 0 was proved by Khasminskii [23]. The above L? version,
the estimate (2.8) and the fact that the decay of correlation to zero expressed by (2.7) is sufficient for the statement
(2.8) can be easily deduced from Khasminskii’s original paper [23]. Our program in the remainder of this subsection
is to replace Z;(z) in (2.8) by a “better” approximation of z§(z) in the sense that

e the mean square error is smaller than in (2.8),

e the approximation is capable of catching long-term features of z5(z) which go beyond a fixed time interval.

To pursue this, we now look at the error z; — Z; made in the Averaging Principle. If the stationary stochastic
process & is a periodic function, this error can be asymptotically expanded in powers of € (see Sanders and Verhulst
[40] for a precise statement).

If, however, & is a sufficiently mixing stochastic process, the error is of a completely different character: It has
order 1/, and no further term of the asymptotic expansion can be written down.



Let & be a stationary stochastic process in R™ with cadlag trajectories. We define the sub-o-algebras of F
generated by & as
Foi=0(lu:s<u<t), —oo<s<t<oo,

S
and the mizing coefficient of & by

a(r) == sup [P(A)P(B) —P(ANB)|, Te€R".
A€FO _ BeFe

The stochastic process & is called strongly mizing, if the (non-increasing) mixing coefficient satisfies

lim a(r) =0. (2.9)

T—00

It follows that a strongly mixing stationary stochastic process is ergodic and, plugged into a function f satisfying
our assumptions above, satisfies property (2.7). Good sources for all this are Rozanov [39, Chap. IV] and Ibragimov
and Linnik [14, Chapter 17]).

We are now in a position to formulate Khasminskii’s Central Limit Theorem [23] describing the evolution of
the error in averaging asymptotically as the solution of a linear SDE.

Theorem 2.2 (Error in the Method of Averaging)

Let f : RE x R™, (x,€) = f(z,€), be continuous, and let f(-,£) together with its first and second derivatives with
respect to x be bounded uniformly with respect to &. Let & be a stationary stochastic process with values in R™ and
cadlag trajectories which is strongly mizing and satisfies, moreover, the condition

/ Ta(r)dr < 0. (2.10)
0
Denote by x5 (x) and Z,(x) the solution of (2.3) and (2.5), resp. Then the Averaging Principle (Theorem 2.1) holds,

and, moreover, for all x € R?

PRRFES %(xf(x) —Z(z) = ¢ ase—0 on]0,T]. (2.11)

Here = means weak convergence (i.e. the probability distribution of the left-hand side converges to the probability
distribution of the right-hand side as € — 0), and (¥ is a Gauss-Markov (or Ornstein-Uhlenbeck) process on [0,T)]
given by the solution of the linear SDE

d¢? = Df(3,(2))CFdt + o(@(x)) dW,, (& =0, (2.12)

driven by the solution Ti(x) of the averaged ODE (2.5). In (2.12) the d x d matriz

Dfw) = (L) @

is the Jacobian of the averaged vector field f, Wy is a standard Brownian motion in R?, and o(z) is the square root

of the nonnegative-definite d x d matriz o(z)? defined as the “nonlinear average”

5 l T T B B [e’s) B
o@)? = Jim 1 /0 /0 Ra(t — s)dtds = [  Ra(0)dt = 205,(0), (2.13)

where R,(t) is the correlation matriz (2.6) of o := f(x,&) for frozen x, and S,(0) is its spectral density matriz
at frequency A = 0.

For a proof see the original paper by Khasminskii [23] or Freidlin and Wentzell [9, Chapter 7]. By our as-

2 and its first and second derivatives are

sumptions, the limits in (2.13) exist and define a C? function, and o(-)
bounded. The result of Theorem 2.2 is that we can replace the averaged equation (2.5) by the more informative

pair of equations

ft = f_l(i't), T = Z, (214)
dcy Df(Z(x))CFdt + 0 (Z(x)) AWy,  (§ =0, (2.15)



which has skew product structure. We can approximate the original process =5 (z) = T¢(z) ++/€ (" with % = (¥
by the Gaussian process

ng" = Ey(x) + Ve (2.16)

centered at Z;(z). We call (2.16) the linear diffusion approximation (L) of the original slow variable z5 ().
As a by-product of his work [28] on the nonlinear diffusion approximation Kifer proved the following strong
approximation of z§(z) by (L).

Theorem 2.3 (Strong Linear Diffusion Approximation (L))
Let the assumptions of Theorem 2.2 hold true. Then for each € > 0 there is a possibly richer probability space which
carries a d-dimensional Brownian motion Wy and on which we can redefine & without changing its distribution
such that for these & and W; the solutions of (2.3), (2.5) and (2.12) satisfy for each x € R and ¢ > 0

Eog;eg; llgtr) — (@e(z) +/ eCO)|)? < Csp e1+° (2.17)

for any § < 2/(90d + 177), where Cs 1 is independent of x and .

“Changing the probability space” in applications should not create any problem as such a space is a measure-
theoretic underpinning and typically neither fixed nor unique anyway.

A comparison of Theorems 2.1 and 2.3 reveals that the linear diffusion approximation (L) given by (2.16), i.e. the
solution of the averaged equation (2.5) corrected by the solution of the linear SDE (2.12) is a better approximation
in the L? sense on a finite time interval than is the averaged motion (A).

However, the crucial drawback of (L) is that it will typically not be able to model correctly the long-term
behavior of the original slow motion z§(x). This drawback is partly remedied by another approximation which was
proposed by Hasselmann [12, Sect. 4] and which has defied rigorous analysis until the recent work of Kifer [28].

Unlike the linear diffusion approximation which is a Gaussian correction of the solution of the averaged equation
(2.5), the nonlinear diffusion approximation (IN) is a state-dependent correction of the averaged equation itself,
namely

dyi = f(y§) dt + Veo(yf) dWy, y§ =, (2.18)

where f and o are defined above. Using Doob’s and the Gronwall-Bellman inequality and the fact that f and o
are Lipschitz and bounded it follows that for each z € R? and ¢ > 0
€ s 2
E max lly;(z) — 2(2)|I” < Cre, (2.19)
where Cr is independent of z and . Hence Z;(z) is as close to i (z) as it is to 5 (z), namely O(y/z) in L?. The

question now arises whether z5(x) and y$(z) are closer to each other than O(+/€). This turns out to be indeed the
case. Here is Kifer’s result [28].

Theorem 2.4 (Nonlinear Diffusion Approximation (N))

Let the assumptions of Theorem 2.1 hold true. Then for each € > 0 there is a possibly richer probability
space which carries a d-dimensional Brownian motion Wy and on which we can redefine & without changing its
distribution such that for these & and Wy the solution z5(x) of (2.3) and the solution y§(z) of (2.18) satisfy for
each z € R? and e > 0

i(@) —yi (@) < 146 |
E02%||$t(m) yi(@)|? < Csre (2.20)

for any 6 < 2/(90d + 177), where Cy 1 is independent of x and €.

As a result, the linear diffusion approximation (L) given by Z:(z) + +/(f and the nonlinear diffusion
approximation (N) given by y§(x) approximate the original slow motion z5(x) on a finite time interval [0,T]
equally well, namely with an L? error of order O(e'/?>t9/2). However, the nonlinear SDE (2.18) is more likely to
catch the correct long-term and qualitative behavior of the slow motion. This is also convincingly supported by



examples, see Arnold [2].

Large deviations in averaging: Freidlin in his monumental 1978 paper [8] developed the theory of large
deviations in averaging by studying the phenomena observable only on an exponential time scale e®/¢ (like exit
of the slow variable from the neighborhood of a stable steady state of the averaged equation, invariant measures,
wandering between local attractors etc.). An account of Khasminskii’s and Freidlin’s theories is given in Chapter
7 of Freidlin and Wentzell’s book [9].

In order not to extend even further an already long paper we have decided to exclude large deviations theory
from our study, even so we feel that it is highly relevant to climatology as it provides the means of describing the
“hopping” of the climate between local attractor basins/metastable states (extreme climate events), see Arnold [1],
Hasselmann [13] and Imkeller [15].

2.2 The general case of fully coupled equations

We now return to the fully coupled system

= f(25,y5), x5=x€R? (climate, slow variables), (2.21)

1
Y = gg(xf,yf), yo =y € R™ (weather, fast variables). (2.22)

In climatology, the distinct time scales are mainly due to the huge heat capacity differences e.g. between sea water
and atmosphere.

Denote by (z5,y5) = (25 (z,y), ¥ (z,y)) the solution of (2.21, 2.22) with the initial value (z,y). Now the slow
and fast variables are cross-coupled to each other.

The situation now becomes much more complicated than in the classical case, and there are only few rigorous
results. We will of course in principle have the three reduced models (A), (L) and (N) also in the general case.
The conditions of their validity are, however, often not known or very restrictive, and so are the statements. A
thorough discussion of the difficulties is given by Kifer [26, 27]. The results of Kifer obtained in [24, Remark 2.5]
and [26, Sect. 3] are, to our knowledge, the only presently available mathematically rigorous results for averaging
in the fully coupled case (2.21, 2.22). There is a promising Ansatz by Gelfert [10] using Young measure limits to
derive an averaged equation.

A good general reference is also Lochak and Meunier [31] in which also the classical work of Anosov and Neistadt
on exceptional sets of initial values in averaging is presented.

The task of the Method of Averaging is, as above, to average out y from f such that z5(z,y) converges on [0, T]
to Z(x), the solution of some averaged equation, at least for many initial values (z,y).

Selection of invariant measures

To prepare the averaging procedure for (2.21, 2.22) we consider the auxiliary weather ODE

yt = g(mayt)a Yo=Y, (223)

with frozen climate variables z, and denote by (t,y) — ¢7(y) the dynamical system (flow) generated by (2.23)
indexed by the fixed parameter z.

The first basic difficulty is that the dynamical system ¢ typically has many invariant measures p. (dy) (except in
the rare case of unique ergodicity) which generally also depend on z: Various fixed points, periodic and quasiperiodic
solutions might coexist with measures on chaotic attractors, and this situation might change if we vary  which
can be considered as a bifurcation parameter for (2.23). There is no canonical rule telling us which of the many
invariant measures p;(dy) to choose.

The average of f(x,-) over y now becomes

im 7 [ i)t = [ f@ ) = i) (2.24)

T—oo T



where equality in (2.24) only holds for pz-almost all y, and the (non-uniform) limit depends on our choice of u,
and its respective domain of attraction, hence is different for different y’s.

Moreover, the selection of a branch {u,(dy) : # € R?} of invariant measures can be made such that the vec-
tor field f,, (z) is so irregular that existence and uniqueness of solutions of the averaged equation cannot be assured.

Example: Let §; = g(z,y:) = zy; — yi in R! for z > 0, and f be arbitrary. Then ¢® has the three Dirac
measures p) = do (unstable) and ul? = 0, , (stable) as invariant measures, so that the limits in (2.24) are

i fug (@) = f(,0),  y=0,
fu;(x) = ]iu}g(w) = f(xa 'Z')a y > 07
fui(x) = f(z,—vx), y<O0.

Method of Averaging (A) for the general case

4

Here is a form of the Method of Averaging for the above situation which holds “modulo conditions”: Select the

family (u;) of invariant measures for the auxiliary weather dynamical system generated by (2.23). Then
lim 25 (z,y) = Z(x) (2.25)
e—0

on [0, T for all z € R? and pu,-almost all y € R™ (other modes of convergence are also feasible), where Z;(z) is the
solution of the averaged equation

".Et = fll@t ('i-t)a ZTo =, (226)

fu. (@) is defined by (2.24) and depends on the branch (y,) of invariant measures chosen.

As a result, there are typically many different averaged equations.

Suppose 7 is a nice hyperbolic (or Axiom A, in particular Anosov) dynamical system on a compact Riemannian
manifold M, with normalized Lebesgue measure m,(dy). Then it has a particular invariant measure pS*® called the
“physical” or SRB (Sinai-Ruelle-Bowen) measure (see Katok and Hasselblatt [21] or Viana [47]) which builds-up

as the occupation measure of orbits ¢7 (y) for Lebesgue-almost all initial values y. In this case and with the choice
SRB

Bz = Uy
conditions y.

we expect (2.25) to hold for all climate initial conditions z and Lebesgue-almost all weather initial

Linear diffusion approximation (L) for the general case

There are also suitable versions of the Central Limit Theorem for the error in the Method of Averaging for the
coupled system (2.21, 2.22). We refer to the work of Kifer [24, 25] for the case where g on the right-hand side of
(2.22) is independent of z and where the fast motion is a hyperbolic dynamical system. Some hints are given in
[26, Sect. 3] about how to derive a Central Limit Theorem for the fully coupled case.

Here again, the weather dynamical system ¢® at frozen climate x solving (2.23) has to be sufficiently “mixing”
to ensure that for each fixed z

£,T

=2 (y) ==%(gc@c,y)—zt(x>), 0<t<T,

converges weakly (in the sense that the sequence of distributions of ¢** on C([0,T]; R?) generated by (2.21,2.22)
with 2o = z and yo distributed according to p;(dy) converges weakly as € — 0) to the Ornstein-Uhlenbeck process
(¥ solving the linear SDE (2.12), where Z;(x) is the solution of the averaged equation z = f,,. (%) based on the
chosen reference measure u,. The definition of o(z) in (2.13) remains unchanged, the only difference being that the
covariance is calculated with respect to the joint distribution of ¢7(yo) and yo where yo has distribution p, (dy).
If ¢ is hyperbolic to ensure the existence of a unique SRB measure pS*®, then we expect situations in which pS*®
can be replaced in the convergence statement by the normalized Lebesgue measure m;(dy) in y space.
As a result, the linear diffusion approximation (L) given by Z;(z) + / ¢} for the slow component z5(z,y) will
make sense under certain conditions also for the fully coupled case. The linear SDE of which ¢ is a solution
remains the same as in the classical case.



Note, however, that there are in general many different (L) models as not just Z;(z), but also the coefficients
Df and o of the linear SDE (2.12) depend on the chosen branch p, of invariant measures.

Particular Case: The case

1

j:t:f(yt)a yt:gg(yt)7 To=2T, Yo=Y,

where §; = g(y:) generates a nice hyperbolic dynamical system (¢,y) — ¢¢(y), has been investigated by many
authors. For recent reviews see Denker [6] or Viana [47] and the references therein. Let pS*® be the SRB measure
of . We average out y, i.e. consider

T—oo T

= 1 r — SRB — SRB
lim & / Floily))dt = / F)a (dy) =: 5 (f)

for Lebesgue-almost all y, hence z; = puS*®(f) and Z;(z) = p®**(f)t + =.
Since

t
25 (5,y) =z + / Flos ())ds,

we have
t
%(xi(:u,y)—m(x)) - % / (o2 W) — 5*(f)) ds

t/e
N / (Flpa®)) — 55 (f)) ds

= Ct;

where (; = oW, since Df = 0 here, and o2 is a constant matrix defined as in (2.13).

Nonlinear diffusion approximation (N) for the general case

The papers by Just, Kantz, Rédenbeck and Helm [19], Kantz, Just and Baba [20], Just, Gelfert, Baba, Riegert and
Kantz [18] and Gelfert [11] formally derive the nonlinear diffusion approximation (N) given by Hasselmann’s SDE
(2.18) for the fully coupled system (2.21,2.22) through perturbation and averaging techniques on the level of the
Fokker-Planck equation. Several toy as well as numerical examples are treated.

In the above papers, the following refinement of (N) is derived in the sense that also the drift is corrected by
an e-term (which was already used by Khasminskii [22]):

dzf = (F(25) + eD(25))dt + Veo (25) dW, 25 =z, (2.27)

where

D(z) := / TE(Df (e, 07) - DF@)(f(@,¢E) — f(x)) dr.

The refined model (2.27) proved to be superior to (N) in its long-term behavior for certain toy models, see Arnold
[2]. There is hope to prove that 2§ approximates 5 on the time interval [0,7/¢] as € — 0 (see Kifer [28, Sect. 1]).

3 The Lorenz-Maas coupled atmosphere-ocean model

We now discuss the components of the coupled atmosphere-ocean model we shall study in this paper. This model
was proposed by van der Schrier and van Veen [45] and couples the ocean model by Maas [33] with the Lorenz-
84 model of the atmosphere [32]. This 6-dimensional model (3-dimensional slow ocean and 3-dimensional fast
atmosphere) is considered the simplest known atmosphere-ocean model which is derived from first principles in a

controlled manner.



Let us first mention that both components are S-plane approximations' at mid-latitudes of the northern hemi-
sphere, centered near 45° N. More precisely, we suppose that the origin of our coordinate system (z,y, z) lies at
the barycenter of an ocean box D of length and width W and height H, i.e.

W H H
2

w
DZ{(x,y,z):—7 SanyS 7;_3 SZS

1.
We choose W = 5 x 105m and H = 5 x 10®m in our simulations. The quantities z and y are the horizontal
coordinates, where z is the zonal (eastward), y the meridional (northward) one, while z is the vertical coordinate.

Let A denote the interface of the ocean box with a very shallow surface layer of the atmosphere of height about
10m. The frame of our atmosphere model is composed of multi- (two-) layer planes E; and E, parallel to A
located next to each other at a height of more than 100 m above ocean level and centered as well at 0. These planes
are supposed to be wider than the ocean box, to allow to take into account some orographic forcing of the free
atmosphere which is observed in this multi-layer system. This forcing will be caused by a temperature contrast
between continents supposed to lie somewhere off the plane A on the one side and the ocean on the other side. The
ocean inside D will be forced by a surface wind from inside the shallow surface layer. Atmosphere and ocean are
coupled by mechanisms to be specified below, but there will be no interaction between the shallow surface layer
and the free atmosphere above. To get a rough idea of the model components, consult Fig. 1.

The atmosphere component is given by the Lorenz-84 model [32]. It is derived by starting with the stream
functions ¥;(x,y) in plane E;, i = 1,2, which comes from the quasigeostrophic (i.e. the isobars are almost parallel
to the flow lines) vorticity equation of the atmosphere. Stream functions ¢ in B-planes such as the ones given
reproduce the flow velocity components in direction z proportional to —%‘5 and in direction y proportional to %.

Now we Fourier analyze the stream function of the atmosphere, i.e. expand it into a series in terms of the complex
exponentials exp(i(mz + ny)), m,n € Z*. Call the purely time dependent coefficients of this expansion v (m,n),
m,n € Z%, and transfer the vorticity equation into simple differential equations for the coefficient functions.
Then the Lorenz-84 model just retains the differential equations for X = ¢(0,1), ¥ = Re(¥(1,1)), and Z =
Im(e(1,1)). X being a purely y-dependent wave on the stream function level, which results in its corresponding
northward component of the velocity to be zero and therefore represents the jet stream called westerly. Y and Z
correspondingly represent baroclinic waves with wave number 1 in the meridional direction. The resulting coupled
system of three differential equations is of the form

X = -Y?2_-27%_aX +aF,
Y = XY -bXZ-Y +G, (3.1)
Z = bXY+XZ-7Z.

Let us briefly explain the forcing terms F' and G and the parameters a and b. G describes the influence of orography
(structure of continents) on the atmospheric flow in the form of an averaged temperature contrast between sea
and continents. It is obtained by taking a rough phenomenological functional description of this contrast along sea
shores described in the horizontal variables (z,y) in an extension of A below E;, Fourier analyzing this function in
an analogous way as indicated above for the stream function, and retaining the term corresponding to m = n = 1.
The forcing term F' depicts the influence of the north-south temperature contrast due to the variation of the
intensity of solar heating with the meridional position y. The time scale in our system of differential equations is
set such as to have damping rate 1 for dissipation of Y and Z. Hence a is the scaling of damping of the westerly jet
X with respect to the dissipation rate of Y and Z. The quantity b gives the scale of the strength of the exchange
of energy between the westerly jet and the baroclinic waves Y and Z.

Let us next discuss the ocean component originating from a model by Maas ([33], [34]). This model considers
the ocean in the box D as being forced by wind from the shallow surface layer above A, and by buoyancy due to
heating from above the ocean surface A. The starting point for deriving this box model in D is the momentum
equation for the ocean flow (u,v,w) derived from the usual Navier-Stokes equation in rotating coordinate frames

LA B-plane is a plane on which the variation of the Coriolis force with latitude is taken into account in first order. Tt is often used
when describing mid-latitude atmospheric dynamics, see van Veen, Opsteegh and Verhulst [46].
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Figure 1: Illustration of the components of the Lorenz-Maas model

A

on the one hand, and the continuity equation of the diffusion type for the mass density p in the ocean on the other
hand. Now these basic equations are transformed in the following way. By taking the vector (L;, L2, L3) as being
the average over D of the angular momentum (z,y, z) X (u,v,w) induced by the ocean flow (u,v,w) with respect
to the origin in the center of D, the momentum equation becomes a differential equation for the average angular
momentum which is forced by a torque due to the surface wind. L; describes meridional circulation. Iy < 0
corresponds to a direct thermally-driven overturning, i.e. rising water in the south and sinking water in the north.
Lo, acting in the zonal plane, plays the role of “steering wheel” to L; indicating in which zonal parts large scale
sea water sinking occurs. Ls stands for horizontally wind-driven ocean circulation (see also Ollers [38]). Referring
to hydrostatic balance, the (time) average density po is assumed to only depend on z. Now the fluctuating residual
density p — po is expanded in terms of z¥y!z™ around the origin with purely time dependent coefficients P(k,1,m)>
k,l,m > 0, and, denoting p1 := p(1,0,0) P2 := P(0,1,0)s P3 *= P(0,0,1) 1S approximated by

p(x,y,2,+) — po(2) = xp1 +yp2 + 2p3, (x,y,2) € D.

Then the continuity equation turns into a differential equation for the density “gradient” (p1, p2, p3), forced by a
buoyancy term. Since the influence of salinity is neglected, density is determined by temperature alone, and the
equation for the density gradient may be considered an equation for heat diffusion in the ocean box D.

After choosing appropriate scales (for details see Maas [33] and van Veen [45]), the transformations of momentum
and continuity equations yield the system

1d

L —fLy = —p—L
Pdt 1 f 2 P2 1,
Ld vfL, = L (3.2)
Pd 2 1 = M 2, .
1d
— %l = —rLs—T
Pdt e
d
Pl (p2L3 — p3l2) = —pu1,
d
pric +(psLi —p1ls) = —p2+ RBo, (3.3)

11



d
prLc + (p1La — p2L1) = —pp1+ RBs.

Let us comment on the forcing terms. The simple constant torque of strength T acts in negative z-direction and
consequently generates a clockwise circulation around the origin in D interpreted as the usual westerlies (eastbound
wind) in high latitudes and easterlies (westbound wind) in low latitudes. It can be considered as being created
by the north-south temperature gradient which induces a northward flow. This flow is deflected eastward by the
Coriolis force thus accounting for the westerlies at high latitudes, and at the same time establishing a north-south
pressure gradient. The resulting southward flow is deflected west by the Coriolis force finally inducing the easterlies
at low latitudes.

It is reasonable to assume that the averaged buoyancy flux, also related to the north-south temperature gradient,
has principally a meridional, northward directed component Bs which is usually given by the average of Kyp, over
the box, with a diffusion rate K. Though surface cooling or evaporation is small compared to Bs, it may influence
the vertical stratification of the sea. For example, it may play an important role in deep-water formation like in the
Labrador Sea (see Weaver and Sarachik [49] and Weaver, Aura and Myers [48]). So we keep the vertical component
of the buoyancy flux B3 and assume it be a constant at least one order smaller than Bs.

The parameters appearing in the differential equations (3.2) and (3.3) have the following significance. P denotes
the Prandtl number describing the ratio of horizontal diffusion and damping, f is the Coriolis parameter, scaled by
the friction rate of horizontal angular momentum. The Rayleigh number R measures the strength of the buoyancy
forcing in the northward (y) direction. Further, r gives the ratio of friction strength in the vertical and horizontal
directions, and correspondingly u is the ratio of diffusion coefficients in these directions.

We now come to a major point in simplifying the 6-dimensional ocean system derived above. Since P (= 10%)
is quite large in realistic situations, it is reasonable to ignore the inertia of the angular momentum through the
approximation P = oo. Therefore the average angular momentum can be expressed as a function of the components
of the density gradient as follows:

L - —p2+ fp

i L=2tle o (3.4)

1427

Rescaling density and Rayleigh number by the factor 1 + f2 and keeping their names then provides the simplified
3-dimensional system

. T

po= —p2tpipst Ip2ps — p1,

. T

p2 = ——pi+paps— fpips —p2+ RBy, (3-5)
ps = —pi —p3—pps + RBs.

It will be more convenient to absorb the terms containing 7" and to adjust the dissipation parameters in the first
two equations to be 1 through the transformation

T T
p3—>—ﬁ+Ap3, where A=1+ﬁ.

Then, again keeping the names for the variables and parameters, we obtain the final form of the ocean component
of our coupled system

1 = pip3+ fpaps —p1,
p2 = p2p3— fpips — p2 + RBs, (3.6)
ps = —ka(pl +p3) — pps +c,

where R — A=, ks = A=2, uy — pA~!, and ¢ = (RB3 + uT/rf)A=2, where ¢ describes a combination effect of the
vertical angular momentum and the vertical buoyancy flux.

We finally come to the assumptions about the coupling of the atmosphere and ocean components. To model
the influence of the atmosphere on the ocean and of the ocean on the atmosphere we take (see van Veen [45])

12



1. B =1+ %(le — k3p2), and
2. F:F0+k‘2p2.

The modification of the northward wind forcing contained in the assumption (1) on By just describes a heat flux
transferred by the free atmosphere to the ocean. The assumption (2) on F' contains a constant meridional gradient
Fy of solar heating, augmented by a term of heat transferred from the ocean. We introduce the scale factor ¢ to
denote the ratio of the well separated time scales of atmospheric and oceanic motion, and replace the coupling
constant 1 + k3 by k3 to obtain the equations of the coupled atmosphere-ocean Lorenz-Maas model as follows:

pr = pip3+ fpaps — p1,
p2 = p2p3— [pips —ksp2 + R+ k1 X, (3.7)
ps = —ka(p? + p5) — pps + ¢,
eX = -Y?—-27%—-aX +aFy+ kapo,
Y = XY -bXZ-Y+G, (3.8)
eZ = bXY+XZ-2Z.

Representative practical choices of the parameters in the model are given in Table 1.

a=0.25 b=4 G=1
Fy=0(1) ki =0(10) | k2 = O(1)
ks = 0(1) ky=0(1) |p=

F =20 R=0(10) | c=0(1)
e=30x10"° | T=0(10) |[r=1

Table 1: Characteristic parameters of the Lorenz-Maas model

4 Dynamics and bifurcation of the Lorenz-Maas model

In this section we shall deal with the deterministic coupled model (3.7,3.8), with an emphasis on long time behavior
of its dynamics and on qualitative changes (bifurcations). We first prove the existence of a global attractor. We
then turn to the study of the bifurcation scenarios.

However, the smallness of realistic € relating the time scales of the atmospheric variables of the coupled model to
the one of the climate variables makes its bifurcation analysis numerically a rather difficult task. We will therefore
study its dynamics and bifurcation separately in the slow and fast submodels.

4.1 Existence of a global attractor

The following key result will turn out to be very valuable for the subsequent treatment of invariant measures and
bifurcation analysis: the existence of a global absorbing set of the coupled system which is independent of the
scaling parameter €. We will construct it along a well known string of arguments: By means of an energy type
inequality it will follow that there is an absorbing set, uniformly in €. Then there is a standard argument obtaining
the attractor as an inferior limit of the absorbing set transported by the flow of the system. The uniformity in e
of the absorbing set will be inherited by the attractor.

This result is not only of theoretical importance. Practically, it will facilitate considerably our task taken on in
subsequent sections of numerically determining invariant measures of the weather subsystem: for instance, running
the box division algorithm GAIO to obtain invariant measures, we may initially choose boxes containing just the
absorbing set.

Note that the time scale ratio ¢ relating atmosphere and ocean variables is rather small. In the sequel, we shall
therefore assume that £ < 1.
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Theorem (Existence of global attractor of the Lorenz-Maas model)

The dynamical system (3.7,3.8) possesses a bounded absorbing set S C RS which is independent of 0 < & < 1.
Moreover, for any 0 < & < 1 there exists a global attractor A. contained in S. In particular, oll solutions of
(8.7,8.8) are global forward in time, i.e. they exist for all times t > 0.

Proof: Let ) be a real parameter to be specified later. In order to obtain an energy type inequality, we multiply
the equations (3.7) by p1, p2 and ps + A, respectively, and add up the resulting equations to obtain

li 2 2 i 2
= (W NP+ (ks + N3+ (s +N)?)
A+
+“ <

(p3 + A) + Rpa2 + k1 X p2 + s ps

We estimate the non-quadratic terms on the right hand side of this equation via the simple inequality

a2 cb?
<
W= 9.t

valid for a, b real and ¢ > 0. Hence there is a constant C; independent of € such that
d ([, 0 1 2
5 di (pl +p3+ k4(p3 + )
1 A k2
< = (GHNst+ e+ i3+ e loa+ 0?) 4 L 4G

In a similar way we multiply the equations (3.8) by X, Y, and Z, respectively, add up and estimate to obtain with
a constant Cy independent of € and A

d
%a (X2+Y?+2%) = —(aX?’+Y?’+2Z%)+kXps+aFoX +GY

a2 Lo N
Now we add the two inequalities (4.1) and (4.2) to deduce

1 1 .
57 (pf +p3+ 7. (p3 +2)? +e(X? +Y2+ZQ)>
4

N &=

1 A k2 N
~(GHNR+ Gty - Dot (s ap2

+(9—k—%’)X2+1Y2+Z2 +C1+C
2 2) 2 e

IN

1
—L (pf +p5+ k—4(p3 + A2+ e(X24+Y2 4+ Z2)) +C,

with N R 2
. (1 a i
L: — Z_ 2 -2_ 12 = -
mln(2,k3—|—2 2’2 2)\’21434)’ C=C1+Cy

To be sure that L > 0 we have to choose our free parameter A big enough. Now Gronwall’s inequality entails the
estimate

i(p3 + A Fe(X24+Y% 4+ Zz)) (t) (4.3)

2, 2
<P1 +p3 + s

hIQ

1
< (pf +p5+ k—4(p3 A +e(X*+Y? + Z2)) (0) exp(—2Lt) +

So there exists tg > 0 such that for all ¢t > to we have

=1Q

i(pg + A2 +e(X2+Y2 4+ Z2)) (t) <1+

(pf +p3+ I
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In particular, p, is bounded by a constant not depending on €. Using this fact in (4.2) and recalling ¢ < 1 we

obtain p
28#X2+Y2+Z%S—JﬂX2+Y2+Z%+D,
with M = min(Z, %) and a constant D independent of . Therefore another application of Gronwall’s inequality
yields the estimate
2 2 2 2 2 2 2M D

(X?+Y?+2%) (1) < (X*+Y?+ Z7) (0) exp(—Tt)—l—M, (4.5)

and thus there will be 1 > 0 not depending on € such that for ¢t > ¢;
2 2 2 D
(X*+Y +Z)(t)51+ﬁ' (4.6)

We see from (4.4) and (4.6) that the solutions of the dynamical system (3.7,3.8) are absorbed by the compact set
S = {(X7Y7 Z:plap%pS) eR® :

D 1 C

X2+ Y2 +2°<14+—, pi+ps+— N2<1+ =

HY 2SI gn bt (st A) <1+ 7
uniformly in e. Moreover, according to a standard argument (see for example Temam [44, Theorem 1.1.1]) for any
€ < 1 the Lorenz-Maas model possesses a global attractor A, contained in S. This completes the proof. O

4.2 Dynamics and bifurcation of the Maas ocean model

In this subsection we freeze the coupling atmosphere term in the ocean model, and consider it as a bifurcation
parameter in the dynamics of the latter. We do a detailed bifurcation analysis of the Maas model using the package
AUTO while varying this parameter which will be denoted by a := R + k1 X. It represents the frozen meridional
component of the buoyancy flux. We therefore consider the following family of differential equations representing
the density variables (p1, p2, p3)

p1 pip3 + fp2p3 — p1
P2 = p2ps — fpips — kspa + (4.7)
P3 —ka(pT + p3) — pps + ¢

parametrized by a.

Note first that the system possesses symmetry properties. If a is replaced by —a, we see that (—p1, —p2, p3)
instead of (p1,p2,p3) satisfies equation (4.7). Accordingly, our bifurcation diagram should be antisymmetric for
passing from p; resp. ps to their negatives, but symmetric when replacing ps with —p3. It is therefore sufficient if
we restrict our bifurcation studies to a on the positive half line. Corresponding diagrams for negative a may be
obtained by the symmetries just explained. In the two sets of simulations presented we choose the parameters in
the following way: f =20, ks =1, p =1, ks = 1/3, and either ¢ = 1 or ¢ = 5. The bifurcation parameter « varies
continuously in the interval [0, 75]. In the following diagrams, solid curves represent stable steady state branches,
dashed curves represent unstable steady state branches. Full discs stand for stable limit cycle branches, empty
discs for unstable ones.

Let us first explain the diagrams in the case ¢ = 1. Two solution branches coexist. One is related to limit cycles
(Fig. 2), the other one to steady states (Fig. 3). The limit cycle branch is globally stable. Its period changes very
slowly along with the maximum of p3, while the maxima of p; and po fluctuate rapidly. The steady state branch
starts from zero with «, and is stable as « increases. At a = 13.34 it undergoes a saddle-node bifurcation (lab.
SN5) where it loses its stability. It regains stability as it crosses another saddle-node bifurcation point at o = 1.73
(lab. SN6). Stability of this branch is further interrupted for a € (1.85,47.38) which is bounded by two Hopf
bifurcation points denoted HB7 and HBS in the diagrams.

The limit cycle branch originating in HB7 (Fig. 4) is stable until it crosses two period doubling points (lab.
PD9 and PD10). They are connected to another stable limit cycle branch with approximately double period. The
limit cycle branch originating in HB8 (Fig. 5) is stable as «a decreases until it hits a period doubling point (lab.
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Figure 2: Continuation of limit cycle branch of Maas model with ¢ =1
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PD11). Another stable limit cycle branch with approximately double period appears on the left hand side of the
period doubling point. It is stable until it hits another period doubling point (lab. PD12) triggering still another
stable limit cycle branch with approximately double period to its left. This period doubling process continues
until the system becomes chaotic. Let us now pass to the diagrams for ¢ = 5. There are again two coexisting
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Figure 5: Continuation of limit cycle branches of Maas model from HB8, PD11 and PD12 with ¢ =1

solution branches as « varies in [0, 75]. One is a limit cycle branch (Fig. 6), the other one is associated with steady
states (Fig. 7). In contrast to the globally stable situation in the preceding scenario the limit cycle branch becomes
unstable as a grows and crosses a torus bifurcation (lab. TR1). The steady state branch is unstable until it runs
through a saddle-node bifurcation point at o = 3.87 (lab. SN4). Stability is further interrupted in an interval
bounded by two Hopf bifurcation points located at a = 3.94 (lab. HB5) and a = 206.53 (lab. HB6).

The limit cycle branch starting from HB5 (Fig. 8) is stable as « increases until it encounters a period doubling
point (lab. PD7), and transfers its stability to another limit cycle with approximately double period. The stability
of this limit cycle branch is further interrupted on an interval bounded by two period doubling points (lab. PD8
and PDY9). Another stable limit cycle with approximately double period emerges and connects these two period
doubling points. The limit cycle branch generated at HB6 (Fig. 9) is stable as a decreases until it encounters a
period doubling point (lab. PD10). Another stable limit cycle branch with approximately double period appears
on the left hand side of the point. It is stable until « hits another period doubling point (lab. PD11), on the left
side of which again a stable limit cycle branch with approximate double period appears. This pattern is repeated
over and over.
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Figure 8: Continuation of limit cycle branch of Maas model from HB5 with ¢ =5
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4.3 Dynamics and bifurcation of the Lorenz-84 atmosphere model

We next consider the fast 3-dimensional atmosphere subsystem of our 6-dimensional coupled model described by
the differential equation for (X,Y;Z), and freeze the interaction term coming from the slow climate component
described by (p1, p2, p3)- As before, the frozen variables appear in the form of a real-valued bifurcation parameter
which will now be denoted by v := aFy + kop2. While in the previous subsection a frozen fast variable is intuitive
only if imagined as an average over the fast motion, here, due to the slowness of the climate variables, freezing
them has an intuitively obvious meaning.

We therefore have to consider the following family of differential equations for the atmospheric variables
(X,Y, 2):

X = —Y?2-272_aX +~,
Y = XY -bXZ-Y +G, (4.8)
Z = bXY+XZ-2Z,

parametrized by 4. The dynamics of (4.8) has already been studied since the introduction of this atmosphere
model by Lorenz [32]. Numerical and analytical investigations can be found for instance in Masoller, Schifino and
Romanelli [37] and Sicardi and Masoller [42]. A bifurcation analysis is presented in Shilnikov, Nicolis and Nicolis
[41]. These studies were, however, performed in order to explore the rich dynamics of this model. But here, we are
only concerned with the parameter y describing the influence of the ocean and thereby connecting to the calculation
of invariant measures (see Subsect. 5.1).

Again we do a detailed bifurcation analysis of the system using AUTO (see Doedel, Champneys, Fairgrieve,
Kuznetsov, Sandstede and Wang [7]) to detect bifurcation points and branches in the diagrams while varying the
parameter « continuously in the interval [—20, 40] We choose the parameters in (4.8) in the following way: a = 0.25,
b =4 and G = 1. As in the previous section, in the following diagrams solid curves represent stable steady state
branches, dashed curves unstable steady state branches. Full discs stand for stable limit cycle branches, empty
discs for unstable ones.

Let us first comment on the steady state parts of the bifurcation diagrams (see Fig. 10). Two saddle-node
bifurcations occur at v = 0.30 and v = 1.08, and the steady state branch splits into three branches according to
Fig. 10(a). X being negative, the lower branch stands for stable easterly jets of baroclinic structure, i.e. with phase
eventually depending on the atmospheric pressure. The middle branch, bounded by two saddle-node bifurcation
points (lab. SN1 and SN2), represents an unstable weak westerly jet which is of baroclinic nature as well. The
upper branch shows westerlies as well, is baroclinic in the first part and finally loses the pressure dependence of the
phase, i.e. becomes barotropic. This branch is more closely related to the present large scale general atmospheric
circulations. As < increases, it is first stable and then loses stability when ~ reaches the value 0.32 (lab. HB3),
where the system undergoes a Hopf bifurcation with a stable limit cycle branch emerging on the right hand side.
This limit cycle branch (see Fig. 11) represents a baroclinic traveling wave with a period of about 1.50. It is stable
until it hits the first period doubling bifurcation point at v = 1.56 (lab. PD4), and loses stability there. The
emerging unstable branch ends at another period doubling point which is reached at v = 4.72 (lab. PD5). Here
the limit cycle becomes stable again until a torus bifurcation occurs at v = 7.34 (lab. TR6). Beyond this point
the limit cycle branch exhibits two saddle-node bifurcations (lab. SN7 and SN8) and finally becomes stable again
as it crosses the last saddle-node bifurcation point. Let us now discuss the period doubling branch emerging at
PD4 (Fig. 12). It is at first stable until it hits a torus bifurcation point for v = 1.97 (lab. TR9), and a period
doubling bifurcation point at v = 2.06 (lab. PD10). The flow behaves chaotically near v = 2.00. It becomes stable
again for v € (3.84,4.00). The points on the branch corresponding to the boundaries of the interval represent a
saddle-node bifurcation (lab. SN12) and a period doubling bifurcation (lab. PD13). The periods of the period
doubling branches originating at lab. PD10 and PD13 are given in Fig. 13, respectively.

We next briefly describe the scenarios encountered on the period doubling branch emerging at PD5. Unlike the
one previously discussed related to PD4 the instabilities along this branch are caused by further period doubling
and saddle-node bifurcations, while no torus bifurcation occurs. More explicitly, its stable parts are interrupted
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Figure 10: Steady state bifurcation diagram of Lorenz-84 model
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by two period doubling bifurcation points corresponding to v = 3.89 (lab. PD16) and v = 3.04 (lab. PD17) and
a saddle-node bifurcation point related to v = 2.19 (lab. SN18). The two period doubling points are connected
by a further period doubling branch with a period of about 3.60. Its stability is further interrupted by two period

doubling points corresponding to v = 3.40 (lab. PD19) and v = 3.14 (lab. PD20) connected by a stable limit cycle
branch with a period of about 7.30.
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Figure 14: Continuation of limit cycle of Lorenz 84 model from PD5

5.0

There is another limit cycle branch which coexists with the HB3 branch as «y varies in the interval (1.10,1.16)

This branch, however, is not detected by AUTO. It emerges when integrating the model step by step while increasing
v. Though the life interval for this limit cycle branch is short, the geometric structure of the corresponding

trajectories is closer to the well known chaotic orbit for v close to 2.00. Its characteristic orbit and the orbit of the
limit cycle associated with HB3 for the same  are shown in Fig. 15.

5 Statistical characteristics of the reduced models

We will now describe how and by which algorithms to determine the ingredients of the three reduced models

corresponding to our coupled atmosphere-ocean Lorenz-Maas model given by (3.7,3.8) which we repeat for the
reader’s convenience:

a [ ™ p1ps + fp2ps — p1
i I f(p,X)=| paps—fpips —ksp2+ R+ kX |, (5.1)
p3

—ka(pi + p3) — pups +c
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(a) The orbit of the limit cycle branch from HB3 (b) The orbit of the limit cycle from another branch

Figure 15: Characteristic limit cycles of the Lorenz 84 model at v = 1.1

d X 1 1 -Y?2-272_aX + aFy +k2p2
Sl v | =Cee Xy, 2) =2 XY -bXZ—-Y +G . (5.2)
Z bW XY +XZ-Z

5.1 Invariant measures of the Lorenz-84 atmosphere model

According to Subsection 2.2, the most basic operation preceeding any reduction method is to determine the invariant
measure(s) of the atmosphere subsystem with frozen ocean variables.

To connect with the notations of Subsection 2.2 we have x = (1,2, x3) := (p1, p2, p3) € R®, y = (y1,y2,¥3) :=
(X,Y,Z) € R®. We are looking for the invariant measures du,,(X,Y, Z) of

d X —Y2 — Z2 —aX +CLFO +k‘2p2
| Y | =90 XY, 2)= XY -bXZ-Y +G : (5.3)
Z bW XY +XZ-Z

where p, is frozen.

Note that the invariant measure corresponding to a steady state of (5.3) is the Dirac measure charging this
steady state, while for a limit cycle of (5.3) the invariant measure has density c/||g(p2, X, Y, Z)|| with respect to
the length element of the limit cycle, where ¢ is some norming constant. Similarly for quasiperiodic orbits.

It is now of great help that we have already done a detailed bifurcation analysis of (5.3) in Subsection 4.3, using
the bifurcation parameter v := aFy + kapa. The bifurcation diagrams tell us that there exist parameter intervals
in which we have several coexisting stable structures (steady states, limit cycles, quasiperiodic orbits, chaotic
attractors) which all carry invariant measures. We have applied the following two methods for the calculation of
the invariant measures of (5.3)

Frobenius-Perron operator method

Let F : R* — R™ be a diffeomorphism (e.g. the time T mapping of the solution flow of (5.3)). Assigning to each
probability measure v on the Borel sets of R” its image F(v) := v(F~'(-)) under F defines the Frobenius-Perron
operator of F. Clearly v is invariant under F if F(v) = v, i.e. if v is an eigenvector of F' with eigenvalue 1.

We can use the software package GAIO to obtain the invariant measure (denoted by IMGAIO) developed by
Dellnitz and coauthors [5, 4]. An advantage of this method is that if there exists a global attractor then the influence
of all initial values are taken into account. However, if the global attractor is large, we obtain the invariant measure
at a low resolution only as the procedure is time-consuming (box counting, solving eigenvalue problem etc.).
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We are in the favorite position that we know from Subsect. 4.1 (Theorem and its proof) that for any p, € R
(5.3) has a global attractor A(p2) which is contained in the absorbing ball B := {||(X,Y, Z)|| < r} not depending
on p, whose radius is given by (4.6). It follows that for all p, all invariant measures p,, are also supported by
A(p2) and hence by this ball B which gives us an upper bound for the initial box independent of p» when applying
GAIO.

Path following method (forward and backward)

This method is based on the fact that after some transient period the atmosphere subsystem will eventually tend
to some specific flow pattern (equilibrium, limit cycle, quasiperiodic orbit, or chaotic flow), and the occupation

measure in phase space, ’
W= [ alerdr,
=0
measuring the percentage of time of the trajectory ¢}?(X,Y, Z) of (5.3) spent in a set A C R?, will have approached
some invariant measure p,, if observation time 7" is long enough.

We now first integrate the model (5.3) for 1.0 x 10® time units in order to get rid of transient behavior, and then
run it further to decide whether it tends to an equilibrium or a limit cycle. If yes, we are done, and the invariant
measure can be easily obtained as explained above. If no, we integrate the model further long enough (for more
than 8.0 x 10° units), then calculate the occupation measure and take this as the invariant measure (see Fig. 16

for explanation).

Now the bifurcation diagrams from Subsect. 4.3 are of great help. Since we have to obtain the invariant measures
for various values of ps (resp. ) we have two choices to start:

We either start from a globally stable steady state such that the corresponding «y value is far from the interesting
region and small enough, or start from a periodic orbit such that the corresponding v value is large enough. We
take the occupation measure of the corresponding orbit as the invariant measure.

We now change the parameter « by increasing or decreasing it and take the end point of the previous integration
as the initial value of the new one. We call the method forward/backward path following method (and denote
the resulting invariant measure by IMF and IMB, resp.) if v is increased or decreased, resp. (see Fig. 16). The path

Judge if a flow is steady if the flow is irregular, then

Intermittent interval periodic or irregular integrate further

i

10° days 3 x 10° days 8 x 10° days

Backward path following method (with decrease )
- !

start point (global stable limit cycle)

start point (global stable steady state)
i r

Forward path following method (with increase )

Figure 16: Illustrative diagram of the path following method

following method is rather efficient for dimensions less than 3 if the bifurcation behavior is not too complicated. If,
however, several stable flow patterns coexist for certain ranges of v, this method will single out a particular branch
of invariant measures and will not be able to detect the other one’s. [connect to the discussion in subsection 7.1]

With the invariant measures of the Lorenz-84 atmosphere model in principle at hand we can now determine
the ingredients of the reduced models.
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5.2 The drift coefficient of the reduced models

There is only the term X in the second equation of the system (5.1) to be averaged. Once we have chosen a branch
Kpo of invariant measures of (5.3) for frozen p,, we apply (2.24) and obtain, denoting the first component of the
solution of (5.3) by X[?,

1 T
X(p2) = lim /0 X2 dt = Rst/,LPQ(X,Y,Z). (5.4)

Hence the statistical ocean model (A) obtained by averaging on the basis of the branch p,, of invariant measures
is (with p the generic variable of (A), and with f(p) := f,,, (p))

d 1z . p1ps + fp2ps — p1
p= al )= f(P) = p2ps— fp1ps —kap2 + R+ ki1 X (p2) |- (5.5)
Ps —ka(p} + p3) — pp3 + ¢

The averaged function X (p2) is obtained numerically as a function of ps, in fact as a function of v := aFy + koo
for the interval —39 <~ < 41.

T
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3 backward
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average of X
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Figure 17: The averaged X versus v = aFy + kop2 of the Lorenz-84 model

Fig. 17 shows X versus 7 with respect to the invariant measures obtained by IMF, IMB and IMGAIO. The
discrepancy of the results of IMF and IMB in parameter ranges where several stable states (equilibria and limit
cycles) coexist (causing hysteresis) is clearly visible.

For example, the first splitting between IMF and IMB near v = 0.30 is due to the saddle-node bifurcation of
the steady state. X obtained by IMF (the lower branch) corresponds to the lower stable steady state branch (see
Fig. 10(a)), while X obtained by IMB is first connected with the upper stable steady state branch and then jumps
to the stable limit cycle branch originating from the first Hopf bifurcation HB3. This can be seen more clearly in
Fig. 18(a).

We present two more cases for which IMF and IMB differ in Fig. 18(b) : These discrepancies are caused by the
saddle-node bifurcations at v = 2.88 (lab. SN21 of PD5) and at v = 7.33 (lab. SN8 of HB3). In the left panel
of Fig. 18(b) the forward branch is related to PD5 while the backward branch is related to the period-doubling
branch of PD5. In the right panel of Fig. 18(b) the forward branch is related to the torus bifurcation branch (lab.
TR6 of Fig. 11) while the backward branch is related to HB3 after the saddle-node bifurcation point (lab. SN8 of
Fig. 11). This is related to the hysteresis phenomenon due to the coexistence of several stable equilibria (see Fig.
19).

We also observe that X obtained by IMGAIOQ lies between the values obtained by IMF and IMB in case
the latter are different. This suggests that in those cases IMGAIO yields a weighted average of IMF and IMB,
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Figure 18: The amplified picture of the averaged X versus v = aFy + k2p2 of the Lorenz-84 model

reflecting a more global picture of the dynamical system in phase space.

Note that the Jacobian of f needed for the model (L) also depends on the branch of invariant measures used
for the calculation of f.
5.3 The diffusion coefficient of the reduced models

The general 3 x 3 nonnegative-definite diffusion matrix o(p) (see formula (2.13)) needed for the stochastic models
(L) and (N) is given by

a(p)? Th_r)réo T / / R,(t — s)dtds, (5.6)
where R,(t) is the covariance matrix
Ry (t) = cov(f(p, ), f(p,4)) = E(f(p, ¥ ) — F(p)) (£ (p,00) — f(p))' (5.7)

of nf := f(p, ) for frozen p. The expectation is with respect to the joint distribution of ¢} and ¢§ = (Xo, Yo, Zo),
where (Xo, Yy, Zy) has distribution p,.

Due to the structure of f in (5.1), only the (2,2) entry of R,(t) and hence of o(p) is nontrivial (which we
continue to denote by the same symbols). Moreover, due to the structure of (5.2), these quantities only depend on
p2. Thus

o(p2)® = kiC(p2)?, C(p2)* == lim —/ / cov(X[?, XP?)dtds. (5.8)

T—oo T

Here X/* is the first component of the solution of (5.3) with frozen p, and random initial conditions with distribution
djiys (X,Y, 2).

We can rewrite the limit in (5.8) for numerical convenience as

2 T
Clpa)? = Jim K(T), K(T)= /0 (T — t)eov(XP2, X02)dt. (5.9)

Having done the calculation (5.8) we are in a position of writing down the stochastic models (L) and (N) for the
ocean component of the coupled Lorenz-Maas atmosphere-ocean model.
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(a) The orbit from the PD7 at v = 3.00 (b) The orbit from the period doubling branch of PD7 at
v =3.00

(c) The orbit from the HB3 at v = 8.60 (d) The orbit from the torus bifurcation branch at v = 8.60

Figure 19: Some characteristic orbits of the Lorenz 84 Model
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For the linear diffusion approximation (L) we first solve the averaged equation (A) given by (5.4) with initial
value gg = p obtaining p(¢). Then we plug this into the linear SDE

0
d¢f = Df(pt))dt + | kiC(pa())aW; |, ¢ =0, (5.10)

where Df is the Jacobian of f given by (5.5) and W; is a scalar standard Wiener process. We compose (L) as

¢ () = p(t) + VEC. (5.11)
The nonlinear diffusion approximation (Hasselmann’s equation) (N) is given by the nonlinear SDE

0
dz*(t) = f(z°(t))dt + Ve | kiC(z5(t))dW; |, 2°(0) = p. (5.12)
0

If the invariant reference measure p,, is the Dirac measure at a steady state of (5.3) then cov(X[?, X§?) =0
and hence C(p2) = 0. We will now prove that C'(p2) = 0 also in the case where y,, is the invariant measure on a
limit cycle of (5.3).

Excursion: Vanishing of the diffusion coefficient in the periodic case

Let y(t) be a periodic solution of the ODE y = ¢(y) in R™ with minimal period p > 0 and initial condition
y(0) = yo. Then for any w € [0,p), 2(t) := y(t + w) is a p-periodic solution of § = g(y) starting at z(0) = y(w) and
describing the same limit cycle € C R™ in phase space.

The dynamical system over which the p-periodic solution is a strict sense stationary stochastic process is as
follows: The probability space is 2 := [0, p) with addition modulo p, B the sigma-algebra of Borel sets on 2, P the
uniform distribution (normalized Lebesgue measure) on B. Define the family of measure-preserving transformations
0w := w +t modulo p. Then (Q,B,P, (6;)ecr) is a metric dynamical system which is uniquely ergodic (but not
weak mixing).

Then & (w) := y(t + w) = y(bww) is an ergodic stationary stochastic process taking values on the limit cycle C.
The measure g on € invariant under the flow generated by § = g(y) is the image of P under the mapping w — y(w).
The measure p has the density ¢/||g(y)|| with respect to A, the Lebesgue measure on €, but we do not make use of
this information.

First note that

P 4
]EEt = %/wzo €t(w)dw = %/0 y(u)du =jc R™.

Since we can switch to & — ¢ we can assume without loss of generality that E& = 0. We now calculate Xr(w) :=
fOT &(w)dt. For given T > 0, [T/p] € Z is that integer for which T}, := [T'/p]lp < T < T, + p. Then X7, (w) =0,
hence

Xr(w) = /Ty(t + w)dt = /TTP#LOJ y(u)du.

Ty w
In particular, Xr(w) is p-periodic and

< = .
1Xr (@)l <p gmax ly(@)ll = ¢ forall T,

The covariance of &; is
P

R(t) = B &) = % /:Oy(t + w)y' (w)dw.

We easily see that R(t + p) = R(t), R(t) = R(t — tp), where t, = [t/p]p, and ||R(t)|| < ¢*. An elementary
manipulation yields

T T -1, T-1p
Zy =EXr X = / / R(t — s)dtds = / / R(t — s)dtds,
o Jo 0 0
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from which we conclude that || Z7|| < p?c?, whence +||Zr|| < £p*c? — 0 as T — oo. Finally

1 (T (T
0? = lim —/ / R(t — s)dtds = 0.
o Jo

T—oo T

We apply this to the situation
. .1
&= f(@9), 9= _9(y)

and assume that y*(t) is a p(x)-periodic solution of y = g(z,y) for frozen z. Then

o)’ =V <%/ﬂ f(w,y””(t+w(w)))dt) ;

where w(z) is uniformly distributed on Q(z) = [0,p(x)). Using ||f(z,y) — f(z)|| < c(x) on the limit cycle C(x), we
obtain

1
llo(z)?|| < T () 50 as T — oo,

hence o(z) = 0 for all z.

The result of this brief excursion is that in our case o(p2) = 0 whenever the underlying invariant measure
dp,, (X,Y, Z) of (5.3) used for averaging sits on a steady state or a limit cycle. The fact that o(p2) = 0 also holds
for a quasiperiodic solution of (5.3) is supported by our simulations, although we cannot rigorously prove it (the
main problem is that the integral over a quasiperiodic function even with mean 0 is not necessarily quasiperiodic —
for this to hold one needs diophantine conditions on the frequency vector involved, see Moser and Siegel [43, page
261)).

As aresult, only in case of chaotic behavior of (5.3) for some range of values of ps can we hope that stochasticity
in (L) and (N) is “switched on” — if we only consider “simple” invariant measures, (L) and (N) are deterministic
and are identical with (A).

In our model the interesting < intervals for which we have chaotic behavior, hence the diffusion coefficient o
does not vanish are (1.98,2.04) and (2.10,2.20). For the representative case v = 2, see Fig. 77.

6 Bifurcation analysis of the statistical ocean model

We have studied the bifurcation behavior of the Maas ocean model (4.7) in Subsect. 4.2 which we can now compare
with that of the statistical ocean model(s) (A) given by (5.5) obtained by averaging. We calculate X for Fy = 4
and k; = 1 and, to be definite, restrict ourselves to the invariant measures obtained by IMGAIO.

We first put ¢ = 1, ky = 8 and choose R as bifurcation parameter. Fig. 21 shows the bifurcation diagram of
the steady states of (A). Comparing with that of the Maas ocean model (see Fig. 3) we observe that the left-hand
part of the bifurcation diagram of (A) is different from that of the Maas model. This is caused by the breakdown
of the symmetry property of the Maas model if the parameter is replaced by the function X (p2).

However, the right-hand parts of the diagram of (A) (starting from lab. SN3) and of the Maas model (start
from lab. SN4) closely resemble each other. The reason is that the function X (ps) changes very little for ps > 0.1.
Fig. 20(c) clearly shows that ps > 0.1 after R crosses lab. SN3.

There are, however, also differences between the two diagrams even on their right-hand part. In contrast to
those of the Maas model, the steady states of (A) lying between the two saddle-node bifurcation points lab. SN3
and SN4 are no longer stable and are followed by a new Hopf bifurcation (lab. HB5). This reflects some more
unstable features of (A).

Corresponding to lab. HB7 of the Maas model, we also do for (A) the continuation of the periodic solution
from the Hopf bifurcation point HB7 (Fig. 21). In contrast to the continuation of limit cycles from lab. HB7 in
the Maas model we observe for (A) a series of period-doubling bifurcations along this branch. The continuation
of the period-doubling branch from lab. PD8 is decreasing with R and joined with lab. HB7. This means that
there coexist two stable limit cycles between lab. HB7 and lab. PD8. This period-doubling branch of (A) is quite
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different from that of the Maas model from HB7 where the period-doubling branch joins the two period-doubling
points PD9 and PD10.

We finally investigate the bifurcation behavior of (A) keeping R fixed and using k; as bifurcation parameter.
This parameter indicates the strength of the influence of the atmosphere to the ocean.

The right-hand side of the bifurcation diagram of the steady states of (A) (Fig. 22) still resembles that of the
Maas model. But in contrast to (A) and the Maas model with R as bifurcation parameter, there is now a Hopf
bifurcation (lab. HB12). The continuation of the limit cycle branch shows that it is stable until it meets a torus
bifurcation point (lab. TR17 of Fig. 23). The Hopf bifurcation point lab. HB16 of (A) is similar to that of lab.
HB7 of the Maas model. The continuation of it first undergoes two period-doubling bifurcations which are followed
by a torus bifurcation. The latter is not observed in the Maas model.

The presentation of these sample results should suffice, and we stop here. The total picture, also taking into

account the various other choices of the invariant measure, is extremely complex.

7 Comparison of the unreduced model with the three reduced models

We now approach the main subject of this study, a numerical comparison of the performance of the three reduced
models: the deterministic statistical climate model (A) originating in averaging, and the two stochastic ones, the
linear diffusion approximation (L), and finally the nonlinear diffusion approximation (N). Their predictions will be
compared to simulations of the unreduced model in different parameter regimes to be specified below.

7.1 The basics of our simulations

First, some comments are in order as to which numerical schemes we use for the different models, which numerical
methods will produce the invariant measures needed for both averaging and calculating the diffusion coefficient in
the stochastic models, and finally how we measure numerically the closeness of trajectories of the different models.

The following numerical schemes will be used. For the simulations of the unreduced Lorenz-Maas model and
for (A), the modified 4th order Runge-Kutta scheme is employed. The time grid is chosen to be dt = 5.0 x 10~*
for the Lorenz-Maas model and dt = 5.0 x 10~ for (A). In the simulation of the stochastic climate models, we
use the further modified 4th order Runge-Kutta scheme with time grid varying between dt = 5.0 x 10~ and
dt = 5.0 x 1078, The meaning of the time grid for the Lorenz-Maas model is quite different from that of (A), (L)
and (N). While for the former it determines time steps in the scale of the atmosphere, for (A), (L) and (N) it gives
time units in ocean scales. In the following simulations we call the time unit for the integration of the Lorenz-Maas
model “weather day” (abbreviated in figure captions as WD).

Finally, a word of care is in order. Stability and convergence of the modified 4th order Runge-Kutta scheme
are not proved for the setting of our stochastic climate models. It should generally be used with care for stochastic
differential equations (Kloeden and Platen [29], Kloeden, Platen and Schurz [30]).

To rule out doubts about the validity of this scheme in our setting, we also employ mixed schemes of the
following type to check our results: in case the diffusion coefficient o(p2) = 0, we use the modified 4th order
Runge-Kutta scheme, while we employ either the Euler, the modified Euler or the strong Platen schemes of order
one if o(p2) # 0. The results obtained by these modified schemes correspond well to those the modified 4th order
Runge-Kutta scheme yields. This is exemplified by Fig. 25 in the case of the fully coupled atmosphere and ocean.
In the sequel we will use the modified 4th-order Runge-Kutta scheme for both (L) and (N) if not specified otherwise.

In the simulations for both the statistical climate models and the stochastic climate models, invariant measures
will be computed using the software package GAIO as well as a combination of the forward (IMF) and backward
(IMB) path following methods which we will denote by IMF&B. When both IMF and IMB are the same we will call
it IMPF. To explain this combination, recall the results of our bifurcation studies for the atmosphere subsystem
parametrized by a slowly varying ocean component ~ representing essentially p,. As long as « is kept outside of
bifurcation intervals, the invariant measure obtained by IMF is the same as that obtained by IMB.

There are, however, intervals on the «y-line which we shall call hysteresis intervals in which the invariant measures
provided by IMF when entering the interval at its lower boundary disagree with the invariant measures obtained by
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IMB when entering from above. The reason is that the measures tend to live on different bifurcation branches as
the bifurcation parameter enters from different boundaries. IMF&B just keeps the branch chosen by the unreduced
system when approaching a hysteresis interval. Since the dynamics of the unreduced model is taken into account
in a very natural manner this way, it turns out that (A), (L) and (N) calculated on the basis of IMF&B perform
much better than those computed with the other quoted methods to obtain invariant measures. Without further
specification we always use IMF&B in the following simulations for (L) and (N).

To measure the closeness of trajectories of the solutions (71,72, 13) of the reduced models to trajectories of the
ocean variables (p1, p2, p3) of the unreduced model, we introduce the divergence ratio

D(t) = VI —p1)? + (12 — p2)? + (3 — p3)°](2)
[0? + p3 + p3](t)

and define the closeness period as the first time ¢ for which D(t) exceeds the value of 0.1. We perform our comparison

studies in the following two different situations:

1. Ocean forced by the atmosphere: First we assume that the coupling of ocean and atmosphere is just one
way by putting k2 = 0. This means that the ocean is just forced by the atmosphere, but gives no feedback
(see Subsection 7.2)

2. Ocean coupled to the atmosphere: In the second more realistic case we assume k2 7# 0 so that both
subsystems influence each other (see Subsection 7.3).

7.2 The unreduced ocean model forced by the atmosphere
7.2.1 Simulation of the unreduced ocean model

If k2 = 0 and the ocean is just forced by the atmosphere, we shall concentrate on two different dynamical regimes.
The first regime (case (a)) is periodic or quasi-periodic. The corresponding specification of the model parameters
isgivenby R=10, u =1, ky =15, ks =1, ks = 0.8, ¢ = 5, and Fy = 10 (case (al)). For this particular choice
the atmosphere subsystem shows quasi-periodic behavior. The corresponding dynamics is exhibited in Fig. 26.

AbNbbornvwsa
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NONBRDRRNROON
LI B e e s e e |

(a) Ocean component (1-4.0 x 106 WDs) (b) Atmosphere component

Figure 26: Orbits of the unreduced model in case (al)

If we take R=10, u =1, ky =15, k3 = 1.8, ky = 1/3, c = 4.5, and F = 6 (case (a2)), we obtain trajectories
of the unreduced model as seen in Fig. 27, for which the atmosphere subsystem exhibits periodic behavior.

The second regime (case (b)) is characterized by chaotic behavior of the atmosphere component. This is
guaranteed for instance for the choice R = 10, p = 1, k; = 15, ks = 1, ks = 1/3, ¢ = 9 and Fy = 8. Fig. 28
shows the characteristic ocean orbit of the unreduced model which wanders between two regimes irregularly, and
the corresponding chaotic orbit of the atmosphere.
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Figure 27: Orbits of the unreduced model in case (a2)

(a) Ocean component (1-4.0 x 106 WDs) (b) Atmosphere component

Figure 28: Orbits of the unreduced model in case (a2)
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7.2.2 Comparison of the reduced ocean models with the unreduced model forced by the atmosphere

Let us now discuss the different reduced climate models with respect to their quality of approximation of the
unreduced model whose behavior in the various regimes was illustrated in Subsect. 7.2.1.

In the first regime (a) the diffusion coefficients vanish, so that no source of stochasticity is present. Therefore
in this regime the only relevant reduced model is (A).

For case (al) IMF and IMB yield the same invariant measure. The characteristic orbits of (A) with various
invariant measures are plotted in Fig. 29. It is show that the closeness period is more than 200,000 weather days
for (A) with IMPF, while it is about 8,800 weather days for (A) with IMGAIO. During the closeness period (A)
simulates the behavior of the ocean component of the unreduced model well. After this period the difference to the
solution of (A) with IMGAIO becomes larger and larger, while the trajectory of (A) with IMPF diverges slightly
from the orbit of the ocean subsystem of the unreduced model. Moreover, the flow pattern of the ocean variables
of the unreduced model is reproduced well by (A) with IMPF while the solution of (A) with IMGAIO tends to a
different limit cycle (see Fig. 29(c)). This indicates the dependence of the atmosphere subsystem with frozen ocean
components on particular choices among non-unique invariant measures.

This is further exemplified in case (a2): For the parameter choice leading to the trajectories presented in Fig.
30 we see that the closeness periods of both the solution of (A) with IMPF and the solution of (A) with IMGAIO
are approximately the same: about 18,000 weather days. However, the flow pattern of (A) with IMGAIO compares
better to the one of the unreduced model than that of (A) with IMPF.

Here is an interesting side remark concerning the quality of approximation of climate variability in coupled
atmosphere-ocean dynamical systems with two well separated time scales. Can one do better than (A) with a
deterministic model? The answer seems to be “yes”. For example, a simple seemingly artificial manipulation in
(A) extends the closeness period by much: We replace the averaged X and set it equal to the constant 0.7. The
resulting behavior of the solution of the modified (A) model has a closeness period with respect to the corresponding
trajectories of the unreduced model of more than 3.2 x 10% weather days (see Fig. 30(d))! It would be interesting to
know if there are other ways than averaging to simulate climate variability in reduced deterministic models better.

In the chaotic regime represented by the parameter choice underlying ocean trajectories as in case (b), the
diffusion coefficients no longer vanish. Here we are in the true realm of (L) and (N). 50 sample paths each are
calculated for (L) and (N). In Fig. 31 we compare the performance of the three reduced models. In the first 38,400
weather days, the individual solution trajectories of (A), (L) and (N) with various invariant measures simulate
well the behavior of the ocean subsystem of the unreduced model. After this period the trajectories of (A) with
IMGAIO and of (L) diverge from that of the unreduced one. The solution of (A) with IMGAIO tends to a different
quasi-periodic orbit (see Fig. 31(e)), while the solution of (L) oscillates dramatically and then diverges to infinity
(not shown). Only the trajectories of (A) with IMPF and all the sample paths of Hasselmann’s equation (N)
continue describing the flow pattern of the unreduced model well.

Our results raise the following interesting question: Can we improve the output of our simulations by replacing
individual trajectories with the ensemble mean over the 50 computed sample paths? For (L), ensemble averages
extend the closeness period by a few hundred days (see Fig. 32). However, they do not seem to provide more
information on the evolution of the ocean variables due to the wide scattering of the sample paths in phase space
as time goes on. In addition, taking ensemble averages changes the structure of the flow pattern of the ocean orbit
of the unreduced model considerably. This is also observed for (N). In fact, the following pattern seems to be
supported by our simulations. The ensemble mean performs better than individual sample paths in short-range
climate prediction, while in the long run individual trajectories provide more information on the transition of
the flow among the flow regimes and on the structure of the flow patterns due to wide scattering of spontaneous
transitions between meta-stable equilibria changing their local structure a lot.
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Figure 29: Orbits of reduced models in case (al)
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Figure 30: Orbits of reduced models in case (a2)

7.3 The unreduced ocean model coupled to the atmosphere
7.3.1 Simulation of the unreduced ocean model

We now come to the case k2 # 0 in which atmosphere and ocean are influencing each other, and the dynamics
becomes much richer. Here again we consider two different dynamical regimes which this time are determined by
different types of asymptotic behavior of the ocean component of the unreduced model.

The first regime is characterized by quasi-periodic behavior of the ocean variables. The corresponding choice
of the model parameters is given by R=5, u =1,k =10, k3 =02, ks =1,c=1, Fp =8 and ks = 1 ( case (c)).
Fig. 33(a) shows a trajectory of the corresponding unreduced model. It is quasiperiodic with an approximate cycle
length of about 3.85 x 10° weather days. Each period is subdivided into three stages. The first stage takes more
than 62% of the time, during which the ocean orbit is on its way to reach a limit cycle traveling along the inner
solid part of Fig. 33(a) which resembles a straight line. The density field varies slowly with very small amplitude.
The second stage takes about 26% of the time, while the ocean orbit wanders near the limit cycle (the upper part
of Fig. 33(a)). Dramatic changes occur in the third stage which occupies about 12% of the time. During this period
the orbit turns off the limit cycle rapidly with large oscillations of both p; and py, and a sharp decrease of p3 from
—0.80 to —13.00 before returning to the first stage and restarting the cycle.

The second regime is characterized by irregular wanderings of the ocean subsystem of the unreduced model
between quasi-periodic parts of the orbits which are terminated by abrupt transitions. This can be observed for
instance for the choice of parameters R = 10, u = 1, k; = 10, ks = 1, ks = 1/3, ¢ = 5, Fy = 8 and ky = 0.6
case (d). Fig. 34 exhibits this behavior: the ocean orbit wanders for most of the time of about 1.28 x 10° weather
days between transitions near a quasi-periodic orbit in a counter-clockwise sense (see Fig. 34(b)). It sometimes
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changes the sense of rotation, winds up to the upper part of the trajectory, and then spirals downward in the
counter-clockwise sense to the lower part (see Fig. 34(c)) with p3 decreases rapidly from 2.50 to —6.90. Then the
system returns to the part where most of the time is spent. In the integration time period of 1.20 x 107 weather
days we find five transition events.

7.3.2 Comparison of the reduced ocean models with the unreduced model coupled to the atmo-

sphere

We now turn to a discussion of the quality of approximation of the unreduced model by the different reduced
models starting in the quasi-periodic regime. In Fig. 35 we show trajectories of (A), (L) and (N) in case (c). It
is seen that the behavior of the ocean orbit is well recovered by (A) with different invariant measures and by both
stochastic models (L) and (N). However, the closeness period of ocean orbits and the orbits produced by (A) with
IMGAIO ends at about 8,000 weather days while it lasts for about 40,000 weather days for (A) with IMGAIO.
Looking more closely (see Fig. 36), we further find that both (L) and (N) simulate the behavior of the ocean
subsystem better than (A) with various invariant measures: The periods of the sample paths obtained from (A)
with IMF&B and IMB are slightly different from that of the unreduced model, while those obtained by IMGAIO
and IMF differ a lot.

Fig. 37 and 38 show some characteristic flow patterns of (A) and (N) with various invariant measures in case (d).
In the first 8,000 weather days the behavior of the ocean subsystem of the unreduced model can be simulated well
by (A) with various invariant measures, and by both (L) and (N). Then the differences among the various reduced
models become obvious. Eventually (A) with various invariant measures fails to follow the ocean subsystem of the
original model (see Fig. 37). The trajectories corresponding to (A) with IMF&B and IMF tend to a quasi-periodic
orbit which can be thought of as the prototype of a quasi-periodic orbit of the unreduced model (see Fig. 37(a) and
(b)), while the solutions of (A) with both IMB and IMGAIO (see Fig. 37(c) and (d)) enter into a quasi-periodic
regime similar to Fig. 34(b).

The most interesting observation we obtain is the absence of any transition between various parts of the
trajectories as discussed in the previous section for (A) with various invariant measures. In contrast to this, all the
50 sample paths obtained from (N) reproduce well this important feature of the ocean subsystem with a closeness
period of about 80,000 weather days, though after the closeness period the transitions in the 50 individual sample
paths and the ocean orbit of the original model are not entirely synchronous.

Fig. 38 gives three characteristic flow patterns obtained from a sample path of (N). A comparison to Fig.
34 reveals how well the trajectory of (N) interprets the three characteristic flow patterns of the original model,
including spontaneous transitions together with their intensities. Only the variation of p3 appears a little large in
the lower part of the second pattern. Moreover, the power spectral densities derived from p, of the sample paths
of (N) and of the unreduced model agree well (see Fig. 39). The difference lies in the tail of the power spectral
density: The one for the sample path of (N) is a little wider or a little narrower than the one of the unreduced
model. Therefore statistically the model (N) produces transition frequencies reflecting well the reality described
by the ocean part of the unreduced model.

The instability of the trajectories of (A) with IMF&B has dramatic effects on (L): After an initial period they
exhibit strong fluctuations and then diverge quickly. In Fig. 40 we show the evolution of the exponential growth
rate of the trajectories of (L). We hence refrain from showing their diagrams.

8 Conclusions and discussion

Synopsis. To be skipped if only trivial repetitions
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Figure 31: Orbits of reduced models in case (b)
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Figure 33: Orbit of climate component of unreduced model in case (c)
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Figure 34: Orbits of climate component of unreduced model in case (d)
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Figure 35: Orbits of reduced models in case (d) (1-4.0 x 105 WDs)
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Figure 36: p2 for various models in case (d)
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