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Abstract

We consider a dynamical system in R driven by a vector field —U’, where U is a multi-well potential
satisfying some regularity conditions. We perturb this dynamical system by a Lévy noise of small intensity
and such that the heaviest tail of its Lévy measure is regularly varying. We show that the perturbed
dynamical system exhibits metastable behaviour i.e. on a proper time scale it reminds of a Markov jump
process taking values in the local minima of the potential U. Due to the heavy-tail nature of the random
perturbation, the results differ strongly from the well studied purely Gaussian case.
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1 Introduction

This paper addresses the rigorous mathematical description of the phenomenon of metastability in systems
with big jumps. The picture we shall study may be outlined as follows. Let us consider a one-dimensional
deterministic dynamical system driven by a vector field —U’(-), where U(+) is a multi-well potential with
some smoothness conditions and a certain increase rate at infinity. According to the initial conditions the
deterministic trajectories of the dynamical system converge to the local minima of the potential U or stay
in its local maxima. Obviously, no transition between different domains of attraction is possible.

The situation becomes different if the dynamical system is perturbed by (small) random noise whose
presence allows transitions between the potential wells. However depending on the system’s initial conditions
and noise’s properties, certain potential wells may be reached only on appropriately long time scales or stay
unvisited. The phenomenon of metastability means, roughly speaking, that for different time scales and
initial conditions the system may reach different local statistical equilibria.

The system’s behaviour is determined by the type of random perturbation. Unquestionably, dynamical
systems subject to small Gaussian perturbations have been studied most extensively. The main reference on
this subject is the book [FW98] where the large deviations theory for the perturbed trajectories is established.
The large deviations estimates allow to solve the first exit problem from the domain of attraction of a stable
point. It turns out that the mean exit time is exponentially large in the small noise parameter, and its
logarithmic rate is proportional to the height of the potential barrier the trajectories have to overcome.
Thus for a multi-well dynamical system we obtain a series of exponentially non-equivalent time scales given
by the wells’ mean exit times. Moreover, one can prove that the normalised exit times are exponentially
distributed (see [Wil82, Day83, BEGKO04]), and thus have a memoryless property which is referred to in
physical literature as unpredictability.

In the simplest situation when the potential U has only two wells of different depths, one can observe two
statistically different regimes. First, if the time horizon is shorter than the exit time from the shallow well,
the system cannot leave the well where it has started, and therefore stays in the neigbourhood of the well’s
local minimum. Second, if the time horizon is longer than the exit time from the shallow well, the system
has enough time to reach the deepest well from any starting point, and stays in the vicinity of the global
minimum. In [KN85] the following metastability result is established. Namely, there is a time scale on which
the dynamical system converges to a Markov two-state process with one absorbing state corresponding to
the deep well. It is easy to notice that this particular time scale is given by the mean exit time from the
shallow well. More general results for multidimensional diffusions can be found in [Mat95] and [GOVS87].

There is a very close connection between metastability of a small noise system and spectral properties of
its infinitesimal operator. It can be shown that exponentially small eigenvalues of the infinitesimal generator
are expressed in terms of mean life times in the domains of attraction, and the corresponding eigenfunctions
are close to constants on these domains [KM96]. On the other hand, the generator’s eigenvalues can be
calculated with the help of variational principles [BM92, BGKO05].

However, recently non-Gaussian perturbations with big jumps attract more attention. Instant transitions
between remote states are referred to as extreme events and are observed in dynamics of asset prices, climate
and telecommunication systems etc. In the physical literature, non-Gaussian symmetric stable Lévy processes
are used especially often, under the name of Lévy flights. The mathematical study of the gradient dynamical
systems subject to small perturbation by a heavy-tail Lévy process was tackled in [TP06] (for symmetric stable
processes), where results on the first exit time form the potential well with non-characteristic boundary were
established by purely probabilistic methods. It was shown that the exit time increases as a power of the
small noise parameter and does not depend on the depth of the potential well but rather on the distance
between the local minimum and the domain’s boundary.

In the present paper which can be seen as a sequel of [IP06] we deal with more general multi-well potential
and arbitrary Lévy processes with regularly varying tails. The presence of big jumps makes the Lévy driven
dynamics quite different from the purely Gaussian one. Indeed, the life times in the potential wells belong
now to the same time scale which leads to a quite different process in the limit of small parameter.



2 Object of study and main result

Let (Q,F, (F)i>0,P) be a filtered probability space. We assume that the filtration satisfies the usual hy-
potheses in the sense of [Pro04], i.e. Fy contains all the P-null sets of F, and is right continuous.
We consider solutions X¢ = (X§);>¢ of the one-dimensional stochastic differential equation

Xi(x) :x—/ot U'(X:_(z))ds+eL;, z€R, (2.1)

where L is a Lévy process and U is a potential function satisfying the following assumptions.

Assumptions on L:

L1 L has a generating triplet (d, v, u) with a Gaussian variance d > 0, an arbitrary drift 4 € R and a Lévy
measure v satisfying the usual condition fR\{o} max{y?, 1} v(dy) < oo. For u > 1 denote the tails of

the Lévy measure v

H_(~u) = /( . H) = /( ) (2)

and H(u) = H_(—u) + Hy (u).
L2 Assume, H, (-) is regularly varying at infinity, i.e.
Hy(u)=u""l(u), u— 400, (2.3)
for some r > 0 and a slowly varying function [ (for regular variation see Appendix B).

L3 Assume that there exists a finite limit

or

) H_(—u)
limsup ———= =k = 0. 2.5
u—+400 +(’U/) ( )

Assumptions on U:
Ul U € C*R) NC3([-K, K)) for some K > 0 large enough.

U2 U has exactly n local minima m;, 1 < i <n, and n — 1 local maxima s;, 1 <i <n — 1, enumerated in
increasing order
—00 =8 <My <81 <Mg < < Sp_1 <My <8, = +00. (2.6)

All extrema of U are non-degenerate, i.e. U”(m;) > 0,1 <i<n,and U"(s;) < 0,1 <i<n-—1.
U3 |U'(z)] > e1|x]'T¢2 as 2 — oo for some ¢y, c3 > 0.

The class of Lévy processes L under consideration covers for example compound Poisson processes with
heavy-tail jumps or stable Lévy processes with Lévy measure

d
v(dy) = (1 I{y < 0} + c2I{y > 0}) M%, a€(0,2), ¢ >0,c0>0. (2.7)

We consider X¢ for small values of ¢, € | 0.

Since the Lévy process L is a semimartingale, the stochastic differential equation (2.1) is well defined,
see also [Pro04] for the general theory. However, since the drift term U’ is not globally Lipschitz we need to
show the existence and uniqueness of the strong solution of (2.1) which is done in Appendix A.



Under assumptions on U, the underlying deterministic (¢ = 0) equation

X?(x):x—/o U'(X%(x))ds (2.8)

has a unique solution for any initial value € R and all ¢ > 0. The local minima of U are stable attractors
for the dynamical system X, i.e. if x € (s;_1,8;), 1 <i < n, then X?(x) — m; as t — co. It is clear that
the deterministic solution X does not leave the domain of attraction where it started.

Our goal is to describe the phenomenon of metastability which roughly speaking consists in the existence
of a time scale for which the system reminds of a jump process taking values in the set stable attractors. We
prove the following main Theorem.

Theorem 1 Let X¢(z) = (X7 (z))i>0 be a solution of (2.1). If x € (s;_1,s;), for somei=1,...,n, then

X naye (@) — Ye(mg), €10, (2.9)
in the sense of finite-dimensional distributions, where Y = (Y;)i>0 is a Markov process on a state space
{m1,...,mn} with the infinitesimal generator Q = (qi;); =1,

o kI{j <i}+1{j > i}
ij = 1+k

“sjfl_mi|_r_‘8j_mi|_r|a 7’7&]7
(2.10)

K _ —
—qz‘izqz‘zzqz‘jzmlsrl—mi\ "+ |55 —mg| ™"

i#i Lt

Let us consider a particular example of equation (2.1), namely a symmetric a-stable process L (Lévy
flights) in a double-well potential. Let U satisfy Assumptions formulated above and let for definiteness s; = 0.
The process L has a generating triplet (0, v,0) with a Lévy measure v(dy) = |y| ==, y # 0, a € (0,2). Such
dynamics is often considered in physical literature. P. Ditlevsen in [Dit99b, Dit99a] studied such a system in
his attempt to explain abrupt catastrophic climate changes during the last Ice Age. Further in [CGKMO05],
the authors addressed the calculation of the mean transition time between the wells if o € [1,2). (Their
conclusions based on numerical simulations of the process X¢ are not fully consistent with our results, and
thus should be improved.) One-well dynamics of such processes was firstly studied in [IP06].

Due to Theorem 1, the main features of the process X¢ in the small noise limit are retained by a
Markov jump process, and on the time scale ae™® we obtain the following convergence in the sense of finite
dimensional distributions:

Xotjea(@) =Yy, t>0, €10, (2.11)

where Y is a Markov process on the state space {my, ms} with the following matrix as infinitesimal generator

—mi; ¢ o if 0
Q= < o m1_a> and Yy = i 1 z<b (2.12)
mg —msy me, if x> 0.

To compare the result obtained with its Gaussian counterpart we refer to [KN85], where this problem
was first studied. R
Let us consider a Gaussian diffusion X which solves the equation

Xe(z) =z — /Ot U'(XE(x))ds + Wy, (2.13)

where W is a standard Brownian motion. Since it is well known that in the Gaussian case the height of the
potential barriers plays a crucial role, we assume that the left well is deeper, i.e. U(0)—U(mq) > U(0)—U (my).
This leads to the following meta-stable behaviour of X< ([KN85, Theorem 2.1]). These exists a time scale
A% such that

lim e? In \* = 2(U(0) — U(my)) (2.14)

e—0

and X .
Xpe(@) =Y, €10, (2.15)



in the sense of finite dimensional distributions, where Y is a Markov process on {m, ma} with the infinites-

imal matrix
N if
0 0} q 7,= ™ iHz<O (2.16)
1 -1 me, ifx>0.

As we see, the main difference between Lévy and Gaussian dynamics consists not only in different intrinsic
time scales — polynomial vs. exponential, — but also in a qualitatively different limiting behaviour. In the
heavy-tail case, the states of the limiting process are recurrent, whereas in the Gaussian case, the minimum
of the deepest well is absorbing.

In general case, we can summarise the differences as follows. First, we see that the characteristic time
scale is algebraic in €. Second, the properties of the limiting process Y depend on sizes of the potential
wells and not on their depths. Further, if k > 0, the all states of Y are recurrent. The process Y has a
unique absorbing state m,, (the local minimum of the right peripheral well) if and only if x = 0, i.e. when
the positive tail of I dominates.

This material is organised as follows. In Section 3 we decompose the Lévy process L into a small jump
part and a compound Poisson part and study the small-jump dynamics of the process X¢. Section 4 is
devoted to the asymptotics of the first exit time from a single well. Section 5 provides the asymptotic
exponentiality of the transition times between the wells. Theorem 1 is proved in Section 6. Appendices A
and B contain the proof of the existence of the strong solution of (2.1) and basic information on regularly
varying functions.

ACKNOWLEDGMENTS: This work was supported by the DFG Research Project ‘Stochastic Dynamics
of Climate States’, DFG Research Center MATHEON in Berlin and the Japan Society for the Promotion
of Science. I. Pavlyukevich thanks Th. Mikosch, G. Samorodnitsky, Th. Simon and N. Yoshida for their
valuable comments.

3 One-well dynamics of the small jump component

3.1 Exponential estimate for the small-jump component

For p > 0 and 0 < € < 1 consider the decomposition L = £ + n°, where the Lévy processes £&° and 7° have

generating triplets (d, vg, ) and (0, vy, 0) respectively with

vE(r) =v ( N [—Elp, ;p} \{0}) , vp(-) =v ( NR\ {—Elp, ;p}) . (3.1)

The absolute value of jumps of the process ££° does not exceed e'~°.
Thus the process &° has a Lévy measure with compact support, and the Lévy measure Vf,() of 1 is finite.

Denote
B = vE(R) = /
R\[-

Eded

V(dy) = H (;p) . (3.2)

Then, 7n° is a compound Poisson process with intensity (., and jumps distributed according to the law
6;11/7](')'

Denote 7, k > 0, the jump times of ° with 7§ = 0. Let T} = 7 — 77_; denote successive inter-jump
periods, and Wi = 77 —nZ._ the jump heights of n°. Then, the three processes (T})k>1, (Wg)k>1, and
(€%)¢>0 are independent. Moreover,

e 1
P(Ty > u) = / BeePesds =e Pt 4w >0, and ETf = —, (3.3)
u Be
vi(—oo,w) 1 1
PWE<w:n7:—/ Kyl > —=}v(dy), weR. 3.4
Wi <u) = s =2 [ > v (3.4

Between the arrival times of n° the process X¢ is driven by €£°. The next Lemma shows that on long time
intervals e£° does not essentially deviate from zero. Hence the dynamics of the process X¢ on the intervals
between arrival times of the process n° can be seen as a small random perturbation of the underlying
deterministic trajectory.



Lemma 3.1 For any p € (0,1), any v € (0,1 —p) and 6 € (0,1 — p — =) there is pg > 0 and g9 > 0 such
that the inequality
P( sup [e&]>¢7) <exp(—1/eP) (3.5)
te[0,1/e9]

holds for all 0 < e <ep and 0 < p < pg.
Proof: Let p, v and 6 be as in the statement of Lemma. Since

P( sup [e€f| > ") <P( sup () >€7) + P inf (e€f) < 7). (3.6)
te[0,1/e°] te]0,1/e?] t€[0,1/¢°] :

we have to estimate two summands. Let us consider the first.

The Lévy measure of e£¢ has compact support, hence the process e£° has exponential moments. Moreover,
e&f — E(e&f) is a zero-mean martingale, so that

-1

1/ef
B(et) —cut et [ unldy) 4t [ go(dy),
1

—1/er

(3.7)
B <t |ut [ ldy)| =etm.
ly|>1
Then Kolmogorov’s inequality for exponential functions of martingales yields
P sup (e&) =& | <P sup (€5 —E(e€5)) > 7 — el 0m
te[0,1/e9)] te[0,1/e9]
=P sup (G —B(EE) > pu(e?—e'""m)
te[0,1/e9) (3.8)
S e*u(E’Y*Eliem) sup Eeu(sgffE(Eff))
te[0,1/e9)]
< efu(577261_9m) sup Eeusﬁ,f'
t€[0,1/e9]
where the latter exponent can be derived from the Lévy—Hinchin representation,
e2u?
Eexp (ueg;) = exp { dt—— + pteu +t/ (e" — 1 —ueyl{|y| < 1})v(dy) ¢ . (3.9)
2 0<[y|<1/er
Denote
o(u,e,t) = InEexp (uefl) + 2ume' =% — eu (3.10)

and let u = u(e) = 1/e¢ for ¢ = (1 — p+ ) /2. We show that sup,c(g 1 /.0) p(u(€),€,t) — —00 as a power of
€. Indeed, since 0 < ¢ < 1 — p, a straightforward calculation yields

527072c 1 e
sup p(u(e).e,t) <A+ e 5 [ (@1l
te[0,1/e9] 2 & Jyl<a
1/e” -1
1 el—¢ 1 gl—c 1—6—c —c
+ = (e ¥ =1v(dy)+ — (e ¥ —1Dv(dy) + 2me —&7 (3.11)
e’ )1 € J—1/er

d o0
< 27072 <2 —|—/ yzu(dy)> + 25176*“0/ v(dy) + (2m + |p|)e' 707 — 77
lyl<1 1

Then since 2 — 0 —2¢,1 —c—p—0,1—60 — ¢ > v — ¢ we can take py = (¢ — 7)/2 to obtain

1
sup @(U(E),E,t) S 5 € l 07 (312)
te[0,1/€9] ep
for all 0 < p < pp.
The inequality for inf is proved analogously. |



3.2 Dynamics on compact interval, a > —o0

Our goal is to study the one-well dynamics of the small-jump process 2° and its unperturbed conterpart z°,

5 (z) =z — /0 U'(25_(x))ds + &5,
(3.13)

22z) =2 — t "(2%(x)) ds .
fo)=o— [ Uabeds, 20

For definiteness we assume that the well’s minimum is located at the origin and thus the corresponding
domain of attraction for 2° is (a,b), —0o < a < 0 < b < +o0, if the well is inner, and (—oc,b) if it is
peripheral. In the first case we also assume that a and b are non-degenerate local maxima of U. In the
second case, b is a non-degenerate local maximum and U’(z) increases to infinity faster than linearly as
x — —oo. Denote the critical point curvatures as U”(0) = My > 0, U"(b) = M > 0 and U"(a) = M, < 0
(when defined).

For v > 0 and ¢t > 0 we introduce an event

E ={w: sup |e&| <V} (3.14)
s€0,t]

We prove the following estimates.
Proposition 3.1 For any v > 0, any ¢ > 0 there is g > 0 such that for 0 < e < e¢ the inequality

sup |z5(x) — 22(x)] < ce® (3.15)
s€0,t]

holds a.s. on the event & uniformly for t >0 and x € [a+7,b—¢€7].
Consider the representation of the process z¢ in powers of €
x5 (z) = 2)(x) + eZ5 (x) + Ri(x), t>0, (3.16)
where Z°¢ is the first approximation of z° satisfying the stochastic differential equation
t
Ziw) =~ [ U@ Zi (@) ds+ .17
0

and the remainder R°(z) is the absolutly continuous function starting at 0 and satisfying the integral equation
t
Ri(x) = / [~U'(23(2) + eZ:_(2) + Ri(x)) + U'(23(x)) + U" (7 (2))e Z;_(2)] ds. (3.18)
0

We shall prove two Lemmas about the small noise dynamics of these processes.

Lemma 3.2 There is a universal constant Cz > 0 such that for any v > 0 there is €9 > 0 such that for
0 < e <gq the inequality
sup [eZ¢(z)| < Cze® (3.19)
s€[0,t]

holds a.s. on the event & uniformly fort >0 and x € [a+7,b — &7].

Lemma 3.3 There is a universal constant Cr > 0 such that for any v > 0 there is g > 0 such that for
0 < e < ¢gg the inequality
sup |R:(z)| < Cre®” (3.20)
s€[0,t]

holds a.s. on the event & uniformly for t >0 and x € [a +7,b—&].



The Proof of Proposition 3.1 follows easily from the previous Lemmas. |

The proof of Lemmas 3.2 and 3.3 is performed in the sequel. We consider in detail only the neighbourhood
of the critical point a. The behaviour of x° in the neighbourhood of b is obviously similar. The following
geometric properties of the potential U will be extensively used:

1. The deterministic trajectories 29(z), € [a +&7,b — €7] converge to 0 as t — co due to the property

zU'(z) > 0 for = # a,b,0.
2. The curvature of the potential at = a, b is negative. In a small neighbourhood of a we have U(z) =

Ula) — M, (m_;)2 + o((z — a)?). Consequently 2 behaves there like a + eMa?, and the dynamics of x°
reminds of the dynamics of an inverted process of Ornstein-Uhlenbeck type.

3. The curvature of the potential at z = 0 is positive. In small neighbourhoods of 0 we have U(x) =

U(0)+ M0§ +o(z?). Consequently 2° decays there like e=™of and the dynamics of 2° reminds of the
dynamics of a process of Ornstein-Uhlenbeck type.

From now on, let v > 0 be fixed. Using assumptions on U, for technical reasons we fix some small
J, 0 < 6 < min{|a|,b}, and consider §-neighbourhoods of the critical points a, 0 and b with the following
properties:

a
moy

a
my

e there are some 0 < m{ < M, < m$, < 2, such that if a <z < a+ 6§ then m§(z —a) < —U'(z) <

mg(x — a);
e —U’(-) is monotone increasing in x € [a, a + J].
e Similar estimates hold in §-neighbourhood of b.

e There are some 0 < m{ < mg such that the inequality m? < inf|,|o5U"(x) < sup|, .5 U"(x) < mj
holds.

For & such that 0 < ¥ < ¢ and for « € [a 4+ £7,b — £7], denote
the first time x?(x) reaches the level a + § if z € [a + &7, a + 4],

the first time x?(z) reaches the level b — § if x € [b— §,b — £7],
0, ifx €la+0,b—4],

te(z)

a (3.21)
fl;é T;’y(y)’ ifz €lat+e’,a+d],
= bfin/i(yy)’ ifee[b—46,b—¢g],
0, ifxela+d,b—0].
Also define the time period
-4 b—4
. dy dy
T = max{ ,/ }. (3.22)
ars ~U'(W) S5 U'(y)

T has the property that for all z € [a 4 6,b — 6] and t > T, |29(x)| < 6, i.e. after T the trajectory of z°(x)
is within a d-neighborhood of the stable point 0.

3.2.1 Estimates on Z°

Proof of Lemma 3.2

The solution to equation (3.17) is explicitly given by

t
Zi(z) = /O e LU @i@) du gee (3.23)

Integration by parts results in the following representation for Z¢:

t
Zi(z) = & - / € U"(al(x))e™ S UM @@ du g, (3.24)
0



For x = 0, 2%(z) = 0 for all t > 0, and Z¢(0) is a process of the Ornstein-Uhlenbeck type starting at zero
and given by the equation

t
Z:(0) = & — My / £2_e=Mo(t=2) g (3.25)
0
and hence for any ¢t > 0
sup |Z7(0)] <2 sup [£Z]. (3.26)
s€[0,t] s€[0,t]

Further, it follows from (3.24) that for ¢ > 0 and = € [a +€7,b — £7]

t
sup |Z5(z)| < (1+/ U (2%(z))|e~ Ji U @u(@)) du ds> sup [€5]. (3.27)
s€[0,t] 0 s€[0,t]

In order to prove Lemma 3.2, we distinguish three cases: = € [a + §,b — 0], v € [a + €7,a + ¢] and
x€[b—0,b—¢e"].
1. Let « € [a+ 0,b — §]. Then we show that for any ¢ > 0 and for some positive Cy

sup |Z5(z)| < C1 sup |£5]. (3.28)
s€[0,t] s€[0,t]
Let .
T T " 0 d
Ch= max / U (20 (2))|e= I U @ @) du g (3.29)
xe[aJré,bfé] 0

Consider an arbitrary t > T. Then

t
/ U (@ () e~ 2 V" e e g
0
T t 1" 0 t t " 0 (330)
:/ |U”(xg(x))|e—fsU (wu(w))dudSJr/A |U~(xg(m))|e—fsU (a5 (2) du g
0 T

Let us estimate the first summand in (3.30). Since for all z € [a46,b— 6] and t > T, m? < U” (29(x)) < m9,
we have

T T .
A |UN({E2(.’E))|€_ fst U"” (22 (z)) du ds = e~ f;: U”(wg(w))du/o ‘UN({ITS(LC)Ne_ fST U"” (22 (z)) du ds

(3.31)
< eim?(tif)CQ < (.
The second summand in (3.30) is estimated analogously:
¢ trrtre,.0 d ¢ 0 mg
/ |U" (20()) e~ I V' @al@D du gg < m%/ emmilt=9) s < 2. (3.32)
T T my
Taking C1 = max{2,Cy + :T%} completes the proof.
2. Let x € [a+¢€7,a+ ¢]. Then we show that
e Cs e
sup [Z5(x) < < sup [€2]. (3.33)
s€[0,1] €7 selo,]



Indeed, for z € [a 4+ ¢7,a + 6] and t < t.(x) we have,

t
1+/ |U// z))|e” JEU" (29( r))duds_l_/ U//(x(s)(x))e—f_:U”(mg(z))duds
0

S

—

&
U
<
Il

fwt(t) U’ (v) dv
:17/ U’ (2%(x))e’=2= U0 Tds  (v=2a —U'(v)du)
0

t
1 / U7 (29 () U @ @)/ V' @20) g
0

(20 (g (3.34)
ot [
=14+ U'(22(2)) E g:;( )>2 dv  (v=2%2),dv=—-U'(v)ds)

_ / 1 1 o Ul(mo(x))
=1-U'(2)()) <U’(m?($)) - U’(ﬂ?)) - |

For any ¢t > 0 we use (3.27) and (3.34) to obtain

t
+ [ @yl S e gy
0

t " te(z)A t A 7
=1—¢e ftg(:l;)/\t U (:L’?L (%)) du / U//(xg (x))e_ fss(z) eyu (:cg(ar)) du ds
0

t
b [ raeple U e s
te(z)AL

Ue) () V6w (3.35)
Ul( Ly (a:)/\t(m)) U/(x)

t—te(w)/\t t—te ()AL 1¢..0
+f 07 (a0t 8))fe [ V) du g
0

U@d@) | UEd)
=@ e T U@

Note that for 0 < € < g( for some ¢y small enough and depending on U, a, b, v and §

+Ch.

U’ a:? T m2|a+d
L U@ U6 { G S Tl < S 0StSh@), (3.36)
U ( /\t(x)) U'(x) 1 + maxye[q,p) |U/(y)\(‘U,(;+5)I + \Url(gg)|) <&H t2 te(),
3. For z € [b— d,b — £7] we obtain an estimate similar to (3.36).
Hence, for all z € [a+&7,b—¢7],t > 0 and 0 < ¢ < g,
€ % € 3y
sup |eZ%(z)| < sup |e&5| < Cgze (3.37)
s€[0,1] €7 selo,)
for some positive Cz on the event &;. |

3.2.2 Estimates on R°

To estimate the remainder term R® we need finer smoothness properties of the potential U. However, the
following Lemma shows that this restriction only has to hold locally.

Lemma 3.4 There exists C' > 0 and €9 > 0 such that for and 0 < € < g¢ the inequality

sup |Ri(x)| <C (3.38)
s€[0,t]

holds a.s. on the event & uniformly fort >0 and x € [a+€7,b — &7].
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Proof: By Assumption U2 we know that for any ¢t > 0, z € [a,b] we have z?(x) € [a,b]. Moreover, for
0<e<ezandz € [a+e?,b—e"] we have sup,c(g 4 [Z5(x)] < Cze® on & due to Lemma 3.2. Recall that
U’ increases at least linearly at infinity (see Assumption U3). This guarantees the existence of a constant
C > 0 such that for any z € [a,b], |z| < 1 we have

—U'(z+2+C)+U'(z)+U"(z)z < 0. (3.39)
Hence for any 0 < s < t, z € [a+7,b — 7] the inequality

*U/(:L'g(l‘) +eZ: (2)+C)+ U (2%x)) + U”(IES(I’))F,‘ZE_ () <0 (3.40)

holds on the event & for 0 < e < min{Cgl/g'Y7 ez}. Now assume there is some = € [a+¢&7,b— 7], and some
(smallest) 7 € [0, ¢] such that RZ(z) = C. Observe that the rest term R satisfies the integral equation

Ri(o) = [ F(Ri(@),ab(0), 2 () du (3.41)
0
with the smooth integrand
f(R,2%eZ) = -U'(a" +eZ + R) + U'(2°) + U"(2°)(eZ).
This implicitly says that R® is an absolutely continuous function of time. By definition of 7, we have
0 < DT"RE(2)|s=r = —U'(2%(x) + Z5_(2) + C) + U (22(z)) + U"(22(2))e Z5_ () < 0, (3.42)

a contradiction, with DT denoting the right Dini derivative. A similar reasoning applies under the assumption
Re(x) = —C'. This completes the proof.
|
Lemma 3.4 has a very convenient consequence. It states precisely that the solution process z5(x), s € [0, ],
with initial state confined to [a + &7,b — 7], stays bounded by a deterministic constant K on the set &,
t > 0. Therefore, in the small noise limit, only local properties of U are relevant to our analysis.

Lemma 3.5 There exists C7 > 0 such that for any ~v > 0 there is g > 0 such that for 0 < e < gq,

sup  |Ri(x)] < C1 e (3.43)
s€[0,tAte ()]

on the event & uniformly for x € [a+€Y,b—¢7] and t > 0.

Proof: 1. For z € [a+d,b— 0] the time t.(x) = 0 and the estimate (3.43) is trivial. Thus it is only necessary
to consider x from the neighbourhoods of the boundary points a and b. For definiteness, we consider the
case x € [a+ &7,a+ 0]. Let also Lemmas 3.2 and 3.4 hold for 0 < € < 1 with constants Cz and C.

2. The rest term R° satisfies the integral equation

Ri(z) = /O F(RS(2),2)(x),e25_(x)) ds (3.44)
with
f(R,2%eZ) = -U'(a" +eZ + R) + U'(2°) + U"(2°)(cZ). (3.45)

Moreover, R® is an absolutely continuous function of time. Let the constant K from Assumption Ul be
bigger than C. We write the Taylor expansion for the integrand f with some 0] < K:

f(R,2%eZ) = -U'(z" +eZ + R) + U'(2°) + U"(2°)(cZ)
U® ()
2

= —U'(@%) - U"(a*)(R+27) -

=-U"(2")R - %(R +e72)?

(R+e2)? +U'(2") + U"(2°)(c2) (3.46)

11



Since U € C3, |U®)| is bounded, say by L, on [~K, K|. Using the inequality (R + £Z)? < 2(R? 4+ £22?) we
obtain that for ¢ > 0,

F(R; (), 2 (x),eZ_(w)) < : :
F(R; (2), 27 (2),eZ_(2)) = =U" (2} ()R — L(R;)* — L(eZ;_(x))* > —U”(x?(x))Rf - L( t) - A2867

(3.47)
on the event &, with 4% = 2C%L
3. Let us prove the upper bound in (3.43). Together with (3.44) consider the Riccati equation
t
pio) = [ (it + L2 + A7) ds, 02t o) (3.48)
0
Under the conditions of the lemma, it is enough to prove two statements:
a) Ri(x) <pf for 0 <t <t (z).
b) pf < C1e37 for 0 <t < t.(z).
We have the closed form formula for p;:
_ 2 PN p—tA®
(mg =+ )\6)672»‘6 — (m% — )\S)Gt)‘s ’ (349)

A= \/(mg)2 — 4L A267.

It is easy to see that pf is a non-negative monotonically increasing function starting at 0. However p; has a
singularity at

1 mg + ¢ 3y|Ine|
o) = ——1 2 1 Ine| ™ :
t*(e) oy 10 (mg — )\E> - (1+0(ne|™)), (3.50)
where the latter inequality holds for € | 0. Note that
a+9d d 1 a+d d 1 5
t(x) :/ e / Y = <> =t.. (3.51)
x U (W)~ m$ Jager |a yl - mi &7

In the limit of small ¢, t. can be calculated as

7/Ine|
m¢

te = (1+0(|Ine[™hY), (3.52)

1
Hence t.(z) < t. < t*(g) for 0 < £ < g9, £9 being sufficiently small, and p§ is well defined on the time interval
under consideration.
To show a) we note that at the starting point ¢ = 0,
S(xz)—0
DT R (x Ao Rl LR S 3.53
)], = lim =2 5| (353)
consequently it follows from the continuity of R® and p® that p; > R} for at least positive and small .
Assume there exists 7 = inf{t > 0: RZ(z) = p2} such that 7 < t.(x). At the point 7 the left derivative of
Re(x) is necessarily not less than the derivative of p* which leads to the following contradiction:

RE(z) — RE_p,(2)

D™ Rj(x)|_ =lim h = J(RE(@),22(x), ZZ_(x))
> i = miph + DR)? + A%, (359
F(RE(2),20(2), Z2_(2)) = (95, 20(2), Z5_ () < mlpt + L(pE)? + A2,
To prove b), we use the inequality
sup  pj < Pf(4) < PL.- (3.55)

te[0,te (z)]
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and a formula (3.51) for ¢.. Indeed, on &;, we have the following estimates

2AS o
= € 5 nl(ll’ 6 —_ m2
etE/\ _e—ts)\ < (= < (= = cie “fmg7
ev ev
a
-

Ty e (3.56)
e ebr my
(M2 — Xt <mg [1—J1- =) (2
mgr ) \&
2
m3 o
< ALA%Y (6 \ ™1 -3
< /| = = ¢3¢ i,
mao ev
a .
Thus, since :—% < % and for € < gp = min{ey,e2} we can estimate
7’7712 2
TIme mg
cre ™ 2y(3- 2 Accy
pi. < A% —— __ = <4V (3.57)
Vot V(6—77) 27(3-57)
Co€ 1 — C3¢& 1 Co — C3€ 1
|

The proof of the lower bound in (3.43) is analogous.

Lemma 3.6 (Estimate away from critical points) There exists C2 > 0 such that for any v > 0 there
is €9 > 0 such that for 0 <e <eg and any t.(x) <t <t.(z)+T,

sup |Ri(x)] < Coe®, (3.58)

sE€[te (z),t]
on the event & uniformly for x € [a+¢7,b—&7].

Proof: Using Lemma 3.4, choose K > 0 such that on the event & the processes x°(x),cZ°(z), R°(x) take
their values in [~ K, K] as long as time runs in [0,#]. Let also previous Lemmas hold for 0 < e < €.
For t.(z) <t <t.(x)+ T, the rest term R® satisfies the following integral equation:

t

Ri(z) = Ri_(;)() + / [—U"(3(x) +eZ5_(2) + Ri(2)) + U’ (25(2) + U () ())e Z5_(x)] ds

te(x)

= Ri_ () (7) = /t [U'(@3(x) + eZ5_(2) + Ri(w)) = U'(a(x) + €25 _())] ds

. +(®) (3.59)
—/t( : (U (a5(2) + eZ;_(x)) = U'(z)(x)) = U" (2)(x))e Z;_ ()] ds
=R \(z)— t U"(0))RE(x) ds — t LU (0%)(ez:_(x))%ds

@ [ vehEE s [ ueeez )

with appropriate 0}, 62 € [-K, K]. Note that R y(x)=0ifz €[a+0,b-4]
Thus on &, with the help of Lemma 3.5, we obtain

¢ te(z)+T R
IR ()] < | RS, 0y ()] + / LIRS (2)|ds + =@ L0357 < €13 + / LIRS (x)|ds + 1T LCE.
te(x te(x)

A (3.60)

An application of Gronwall’s lemma yields the final estimates for t.(z) <t < t.(x) + T:
|RS ()| < (01537 + %TLC%E6'Y) eTL < 0ye™. (3.61)
|
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Lemma 3.7 (Estimate near the stable point) There exist a positive constant C3 such that for any v >
0 there is 9 > 0 such that for 0 <e <eg and any t > t.(x) + T,

sup |RE ()] < e, (3.62)
s€te (z)+T,t)

on the event & uniformly for x € [a+&7,b—€7].

Proof: 1. Using Lemma 3.4, choose K > 0 such that on the event & the processes x°(z),eZ%(x), R°(x) take
their values in [~ K, K] as long as time runs in [0,¢]. Let previous Lemmas hold for 0 < € < €.
For t > t.(x) + T the rest term R® satisfies the integral equation

fﬁ<x>=:R;(@+f(x>+—j[() (R (@), o2(x), €25 () ds (3.63)

with
f(R,2%eZ) = —U'(a" +eZ + R) + U'(2°) + U"(2°)(cZ). (3.64)

Note that for the time instants ¢ under consideration, the deterministic trajectory z?(x) is in the 6-
neighbourhood of the stable point 0. Repeating the argument of Lemma 3.5 we obtain the following es-
timates:

F(R; ()2 (),e 25 _(x)) <
< U”(xt(w))R L(R})* + 207 L% < —U" (a7 (x)) R} + L(R;)* + De™,
f (R ()2 ( ),eZ;_(x)) = ~U"(a}(2)) R — L(R;)* — L(Z;_(x))?
—U" (2} () Rf — L(Rf)? — 205 L™ > —U"(a}(x)) R} — L(R})* — De™

U" (@ (@) R + L(R;)? + L(e Z;_(x))?

(3.65)

on the event &, with some D > 2C% L which will be specified later.

The main difference to Lemma 3.5 consists in the sign of the U"” in the vicinity of zero. Now the curvature
is positive what guarantees the boundedness of R°(z) on long time intervals.

2. We establish the upper bound for R¢(z). Consider a Riccati equation

t
V=B yple) [ (St LD+ D) ds, b2 t(a) + T, (3.66)
te(z)+T

The comparison argument of Lemma 3.5 shows that
Ri(x) <pj, t>t(a)+T. (3.67)

Now we study the Riccati equation (3.66) in detail. It is easy to see that it has two positive stationary
solutions at which the integrand of (3.66) vanishes:

0 4LD2 3’}/
pi:;nz<1:|: 1—5>. (3.68)

Applying the elementary inequality § < 1—+/1 —2 <z, x € [0, 1], to the smaller solution p~ and for ¢ < &g
such that 4LD?%e% /(m$)! < 1, we find that

D? 2D? 2D?
e <pT < 5P < =M. (3.69)
my my my
This means that if R? ( )+T(x) < D237 the solution R () does not exceed 2 0 D” 37 on the time interval
e(T my
[te(z) + T',t] and the event &;.
We use Lemma 3.6 to conclude that Rt (= )+T( x) < C9e®7, and taking D > /Com 2D ﬁmbheb
the proof.
3. The lower bound for R®(x) is obtained analogously.
|
Proof of Lemma 3.3 The claim of Lemma 3.3 follows from Lemmas 3.5, 3.6 and 3.7 by taking Cr =
max{C1,Cs,Cs} and g¢ the minimal value of € for which these Lemmas hold simultaneously. [ |
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3.3 Final estimate for |zf — z¥|, a > —oc0

In this section we use Lemma 3.1 and Proposition 3.1 to estimate the probability that the small-jump process

5 (x) leaves the £¢%7-dependent tube of the deterministic trajectory z{ ().

Proposition 3.2 Let a > —oco. Let p € (0,1), 25(x) and 2°(x) satisfy (3.13). Let T(g) be an ezponentially
distributed random wvariable with mean 1/8. and let £&¢ and let T(e) be independent. Then for any v €

(0, (1 — p)/4) there exist pg > 0 and g9 > 0 such that the inequality

e
sup Py sup af(x) —a(w)] = o) < exp(=1/e7)

z€la+e ,b—e7] t€[0,T(e)]
holds for all 0 < p <py and 0 < e < g.
Proof: Let § <minl — p —~,rp. Then ET} = ﬁ% > E% as € | 0. Consider the number
ke = |:50/2:| )
Be
where [z] denotes the integer part of z. Note that k. — oo slower than some power of 1/¢.
For any z € [a+¢7,b — €7] we have

62'}/ 00 &‘27
P, ( sup [af(e) —ad(@) = - ) = / B 7R, ( sup [of (@) = af(@)| 2 - ) dr
0

te[0,T1] tel0,7]

ks/se 0o 527
= / —|—/ Bee PP, | sup |af(x) — 2¥(z)] > —= | dr.
0 ke /e te[0,7] 2

For 0 < € < €1, €1 small enough, the second summand is estimated as

> —Gr g2 B 1
/ka/sg Bee PP, (t:}g)ﬂ |z¢ () — 20 ()| > - dr < exp <—E;ks> < exp <—€9/2>.

For the first summand,

kE/EQ 627
/ B.e PP | sup |5 (z) — a:?(x)\ > — | dr
0 tefo,7] 2

ke—1 (j+1)/€6 62’}/
= Z / Bee TP | sup |zf(x) —a¥(z)| > == | dr
i=0 Jalet tef0.7] 2
- o\ U/
<) P < sup |25 (z) — 2 (x)] > 5) / BoePeT dr
7=0 te[0,(j+1)/ef] 2 /€0

te[0,(j+1)/°]

kg—l 527
< P e(z) — 20 > .
=3 ( sup [af(2) — af(2) 2 2)
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For j > 0,

2 27
P sup  |zf(x) —af(z)| > = | <P | sup |z{(x) —x)(z)] > —
t€[0,(j+1) /%] 2 t€[0,1/2°] 5

€ 0 E2’y £ 0 € 527
+P sup |zg(2) — i (z)] < 5o Sup |2 (x) — Ti_1/e0 (xl/se ()| = 5

tel0,1/9] te[l/e?,2/e]
+ N
€ 0 € 527 .
+P sup |25 (®) — @y (—1) /0 (T—1y e )| < - for 0 <k <j,
te[(k—1)/e%,k/e0) (3.75)
05 (@) — 2 0 (0% (0))] 2 S
sup x; () —x, x5 x))| > —
reli/et G+ <] A 5

o 27 0 27
<P sup |zf(7)— 2 ()] > 5 + sup P sup |xy(y) — 23 (y))| > 5 +o
te[0,1/¢9) - tef

0 e
+ sup P [sup |25 (y) — 2 (y)| > —
te

y; <y<y] 0,1/¢€°] 5

The sequence y,f is determined by a recurrence formula. For small € and any x € [a 4+ €7,b — 7], we know
that t.(z) + T < 1/&’ and thus |:c(1)/69(:c)| < 4. Moreover, |z|e™™2t < |29(z)] < |zle=™t t > 0, |z| < 4.
Define for k > 2

y = I]C(l)/se (z) 4 £¥/5, Yy = x?/se (z) — e21/5,
n y,ile—ml/gg +e27/5, y,:l >0, _ yl;le—ma/ee —e¥/5, y. , >0, (3.76)
Yp = Y, = " o
g yl—ci_fle_m2/69 + 527/5’ y]:;l S 07 k ykfle_ml/ee — 627/5, yk71 S 0.
It is easy to see that for small € and k — oo, y” — % < 5%7 Y, — —% > _szW' Applying

Proposition 3.1 with ¢ = 1/5 and Lemma 3.1 we get for some positive p; that for 0 < p < p; and e < ey < g7,
0 627 4 1/eP1
P sup |25 (z) —z; ()| > — | < (J+ 1P sup €5 > et | < (j+1)e Ve (3.77)
t€[0,(j+1)/<?] 2 t€[0,1/¢¢]
and therefore

ke /< 2y n 1 .
/ Bee TP ( sup |x5(2) — 2 (2)] > 8) dr <e VY (1) = o Fe (ke + De Ve (3.78)
0

t€[0,7] 2 7=0

Combining the latter formula with (3.73) we obtain the estimate needed for 0 < p < py = min{6/2,p1},
€| 0. |

3.4 Dynamics on unbounded interval, a = —cc. Return from infinity

In this section we show that with high probability the process z°(z) reaches some fixed compact neighbour-
hood of the origin in finite time.

Recall that due to Assumption U3 there is N > 0 such that —U’(x) > ¢;|z|'T¢2, for some c¢1, c; > 0 and
r < —N.

Additionally, we assume that N is sufficiently large, so that for any z < —N,

—|z|*re 4|z + %|1+02 + i(l + co)|x|? < 0. (3.79)
Indeed this inequality holds, since for z — —o0,

—Jz[Fe jr 4 e 4 L1 )22 = —1(1 4 o) 2|2 + of]z]2). (3.80)
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We compare z°(x) with the solution of the SDE

t
vi(v) =v+ e / lvs_|'Te2ds + €5, t>0. (3.81)
0

For some M > N and x < —M define stopping times
T =1inf{t > 0: 25 (x) > —M},

3.82
oy =inf{t > 0:v;(v) > -M}. (3.82)
Lemma 3.8 Forv <z < —M, v§(v) < 25(z) a.s. ont € [0,7y).
Proof: Consider the difference
t
ou(@,v) = 25() — v (0) = 2 — v + / (—U(25_) — el |1Fe2) ds. (3.83)
0

The function p;(x, v) is absolutely continuous in ¢, @o(z,v) = £ —y > 0. Let t be the first time instant before
T, such that ¢o(z,v) = 0. This means that the left Dini derivative of ¢ is non-positive at t, D~ y¢(z,v) =
—U'(z5_) — c1|v5_|*T¢2 < 0. On the other hand, the processes z° and v® have the same jumps, so z§ = v§ if
and only if z{_ = v;_ which leads to a contradiction with the assumptions. |

Corollary 3.1 Forv<z < -M, 7, < 0, a.s.

. . —M+1
Fix some M > N consider Tyy = [~ cl\vd|11)+c2 )

Moreover, we can choose M so that ’U%M (=M) < —N.
Lemma 3.9 On the event Er,, the following holds a.s.

sup |v;(v) — vg(v)| <1 (3.84)
te[0,Tar]

uniformly for v < —M.

Proof: As in Lemma 3.2, consider the representation v§(v) = v (v) + ewf (v) + 7§ (v) with

t
U?(’U) =v+c / |u2|1+02 ds,
0

) (3.85)
wie) =& -~ a(+ el [
' ' ' O
To estimate w® we recall equations (3.27) and (3.34) and immediately get
sup |wi(v)| <2 sup &, v< —M. (3.86)
(0,T] [0,Tn]
The remainder term r¢ satisfies the equation
t
ri(v) = Cl/ (lvg(v) +ews_(v) + ()T = [0 (V)2 + (1 + c2) [0l (v) [ ew_(v)) ds (3.87)
0

Assume, there exists a smallest 7 € [0, Th/] such that r2(u) = 3/4. Then the left Dini derivative of r* at this
point is non-negative, i.e.

[02(0) +ews_(v) + 1772 = W2(0) [T + (1 + c2) v (v)]2ews_(v) = 0 (3.88)
On the other hand on the event Er,, we have |ewS_(v)| < 1/4 a.s. for € small enough, thus

[02(0) + ews_(v) + 1772 = R2(0) [T + (1 + ) v (v)[2ews_(v)

3.89
< (o) + 37 — @) + 11+ ea)l(w)| <0, 359

and a contradiction is reached.
The estimate r§ > —3/4 is obtained analogously, and the Lemma is proved. |
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Lemma 3.10 Forx < —M,
7o < Ty (3.90)

a.s. on the event Er,,.

Proof: For any © < —M compare z°(z) with v*(x — 1). The the statement follows from Corollary 3.1,
Lemma 3.9 and the definition of the time instant T);. |

3.5 Final estimate for |zf — 20|, a = —oc0

Proposition 3.3 Let a = —oo, p € (0,1). Let 2°(x) and 2°(x) satisfy (3.13). Let T() be an exponentially
distributed random variable with mean 1/, and let £&¢ and T(e) be independent. Then for any v € (0, (1 —
p)/4). there is pg > 0 and 9 > 0 such that the following estimate holds for all0 < e < ey and 0 < p < py:

2y
sup P sup  af(@)>-M+lor  sup  [af(e) —ad (s (@) = o | < exp(-1/eP)
z<b—er te[0,7a AT ()] tE[ra AT (e),T(c))] * 2

(3.91)
where 7, = inf{t > 0: zf(z) > —M}.

Proof: For x € [-M,b—¢"] we have 7, = 0 and the estimate coincides with those of Proposition 3.2 applied
for a potential well [—M,b — 7], i.e. for the estimate holds for 0 < e < e; and 0 < p < p;.

Consider the case x < —M. First due to Lemma 3.1, P(E%M) < e_l/ep, 0<e<eg, 0<p<ps. Then,
with the help of Markov property we obtain

2y
P sup  zi(z) = —-M +1or sup |25 () — &) e (@5, ()] 2 -
te[0,7. AT (¢)] te[t AT (€),T ()] ' 2

=P(&f,)+P < sup zi(x) > —M + 1,5TM> (=0)
t€[0, 7 AT()]

, (3.92)
E ’y
+P ( sup  zj(x) < —M +1, sup |25 (2) = 20—y npe) (a5, (2))] 2 275TM>
te[0,7, AT ()] te[ro AT (g),T(e)]
c e 0 e —1/e?
<PEp,)+ sup P sup [zf(y) —x(y)| = 5| <e
vel-M—M+1]  \tel0,7()] 2
for some positive 0 < p < min{p1,p2} and 0 < £ < min{e;, &2} small enough. |
4 Exit from a single well
For i =1,...,n consider the wells of the potential U with local minima at m;. For € > 0 and v > 0 consider
the following e-dependent inner neighbourhoods of the wells:
Qi = (8i-1,Si),
(si-1,50) )

Qé = [si—l + 2€’Y, S; — 26"/],

where by convention Q! = (—o0, s1), Q! = (=00, 81 — 287, Q" = (8,1, +0), and Q7 = [s,,_1 + 2&7, +00).
Consider the following life times of the process X¢ in the potential wells:

ol(e) =inf{t >0: XF(-) ¢ [s5_1+&7,8i—€"]}, i=1,...,n. (4.2)

Let

Ni(e) = H_ <S_1€m)+H+ (‘”Emi), i=1,...,n. (4.3)
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Proposition 4.1 There exists v9 > 0 such that for any 0 <y <y, z € Q%, i =1,...,n, any C > 0 there
exists eg > 0 such that for 0 < e < g,

eI - C) <P, (N (e)o'(e) > u) < e "D (1 +C). (4.4)
Consequently, ‘ ‘
lim A*(e)Eq0(2) = 1. (4.5)
Moreover, for j # 1,
: i _ dij
IEIE)I Pz(X:;(E) e Qg) = E (46)

Proposition 4.1 will easily follow from Lemmas 4.2 and 4.3 formulated below. The proof is rather technical
and consists in applying the strong Markov property and accurate estimations of certain probabilities.

4.1 Useful technicalities

4.1.1 Dynamics between big jumps

Due to the strong Markov property, for any stopping time 7 the process &, — &2, £ > 0, is also a Lévy
process with the same law as &£°.
For k > 1 consider processes

k
ft = §t€+7'k—1 - 7€'k—1’

k ! 10k k (4.7)
xi(z) =2 — / U'(zi_ )ds+e&, tel0,Tyl
0
In our notation, for x € R,
X: =} (x) + eWEI{t =T}, t€[0,T5],
Xiipe = a7 (7 +eWh) + eWLl{t = T3},  t €[0,T5],
(4.8)
Xifre | = xf(xfg}l +eWi ) +eWp{t =T}, te[0,T%].
Denote W§ = T¢ = 0, 1(0) = z, and write I{A} for the indicator function of a measurable set A.
4.1.2 Constants p, v and pg
We assume that the threshold power p and the constant g are fixed and satisfy
1 1
—<p<l, 0<v <=(1-p). (4.9)

2 4

Then, for 0 < v < g there is pp > 0 such that Propositions 3.2 and 3.3 hold simultaneously for all wells ¢,
i=1,...,n,for 0 < p<pgand 0 < e < e;. Further, we require that

e 2y < p<1l—2y (will be used in Steps A1-2 and A2-2 of Section 4.2 and Steps B1-2 and B2-2
of Section 4.3),

e r(2p—1)+v>0 (will be used in Step A2-2 of Section 4.2 and Steps B1-2 and B2-2 of Section
4.3),

where r > 0 is the index of regular variation of the tail of Lévy measure (Assumption L2), which obviously
holds for p and ~ satisfying (4.9)
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4.1.3 Constant ¢

Throughout this section we use a constant ¢ such that the following holds for e € (0, g¢] for some g9 > 0:

sup |Xf(y)—mi|§%f0rt20|ln€|, i=1,...,n,
YE[si—1+e7,5;—¢€7] (4 10)
sup | XP(y) —si| > " +2eP fort >ce?, i=1,...,n— 1.
ly—si|>e”
Let us show that these inequalities hold for some ¢ > 0. Let T'(z,y) = inf{t > 0 : X?(x) = y}. Then for
any i = 1,--- ,n, and due to the properties of U we need to show that
T(si1+e7,m;y —e?7)2),T(s; —e',m; +€¥/2) <c|llne| i=1,...,n, (4.11)

T(si—€V,5i —e¥ —2e¥),T(si+€V,8i+7+2¥)<ce”, i=1,...,n—1.

what easily follows from nondegeneracy properties of potential’s extremae (Assumption U2).

4.1.4 Technical Lemma

For definiteness, we assume as in Section 3 that the well’s minimum is located at the origin, and denote
well’s boundaries as —oo < a < 0 < b < +00. Denote \(e) = H_ (g) + H (g) Denote

I =la,b],
Ii=la+e",b—¢€"], (4.12)
Lo=la+e"+e¥,b—e" —£?).

if a > —oo and
I =(—00,0],

I€1 = (—OOJ)—E’Y], (413)
I.o = (—00,b—¢" —&?].
if a = —o0.
For y € I. 1, j > 1, we introduce the following events:
A = A (y) = {2l(y) € L.1,5 € [0,Ty), 2, (y) +eW; € L1},
AT = A (y) = {2l(y) € Ie1, s € [0,Ty), 2%, (y) + €W € 5},
Bj = B(y) = {al(y) € L1, € [0,Ty), a7, (y) + eW; & L1},
) . 2y
Bj={w: swp |o(y) —afy) < 5} ifa>—o0,
te[0,T5] 2

2y
. . . I .
Ej={w: sup ai(y)<-M+land sup |2](y) = 2frnp, (0], W) < -} ifa=—cc.
te[0,7y ATy] te[ry AT, Ty]

(4.14)
with M > 0 and 7, defined in Section 3.4. Let also A, = A,, A,y = A", B, = B,, E, = E}.
Due to Propositions 3.2 and 3.3, SUPyer, , P(E;) < e V¢ for 0 < p < py and e small enough. The
following Lemma will also be used in the sequel.

Lemma 4.1 There exists a positive €y such that the following holds true for all0 <e < ey andy € I .
1. {A{E{T) > c[lne|} <I{ecW; € I},
2. I{B,Y{E{|eWi| > S YTy > cllnel} < {eW; ¢ Lo},
3. H{A;}H{Ey}H{Tl > c|llne|} > {E,M{T1 > c|lne|}I{eW € [a+ 3¢7,b— 3]},
4. YB,2{E{T, > c|llnel} > H{E{Ty > c|llne|}[{eW; ¢ [a — ¥ — ¥, b+ &7 +&27]}.

(4.15)

Proof: Essentially the statements follow from the fact that on E, N{T} > c|lne|}, the inequality |2}, (y)| <
€27 holds a.s. for all y € I, 1. Indeed, if a is finite this follows from Proposition 3.2 and definition of the time
cllnel. If a = —o0, the statement follows from Proposition 3.3.

]
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4.2 Proof of Proposition 4.1. Upper estimate

In this subsection we give an estimate of P, (A(¢)o(e) > u) from above as e — 0, u > 0.
Lemma 4.2 For any C > 0 there exist ¢g > 0 such that for 0 <e <egy and x € I o

P, (\e)o(e) > u) < e 1= (1 4+ 0), (4.16)
uniformly in u > 0.

Proof: For = € I, ;, we use the following obvious inequality

P, (A(e)o(e) > u) = ZP (M) > u) Pp(o(e) = 1)
k=1
+ B, (A)o(e) > ufo(e) € (me1. 7)) Palo(e) € (mer 7)) (4.17)

< S P(AE)T > u) [Pa(o(e) = 1) + Pu(o(e) € (h1,7))] -
k=1

Then for any = € I.; applying the independence and law properties of the processes ), j €N, the
following chain of inequalities is deduced which results in a factorisation formula for the probability under
estimation:

Pm(O'(&‘) = Tk) =E ]I{XE S 15’1,8 S [O,Tk),X_,E_k ¢ Ig 1}

=E, HH{AJ ) BR(XE, }<EH sup ]I{AJ}- sup I{BF}
ot j= 1 Y€l yEle 1 (4.18)
k—1 k—1
= H sup I{A]} sup I{B}| = [E | sup I{4,} -E | sup I{B,}| .
j=1 y€l: 1 yelo 1 ( yelo 1 yelo 1

Analogously we estimate the probability to exit between the (k — 1)-th and the k-th arrival times of the
compound Poisson process n°, k € N. Here we distinguish two cases.
In the first case, k =1, x € I. 5. Then

P.(o(e) € (10,71)) = Py(o(e) € (0,T1)) = E,I{ X} ¢ I. 1 for some s € (0,71)}

X (4.19)
<E | sup {z,(y) ¢ I. 5 for some s € [0,T1]}
y€Ele 2
In the second case, k > 2, x € I. ;. Then
P.(o(e) € (th—1, 7)) = B, I{X. € I.1,s € [0,7k1], X{ ¢ I. 1 for some s € (7,—1,7%)}
k—1
= H I{ A (X }oI{zk(XxE mo_y) & Iy for some s € [0,T})}
j=1
(4.20)

A

k—2
H sup I{A]} - sup ]I{Ak N{ak (ka 1( ) +eWi_1) ¢ I. 1 for some s € [0, Tx]}

yesl ye

_ (B >E

Next we specify separately in four steps the further estimation for the four different events appearing in the
formulae for P, (o(e) = 73) and Py(o(e) € (Th—1,7k))-

sup I{A,}

sup I{A,YI{a?(z], (y) + W) ¢ I, for some s € [0, T3]}
ye€lc 1

y€lc 1
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Step A1l-1. Consider I{A,}. For y € I, 1, we may estimate with help of Lemma 4.1

A} < HAYHE,} + {E;} < HAJHE{eWh| > 51} + I{eWh| < 5} + I{E5)
< A B} {[eWr | > ﬁ}m > cflnel}
+1{A,}I{E, }H{|5W1\ > T < cflnel} +]I{|5W1| < <)+ {ES) (4.21)
<I{|eWs| > S {eW, € 1} +I{[eWs| > ST < clnel} + I{eWs| < 57} + {ES}
={eW; € I} +]I{|5W1| > ST < c\1ns|} +I{ES}.
Step A2-1. Consider I{B,}. For y € I}, we may estimate with help of Lemma 4.1

By} <I{B,}I{E, }+H{Ec}

= B J{E,}I{|eW:| > STy > e|lnel} + I{ B, I{E{[eW)| > S }{T, < cflnel}

+ { B Y{EN{|eW;| < Q}H{Tl > 7} + {B,Y{E, M{|eW; | < Q}H{Tl <"} + {ES}

<I{eWr ¢ I. o} + I{|eWr]| > ¢ }]I{T1 <cllne|} + 0+ T <"} +I{E,}

(4.22)

Step A3-1. Consider I{zl(y) ¢ I. 1 for some s € [0,T}]}. For y € I. 5, we may estimate
z{(y) & I for some s € [0,T1]} <{Eg} + Hai(y) ¢ L1 for some s € [0, W}{E,} = {E;}  (4.23)
Step A4-1. Consider I{ A, }I{z2(2], (y) +eW1) ¢ I 1 for some s € [0, 1]} for y € I, 1, we may estimate

I{ A, {2221, (y) + eWh) ¢ L1 for some s € [0,T5]}
={zl(y) € I,s € (0,T1), 2y, (y) + eWy <€ L 5,22 (xq, (y) + eW1) € L.y for some s € [0, T»]}
+{zl(y) € I,s € (0, Th], 2%, (y) + Wi € L. 1\L. 2, 22 (2], (y) + €W1) ¢ L. 1 for some s € [0, Tb]}

<Hzi(y) € I,5 € (0,T1), x7, (y) + Wy € I. 2} - sup I{z}(y) ¢ I.1 for some s € [0, T>]}
yel 2 (424)

-Hl{xi( ) S I S € (0 Tﬂ ZL’Tl( )+€W1 S Is’l\Is’Q}
< sup I{z2(y) ¢ I., for some s € [0, T»]}
yelc 2

Jrﬂ{xi(y) S _[571,5 S (O,Tﬂ,l’%ﬂl (y) +€W1 S .[571\[572}.

The first term in the resulting expression in the Step A4-1 is identical to the expression handled in Step
A3-1, while the second term requires an inessential modification of the estimation in Step A2-1, namely
we consider an event {a}, (y) + W1 € I 1\I. 2} instead of {a}, (y) + W1 ¢ 1.1}

Now we apply (4.21), (4.22), (4.23) and (4.24) to estimate the expectations treated in Steps A1l-1 —
A1-4 above. Let C be a positive constant.

Step Al-2. Estimate E [supyeli ) H{Ay}] We get for 2v < p < 1 — 27, some g1 > 0 and all ¢ < &7 that

E | sup I{A,}| <P(eWi €l)+P(|leW:] > ¢ )P(T1 < c|[lnel) + sup P(E})
yele 1 Y€l
| H(f)  HA)) | B
Be Pe (4.25)
<1 MR IS (RO el e e 1)
- Be H_(a/e) + Hy(b/e)

22



Step A2-2. Estimate E {supyéls . I[{By}] In fact, for r(2p —1)+~v>0and 2y < p<1—2yand ¢ < &9

< P(eW: ¢ Lo) + P(|eWs| > S)P(Ty < e|lnel) + P(Ty < ce”) + sup P(ES)
y<I}

E | sup I{B,}

y<Ic1
H_((a+¢e"+¢e*)/e)+ Hi((b—eY —e27)/e)
I
H_(a/e) + H (b/e)
Be
(H_((a +e7+e2)/e)+ Hy((b—e" —e¥)/e) N cfH(1/(2e1727))|Ing| + %7 + ﬂgel/sp)
H_(a/e) + Hi(b/e) H_(a/e)+ Hy(b/e)

2(009)
(4.26)

On this step to estimate the ratio H, ((b—¢&” —e%Y)/e)/H (b/e) we used the uniform convergence of slowly
varying functions, see Proposition B.1.

Step A3-3. Estimate E {SUpyeIE,z {x!l(y) ¢ I.1 for some s € [0,T1]}|. We have for £ < &3

<

4+ cH(1/(2e'2))|Ine| + ¢f.e7 + eV

X

IN

< sup P(Ec) 71/6]) < g . /\(5)

E . 4.27
yel; 2 -5 Bs ( )

sup I{zl(y) ¢ I.1 for some s € [0, T}]}
yel. 2 i

Step A4-2. Estimate E [supyeja1 I{A, Y {z?(xp, (y) +eW1) ¢ 1.1 for some s € [0,T]}|. We finally obtain
fore <egy

E | sup I{A,}I{z? (2], (y) +eWh) & I.; for some s € [0, T5]}

y€l:- 1
SPE)+PEWielate —e?a+e” +27)) + P(eWy € [b—e” — 2677, b— &7 4 £77)) (4.28)

§ A
+ P(leWr]| > %)P(Tl < c|lnel) + sup P(Ey) < g (E)
yel 1 ) ﬁe

Then for x € I, o, 0 < e < gp and € < g5 < min{ey, €9,€3,¢€4},

RAMddd>u)§PQ@ﬁ1>wA@)O+QC)
1+~ +

Be 5
Ae) N1 Ae)
+ZP T’“>“)[l_ . (1_5)] A R TC Yy

£y a0 )

k=114

(1+35C>/ —tA=C/5) g < 1+3C//55 —ul=0/5) < omu1=O) (1 4 ).

In the previous formula we have changed summation and integration. This can be done due to uniform
convergence of the series which follows from dominated convergence.

c c/5 J

(4.29)

|
4.3 Proof of Proposition 4.1. Lower estimate

In this subsection we estimate P, (A(e)o(e) > u) from below as ¢ — 0, u > 0. This leads to the following
Lemma with a rather technical proof again.
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Lemma 4.3 For any C > 0 there exist €9 > 0 such that for all 0 < e <eg and x € I, 2
P, (Me)o(e) > u) > e 1+ (1 - ©) (4.30)
uniformly in u > 0.
Proof: We use the following inequality:
P, (A(e)o Z e)ti > u) Pro(e) = 7). (4.31)
k=1
With arguments analogous to (4.18) we obtain the factorization

P.(o(c) =) = E,{X{ € [.1,s € [0,7), X5, & .1}

ﬁ A (XS )} H{BMXE, )}

| \/
x- b
H )—A

i (XE k
k-1
=B |[] inf 1{4)7}- i 1{B})

el.,
1Y

~ (Bt 14, }D B it 18]

For y € I. 2, we next specify separately in two steps the further estimation for the two different events
appearing in the formulae for P,(c(g) = 7%).
Step B1-1. Consider the event [{A; }. We may estimate with help of Lemma 4.1

I{A,} > {A, JI{E,}

> {A, Y{E, } {[eWy] < & - 5 {11 > e} + I{A, M{ B, {[eWy| > € }]I{T1 > cllnel}

> { B, I{|leW;] < %}]I{Tl > ce"} + {E, I |eWh] > T}H{Tl > c|ln e[}J{eW; € [a+3e7,b—3e7]}
> I{|leWy| < ﬂ}H{Tl >ce"} 4+ ]I{|5W1| > ﬂ}]I{Tl > cllng|}{eW € [a+3e7,b— 3e7]} — 2I{ £} }
> I{|eWs| < S5} + I{[eWy| > SEH{eW) € [a+3¢7,b — 3]}

— T < ce”} —I{|eW;] > = }]I{Tl < c|[lnel} —2I{E}}

={eW; € [a+ 37,0 — 357]} —I{Ty <ce"} —I{|eWy]| > & }]I{T1 <cllnel} - 2I{ £} }
(4.33)
Step B2-1. With help of Lemma 4.1 the event I{ B, } may be estimated as follows

KBy} =z {B,}I{E,}{T1 > c[lne|}
> {E T > cllne|}I{eW; ¢ [a — 7 —e®,b+ &7 + 2]} (4.34)
>HeWi ¢ la—e" =2, b+e? +e]} (1 - {T1 < c|lne|} - {ES}).

Now we apply (4.33) and (4.34) to estimate the expectations appearing in the formula for P,(o(e) = 74).
Let C > 0.

24



Step B1-2. Here we estimate E [inf,cy,, I{A, H, 2y <p<1—=2y,r(2p—1) 4~ > 0. There exists £; > 0
such that for 0 < ¢ < &7 the following holds similarly to (4.25) and (4.26)

>P(eWy €la+3e7,b—3"]) —P(T1 < ce”) — P(|leWq]| > %)P(Tl < c|lnel) -2 sup P(Ey)

yele 2
oo H(lax 357)/5); Hi((b=3)/0) _ 4 o _ CH(L) (2615 Ine] — 21/ (4.35)
A(e) C
S (1 3 ) '

Here we again used the uniform convergence from Proposition B.1.
Step B2-2. We next estimate E [infyc;., I{B,}], for which we obtain similarly for 0 < ¢ < €5 with some
€9 > 0.

E [ inf ]I{By}} >PEW, ¢ la—e" -2, b+e” +&P)) (1 —P(Ty < ¢|lng|) — sup P(E;))
(4.36)

y€Elc 2 yE€l o
L M) <1_C>2>A<s>< _C),
Be 4 Be 2

Consequently for 0 < ¢ < min{ey,e2} and x € I, o,
k-1
oo L k—1
© B Py (mt) Ae) C Ae) C
P, () > RLCEPEPYO LA AV V) § I ST A
M) >0 =2, | 55e Y oy oo Ue)l U e) e

o\ [ 1-C/2
>(1- =2 —t(1+C/2) > /= —u(14C/2) > —u(14C) 1— .
—( 2)/u ¢ =1 e Rt =€ (1-0)

See the end of the proof of Lemma 4.2 for the justification of switching the order of summation and integration
in the above argument. |

Proof of Proposition 4.1: The first statement of Proposition 4.1 follows directly from Lemmas 4.2 and
4.3.
The estimate for the expected value of oi (¢) follows easily from the equality

N (&) Bao(e) = / P, (X(e)o*(e) > u) du. (4.38)
0
To obtain the third statement we repeat the steps of the argument of Lemmas 4.2 and 4.3 taking « = 0 and
redefining the event BJy' in (4.14) and thereafter as
{xi(y) € I.1,5 € [0, T}], a:jTj (y) +eW; € QI}. (4.39)

Then, it is easy to see that for z € Q%

SjTmiy Sj—1—Mmy
[H_(s-lm' H_( s'a—m,,') PI(X(;:'I(E) € Qe) - 17 lfj < ia
H (=) + H () (4.40)
Sj—1—Mmsiy 55 —Mm;
lH+(s 1€—m ) H+(S fm ) PI(X;i(s) € Qg) — 1, ifi < J-
Hy(Z=—)+ H ()
and the ratios in brackets converge to ¢;;/¢; as defined in (2.10).
|
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5 Transitions between the wells

For 0 < A < Ag = minj<ij<n{|m; — si—1],|m; — s;|} and = € R denote Ba(z) = {y : |z — y| < A}. Consider
the following stopping times:

T'(e) =inf{t > 0: X7 (-) € ] QF}, (5.1)
k#i

ri(e) =inf{t >0: X:(- U Ba(mg)} (5.2)
k#i

Si(e) =inf{t >0: X:(:) ¢ Baer(s4)}, i=1,....,n—1. (5.3)

For z € Q% T is the transition time between the wells. For = € Ba(m;), 7" is the transition time between
A- nelghbourhoods of wells’ minima, and for & € Ba(s;), S& is the exit time from a neighbourhood of the
saddle point.

Lemma 5.1 Leti=1,...,n—1 and © € Boc(s;). Then

lim H(1/¢)E,S'(e) = (5.4)

€|0
Proof: To estimate E,S(¢) we notice that for & € Bo.- (s;),
Si(e) <inf{t >0:|eL; —eL; | > 47} = J(¢) as., (5.5)

i.e. the first exit time of X¢ from the 2¢7-neighbourhood of the saddle point s; is a.s. bounded from above
by the time of the first jump of eL exceeding 4¢”. Note that J(¢) is exponentially distributed with mean

—1
1
EJ(e) = / v(dy)| =-———. (5.6)
( [yl >4/ = H(4/et77)
The statement of the Lemma follows from the fact that H(1/e)/H(4/e'77) — 0 as e | 0. |

Proposition 5.1 For x € Q! and j # i

- e iy — 4ij

lslﬁglpw(XTl(e) € ) 0 (5.7)
lifg P.(T%(¢) > o'(g)) = 0, (5.8)
€

lim N (e)E,T"(¢) = 1. (5.9)
el0

Proof: It is obvious that for all z € QL
o'(e) < T'(e) Py-aus. (5.10)
We have the inequality
Py (X5 € ) = Po(X5i () € QL) + Po(XFu(y € QLT (e) > 0'(e)) > Pu(X5i() € ). (5.11)

Recall (4.6) in Proposition 4.1 and note that ., qq” = 1. Then the limits (5.7) and (5.8) follow.
For any 6 > 0 there exists €y > 0 such that for 0 < & < gp the following estimates hold

n—1
sup Pz X(ETI(E) c U BQE’Y (S]) S (5,
zeNl =1
sup N (e)Egoi(e) <146, (5.12)

zeQl

max sup  A(e)E,S8%(e) < 4.
lgjén_lxeng’Y(Sj) ( )
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Then is easy to see that
N (e)E,T'(e) < Ni(e )+ ) (k+1)(1+6) + k6)d* <1+ 6 - Const (5.13)
k=1
which proves (5.9). |

Proposition 5.2 For any 0 < A < Aq the following limits hold

~ € ) = %

lim P, (XT,l(E) c BA(mJ)) p (5.14)
N (e)Ti(e) 2 exp(1), (5.15)
1%1 N(e)E, 7 (e) = 1. (5.16)

uniformly for x € Ba(m;) andi=1,...,n, j #i.

Proof:
It is obvious that for all € Ba(m;)

o'(e) <T'(e) < 7i(e) Pr-as. (5.17)

On the other hand, the main contribution to 7(¢) is made by the switching time T'(¢), for if the trajectory
overcomes the saddle point and is in I for some j # 4, it follows the deterministic trajectory with high
probability and reaches the set Ba(m;) in short (logarithmic) time.
First we show that
16%136 (t'(e) < T'(e) + c|lne|) =1, (5.18)

where cis defined in (4.10). Let X7, _ (x) € Q for some j # 4. On the event A. = {w : Sup;c(o e |ELt4Ti(c)—
eLri(o)| < e®} the trajectory X5 (X5, (E)( x)) follows the deterministic trajectory x7 (X;ZI(E)( x)) which reaches

the small neighbourhood of the local minimum m; in time c|lne|. The limit (5.18) holds since P (A4.) — 1.
Then .
Po(X7i (o) € Ba(my)) = Po(XZi (o) € Ba(my), Xu(.) € O, Ac)

j c qij
=Pp; ( Tl(s) € QE’A ) > Pm(X’;l(s) € Qé) - PQI(AS) - ?J

(5.19)

and (5.14) is proved since -, ‘2” =1.

Convergence (5.15) follows easiiy from inequality (5.17), limits (5.8) and (5.18) and the fact that A\(¢)|lne| —
0.

To prove (5.16) we repeat the argument of Proposition 5.1. Indeed, for any 6 > 0 there is g9 > 0 such
that for 0 < € < g the following inequalities hold

sup P, sup |eLy <M} ) <6,
zeQl te[0,c|lne|]

sup N (e)E,T%(e) <1+,

max sup A (e)E,S87(g) < 6,

1Sj§n711’€32s’v(5]’)
max A\ (g)c|lng| < 6.
1<i<n

Then it is easy to see that for 0 < e < ¢g

N (©)Eor(2) < N (e)(EaT (e) + cllnel) +§: (1+ 8+ X (e)elmel)(k +1) + 0k] 6* (5.21)
k=1 '

<1+ -Const
which finishes the proof. ]
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6 Metastable behaviour. Proof of Theorem 1

6.1 Convergence on short time intervals
Proposition 6.1 Let 0 < § <r. Thenifx € Q% i=1,...,n, then fort >0

fes(2) Dmi, €10, (6.1)

Proof: For some 1 < i < n, let x € Q'. We shall prove a stronger result: for any A > 0and 0 < A < Ag

P, sup [ Xsjes —mil| SA ) =Py sup | X:—m;| <A —=1, €]|0. (6.2)
s€[ced|lnel,A] s€lc|lne|,A/e?]

Indeed, recalling Section 3 we choose v > 0 and ¢ > 0 such that | X5, _ (z) — m;| < A/2 a.s. on the event

c|lne|

E =& me N{T1 > c|lnel}, where Ein ) = {SUppg ey o) €€ ] < e}, This gives

P, sup | Xs—mi| >A) < sup Py sup | Xs —m;| > A | +P(E°)
s€lc|lne|,A/el] ly—m;|<A/2 s€[0,A/eb —c|lne|]
< sup  Py(oale) < AJe® — c/nel) + P(E") (6.3)
ly—m;|<A/2
< sup P,(oale) < A/°) +P( ine) +P(T1 < cllnel),
ly—m;|<A/2

where oa(e) = inf{t > 0: |X{ —m;| > A}. On the other hand we know that for Aa(e) = H_(—=A/e) +
HJr(A/E)v

Aa(e)oa(e) 2 exp(1). (6.4)
Since Aa(e)/e® — O ase | 0 we have Py (oa(e) < A/e%) — 0, as well as P(&,.)) = 0and P(Ty < c[lnel) —
0 in the limit of small . This finishes the proof of (6.2). |

Remark 6.1 It is easy to notice in view of Section 3 that the convergence in Proposition 6.1 is uniform in
x for x € QL.

6.2 Proof of Theorem 1
Lemma 6.1 For anyt >0 and 0 < A < Ay,

PT XtE/H(l/s) € U BA(mj) - 1) € l Oa (65)
j=1
uniformly for x € R.
Proof: Choose p and v such that Proposition 4.1 and Lemma 5.1 hold for small €. 1. Let |z — s;| < 2¢7 for

some i = 1,...,n — 1. We know (see Lemma 5.1) that Si(¢) < J(e) =inf{t > 0: |eL; —eL;_| > 47} a.s.
and J(g) ~ exp(m) if 1 —v > p. We show that

P, Xg/gru—w/z) ¢ U Ba(m;) | — 0. (6.6)

j=1
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Indeed, the strong Markov property implies

P, X§/€r<17wz> ¢ U BA(mj)

Jj=1

<P, XQE/Er(l—w/z) ¢ U BA(mj), SI(E) < 1/57-(1—’)'/2) +P (J(&_) > 1/57-(1—7/2))

j=1

— ;Ex Pye | Xsjeravmsic) & U Balmy) | -1{S(e) < 1/e" =7/} { X5, € QF}

Jj=1
n n (6.7)
+ B [Pxy, | X5 oo sio) & U Balmy) | [ 1{S"(e) < 1/ 1{XG ) ¢ | 9
j=1 j=1
+P (J(e) > 1/e717072)
<> suw P, sup [XE—mil>A
L—1 YEQE s€lc|lnel,2/er(1=7/2)]
+P sup  elLi—Li|>a|+P (J(g) > 1/5(1*7/2)) 7
te[0,1/er(1=7/2)]

with a = %min{32 — 81y.+.ySn—1 — Sp—2}. The first summand in the latter formula tends to 0 due to

Proposition 6.1. The second summand is estimated by 1 — exp(e "(="/2)H(a/c)) — 0, and the third
summand also tends to 0 due to the definition of J(e).

2. Tt is clear from the proof that the limit (6.6) holds also for z € Q%, i = 1,...,n, and thus for all z € R.
Then, for € small enough such that t/H(1/e) > 2/e"(1=7/2) the application of the Markov property

n n

Po | Xijuaye ¢ U Ba(my) | = EwPXf/H(l/E)—z/sr(lfwﬂ) X3jeromara & U Ba(my) (6.8)

j=1 j=1
finishes the proof. |

Proof of Theorem 1:
It is clear from the Markov property that it is sufficient to show that forany t > 0Oandx € Q.,i=1,...,n,

P, (X /111/e) € Ba(my)) = P, (Ve =my), j#i (6.9)

Define a sequence of stopping times (7(k))r>0 and states (m(k))x>o such that 7(0) = 0, m(0) = m; and
for k>1

T(k) =inf{t >7(k—1): X[ € LnJ Ba(mi)\Ba(m(k — 1))},

i=1

n (6.10)
m(k) =Y ml{XZ, € Ba(m;)}.
j=1
Define also a (non-Markovian) process X< on a state space {my,...,mu}
X: = im(lﬂ) Hte[H/e)r(k), H1/e)r(k+1))}. (6.11)
k=0
The strong Markov property of X¢ and Proposition 5.2 imply that
Law (H(L/2)(r(k +1) = 7(k)| X5y = mi ) — exp(1/q:), o)

e e qij
P (XZ (1) = myl Xy = mi) — =2,

(3
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uniformly for & > 0.

The process Y defined in the statement of the Theorem is given by the sequence of its jump times
and states, (0(k),Ys)r>0 with the property that the interjump times are conditionally independent and
exponentially distributed. and for £ > 0,0 <14,j <n, i # j,

Law (6(k + 1) — (k)| = ms) = exp(1/g:)
P(Yiy1 =mj|Ye =m;) = £l (6.13)

7

Then

" (XtE/H(l/e) € BA(mj)> =Py, (Ve =my) ‘

" (Xf/H(1/E) € BA(mj)) -P, (Xf = m]) (6.14)

<

P, (Xf — mj) — P, (Y, =m;)]|.

The second summand in (6.14) vanishes in the limit of small ¢ due to the weak convergence of the jump
process X toY. Indeed, in this case the weak convergence is equivalent to the weak convergence of the
sequences of jump times and jump sizes (see [Xia92]) (7(k), m(k))k>0 = (0(k),Yx)r>0, which follows from
(6.12) and (6.13).

To estimate the first summand in (6.14) we use Lemma 6.1. Indeed,

T (XtS/H(l/s) € BA(mj)) P (XE - mj) ‘

=P (Xf/Hu/e) € Ba(m;), X{ = mg) ( t/H(1/e) € Ba(my), X; # m]) (=0)
- P (X =m;, X;/p(17¢) € Bal m] - mj, Xi /e € U Ba(myg) | (=0) (6.15)
k#j
-P, (Xf =mj, X;/p1/e) ¢ U Ba mk)) ‘ <P, (Xt/H (1/e) & U Ba mk)) — 0,
k=1 k=1
which finishes the proof of the Theorem. |

A Existence of strong solution

Here we refer to [SGO03] where the existence of the strong solution was established for potentials with unique
stable point.

First, we note that for the existence and uniqueness of solutions of (2.1) it is enough to demand that U’
is locally Lipschitz and U’(z)z > 0 for |z| > N, with N large enough.

For brevity, we set ¢ = 1. Then for n > 1 consider a family of SDEs with truncated drift,

XM (2) = _/ U(IX™ (2)],) ds + Lo, (A1)
0
where
—-n? x<-n?
[2]n = z, —-n®<x<n? (A.2)
n2, x> n2.

Since for any n > 1 the drift U’(]-],) is globally Lipschitz, (A.1) has a strongly unique solution for any
Fo-measurable x which is a semimartingale by [Pro04, Theorem V.3.6] and also strongly Markov by [Pro04,
Theorem V.6.34].

Define a family of stopping times T : Q@ — RU {400} in the following way

=inf{t > 0: X" (2)] > n?}, n>1, (A.3)
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with the usual convention that if |Xt(n)(x,w)| < n? for all t > 0, then T?(w) = +oo. As (T7),>1 is a
non-decreasing sequence, we can define for any w € Q the explosion time

T, (w) = lim T} (w). (A.4)

n—oo

If we show that T,, = +o00 a.s. then using the fact that Xt(n) (x) = Xt(nH)(ac) a.s. for 0 <t < T' we obtain

the solution of (2.1) by setting
X,(z) = X (2) (A.5)

AT

for all t and w such that t < T?, see [Pro04, Theorem V.7.34].
Let us suppose to the contrary that there is 0 < A < oo such that for some z € R

P(lim T:gA):bo. (A.6)

n—oo

According to this choose B > 0 such that

P( sup Lt§B> >1-4. (A7)
te[0,A]

Fix w € {lim, 00 T < A} N {SUPte[O,A] Li < B}. Forn >1let

S™ =inf{t € [T, T"*) : sgn X" (z) = San;:;,_il (z) and | X" (2)| > N for s € [t, 7))} (A.8)
and ST = T — if thereis tg € [T, TnT1) such that for s € [tg, T7!) we have sgn X1 (z) # sgn X;ﬂl (x)
or | X" (x)| < N (or both).

Consider different cases separately. First, if ST = T — we have necessarily that the jump size |LT;L+1 —
Lyn+1_| must be bigger than (n + 1)2 — N which leads to contradiction for n big enough. If S? # T+ we
have that |X§;1(x)| <n?+ 2B and |X;;J}1 (z)| > (n + 1)%. We note that due to the inequality U’(z)x > 0
for |z| > N, we have

Tzn+1
sen (X3P (@) = XG @) =sen [ T U @) ds (A9)
and
o+t
|Lypin = Lsy| = | X030 (@) = X5 (2) + U'([X) (2)],) ds
@ sn (A.10)
> X5 (@) - X5 (@) = (n+ 1) = n? - 2B,

which also contradicts the assumptions for n sufficiently big. Thus the existence and uniqueness of the
strong solution of (2.1) is established. This solution is also strongly Markov and Feller, see [SG03] and
[KP91, Theorem 5.4]

B Regular variation
Definition B.1 a) A positive, Lebesque measurable function I on (0,+00) is slowly varying at +oo if

lim Hw)
u—+00 l(u)

=1, A>0. (B.1)

b) A positive, Lebesgue measurable function H on (0,+00) is reqularly varying at +o0o of index r € R if

i ZOW

A . B.2
Uu——400 H(u) ’ >0 ( )



For example, positive constants, logarithms and iterated logarithms are slowly varying functions. Further,
one can prove that H is regularly varying of index r if and only if there is a slowly varying function [ such
that

H(u) =u"l(u), u>0. (B.3)

Another important result is the uniform convergence in (B.1).

Proposition B.1 ([BGT87], Theorem 1.2.1) Ifl is slowly varying at +oo then

(B.4)

uniformly for X from a compact set in (0, +00).
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