MOMENT LYAPUNOV EXPONENT FOR CONSERVATIVE
SYSTEMS WITH SMALL PERIODIC AND RANDOM
PERTURBATIONS
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Abstract. Much effort has been devoted to the stability analysis of stationary points for linear
autonomous systems of stochastic differential equations. Here we introduce the notions of Lyapunov
exponent, moment Lyapunov exponent, and stability index for linear nonautonomous systems with
periodic coefficients. Most extensively we study these problems for second order conservative systems
with small random and periodic excitations. With respect to relations between the intrinsic period
of the system and the period of perturbations we consider the incommensurable and commensurable
cases. In the first case we obtain an asymptotic expansion of the moment Lyapunov exponent. In
the second case we obtain a finite expansion except in situations of resonance. As an application we
consider the Hill and Mathieu equations with random excitations.
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1. Introduction. Since the development of the tools of stochastic analysis the
research of asymptotic properties of random dynamical systems generated by au-
tonomous stochastic differential equations has been very active. Following the pio-
neering results of Khasminskii [18], [19], a refined theory of stability focused on path-
wise and moment Lyapunov exponent (see [1], [5]) has been developed (Arnold [2]).
A more sophisticated notion has been investigated under the names large deviations
(Baxendale [9]) and stability index (Arnold, Khasminskii [4]).

For linear stochastic systems with periodic coefficients not much is known to date.
In Section 2 we give an outline of a general theory for such systems using results from
[22], [23]. Though there exist some essential differences between systems with constant
and periodic coefficients, the main results concerning Lyapunov exponents, moment
Lyapunov exponents, and stability indices for stationary points carry over to the
periodic case.

In this paper we consider second order conservative systems with small random
and periodic excitations, of the following form

q
dX® = wIXdt + eA(t) X dt + e 3 _ A (t)X° o dw,(t), (1.1)

r=1

where w is a positive number, .J is the matrix of rotation by —m /2, and A(t), A,(t), 1 <
r < q, are [-periodic 2 X 2-matrices, where [ > 0.

We recall that in the case of linear autonomous second-order systems there are
exact formulas for Lyapunov exponents [19], [16], [17]. But the formulas are mostly
rather complicated and systems with small noise are of special interest. This is why
many works are devoted to the asymptotics of Lyapunov exponents (see [8], [6], [26],
[25], [3], [10], and references therein). In particular in [8], a general expansion has
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been obtained with evaluation of the n-th remainder term for Lyapunov exponents in
the conservative case.

For the moment Lyapunov exponents much less is known (for a general linear au-
tonomous theory see [5]). In [21] deterministic methods for the evaluation of moment
Lyapunov exponents for second-order systems are derived. In the case of small noise
intensity and small moments some asymptotic expansions have been obtained in [13].
[20] presents asymptotic series expansions of the moment Lyapunov exponents of
any order and the stability index in the case of two-dimensional conservative system
perturbed by small noise with time independent intensity. These results are applied
to the investigation of the stability of orbits in the plane under small diffusion in [23].

In our analysis of (1.1), the main steps are as in [20]. However the periodic
case is essentially more complicated in comparison with the autonomous one. First,
we have to consider an enlarged homogeneous two-dimensional state-process (®¢, )
defined on a torus, where ®¢ is the angular part of X¢ on the unit circle, and ¥
uniform motion on the interval [0,!) made into a circle by identifying boundaries. In
particular due to this fact, we need to solve in every step of the asymptotic expansion
procedure a partial differential equation instead of an ordinary one in the autonomous
case. Second, for € = 0 the considered process on the torus is not always ergodic.
It is not ergodic if the intrinsic period 27/w of the unperturbed system and the
period [ of the perturbation matrices are commensurable, i.e., if there exist integer
m and k such that kwl = mn. In the incommensurable case, it is possible to obtain
an asymptotic expansion of the moment Lyapunov exponent of any order. In the

commensurable case, if w # k=1,2,..,2n, m =1, 2,..., for a fixed integer n,

m™m

kl’

one can obtain a finite expansion with a remainder term of the form O(e"*!). So, if
T™m

w # o7 m =1, 2, ..., our approach gives at least the principal term of an expansion

with exactness O(g2). The set of excluded frequencies contains the well known ones
of the theory of parametric resonance. Both the investigation of resonance cases and
a more precise definition of finite expansions are most likely difficult problems which
are at present far from being solved.

In Section 2, we briefly recall classical results about moment Lyapunov exponents
and stability indices, both for linear and nonlinear systems and give an outline of a
general theory for linear stochastic systems with coefficients periodic in ¢. Section 3
is devoted to establish the setting of the asymptotic analysis for our two-dimensional
systems. Sections 4 - 6 are devoted to the incommensurable case. In Section 4 we
set up the expansion algorithm for moment Lyapunov exponents of systems including
small periodic perturbations. Each step of the algorithm involves in particular the
solution of a system of ordinary differential equation for the variable of uniform motion
on [0,1). In Section 5 we present the theorem of asymptotic expansion of the moment
Lyapunov exponent. The application of the preceding to the asymptotic expansion
of stability indices is given in Section 6. In Section 7 we consider the commensurable
case. In the final Section 8 some aspects of the Hill and Mathieu oscillators with
random excitations are discussed.

2. Moment Lyapunov exponent and stability index for stochastic sys-
tems with periodic coefficients. Main theorems. Consider a linear system of
stochastic differential equations (SDEs) in the sense of Stratonovich

dX = Ao(t)Xdt + Xq: A,()X o dw, (b). (2.1)

r=1
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Here X takes its values in R%, A,(t), r = 0, 1,...,q, are d X d matrices with
bounded measurable l-periodic coeflicients, w,(t), r = 1,...,q, are independent stan-
dard Wiener processes on a probability space (2, F, P).

Introduce the cyclic variable ¥ on the circle S of radius r = [/2m, the measure
u(dd) = di/l so that u(S) = 1, and the following autonomous version of (2.1) on an
enlarged state space

dX = Ao(¥)Xdt + i A (9)X o dw, (¢), (2.2)

r=1

dd = dt,

which is solved by a homogeneous Markov process (X, 1) there.

Let X (0) = z # 0. Introduce A = X\|X| and consider the process (¢, A) which is
defined on D = S x S%~! where S?~! is the unit sphere in R%. This process satisfies
the Khasminskii type system of SDEs

dA = ao(9, A)dt + Xq: an (9, A) o dw, (), (2.3)

r=1

dy = dt,
where the d-dimensional vector fields a,, r = 0,1, ..., ¢, are defined by
a.(0,)) = A.(0)) — (A.(0)\, N)A, (6,)) € D.

For | X (t)|?, —oo < p < 0o, we have the following linear equation

d|X|P = p(Ao(H)A,A) - | X|Pdt+p Z(AT (DA, A)|X|P o dw,(2). (2.4)

r=1

Let X(0) = A € S471, 9(0) = 0. The following formula defines a strongly contin-
uous semigroup T;(p) of positive operators on C(D) (note that here and in the sequel
subscripts to processes indicate the initial state):

T:(p)f(6,)) = Ef(Y6(t), Ao, x (1)) Xox(t)|P, (8,)) € D, f € C(D). (2.5)

This fact can be proved by direct checking the definition of a strongly continuous
semigroup.

Assume for a moment that X is an autonomous system. Then the following
semigroup of positive operators T (p) is defined on C(S91):

Ty(p)f(A) = Ef(M@0) XA ()P, A€ 8971, f € C(897Y). (2.6)

It is well known [18], [5], that under some nondegeneracy conditions the process
A is ergodic and for any t > 0, —oc < p < oo, the operator T;(p) is compact
and irreducible, even strongly positive. We recall that a positive operator ) on
C(K) (K is a compact set) is called irreducible if {0} and C(K) are the only Q-
invariant closed ideals, and @ is called strongly positive if Qf(z) > 0, z € K, for
any nontrivial f > 0. The generalized Perron-Frobenius theorem ensures that for each
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p € R the operator T;(p) and consequently its generator L(p) has a strictly positive
eigenfunction corresponding to the principal eigenvalue g(p), which is real, simple,
and strictly dominates the real part of any other point of the spectrum of L(p).

Our next goal is to formulate some basic results concerning stability properties
of the system (2.1).

It should be noted that due to the cyclicity of ¥ none of the operators T;(p) in
(2.5),t > 0, —o0 < p < 00, is compact. To show this let us consider the set F of
all uniformly bounded functions f depending on the variable 8 only. Clearly, T}F
consists of functions of the form f(t + 0)E|Xg(t)|P, f € F, and this set is evidently
not compact. Moreover, not every operator T;(p) in (2.5), t > 0, is irreducible in
contrast to the operator (2.6). Indeed for 6, fixed, let us consider the set F of all
functions f such that f(fg,A) = 0 for all A € S9~1. Clearly, this set is a Tj(p)-invariant
closed ideal.

But the whole semigroup (2.5) can be irreducible. We recall that a positive
semigroup T;(p) in C(D) is called irreducible if the operators T;(p), ¢ > 0, have no
common invariant closed ideal other than {0} and C(D). A simple sufficient condition
of semigroup irreducibility consists in the existence of a set Sy of Lebesgue measure
0 such that

dim L(a1 (8, A), ..., ag(8,))) =d — 1, (8,)) € (S\S,)xS* 1, (2.7)

where L denotes the linear hull spanned by the given vector fields.
It follows from [14], [12] (see also [24]) that the spectrum o (L(p)) of the generator
L(p) of the positive semigroup (2.5) is not empty and for

s(L(p)) := sup{Rep : p € o(L(p))} = max{p € R: p € o(L(p))}
we have
—oo < s(L(p)) < oo.

Moreover the resolvent R(u, L(p)) is strongly positive for p > s(L(p)) because
T:(p) is irreducible, and

R(u, L(p)) 1 (6,) = / " T () £(6, M)t (2.8)

It is possible to justify analogously to [22] that the condition (2.7) ensures the
compactness of the resolvent for u > s(L(p)) as well. We note that the properties of
irreducibility of the semigroup T;(p) and of compactness of its resolvent can be fulfilled
under some weaker conditions than (2.7). In Section 3 we shall give an alternative
condition.

For the completeness of the presentation we prove the following statement (see
also [22]).

Theorem 2.1. Let the following hypothesis be fulfilled:
T;(p) is irreducible and R(u, L(p)) is compact for u > s(L(p)). (2.9)

Then there ezists a strictly positive eigenfunction h, of the generator L(p) corre-
sponding to an eigenvalue g(p) :

L(p)hy = g(p)hy, hy > 0. (2.10)
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The eigenvalue is real and simple, g(p) is bigger or equal to the real part of any
other point of the spectrum of L(p). All the points in o(L(p)) with real part g(p) are
given by g(p) +iak, k = 0, £1,..., for some a > 0, and they are all simple isolated
eigenvalues of L(p).

Proof. Let p > s(L(p)). The relation
o(R(p, L(p))) = (n— o (L(p))) '
implies (1 — s(L(p)))~* € o(R(u, L(p))) because s(L(p)) € o(L(p)). Since R(u, L(p))

is strongly positive and compact, (u — s(L(p))) ! is a simple isolated eigenvalue of
R(p, L(p)) which exceeds the absolute value of any other eigenvalue of R(u,L(p)).
Moreover there exists a unique h, € C(D) with h, > 0, ||hp|| = 1, and a unique
positive measure v, on D with ||vp|| = 1 which are respectively an eigenfunction of
the operator R(u, L(p)) and an eigendistribution of the adjoint operator R*(u, L(p)).
Denoting s(L(p)) by g(p) we get (2.10) and the conjugate equation

L* () = 9(p)vy (2.11)

Further, as (u—s(L(p))) ! is a pole of the resolvent of the operator R(u, L(p)), the
number s(L(p)) = g(p) is a pole of R(u, L(p)) (see [14]). In such a case the generalized
Perron-Frobenius theorem [14] (see also [12]) states besides (2.10) and (2.11) that all
the points from o(L(p)) with real part g(p) are described by g(p) +iak, k=0, *1,...,
for some a > 0, and they are all simple isolated eigenvalues of L(p). Theorem 2.1 is
proved.

As already mentioned, in contrast to (2.6) none of the operators T;(p) in (2.5),
t>0, —o00 < p < o0, is compact, and not each one among them is irreducible. We
add that the real part of any point of the spectrum of L(p) different from g(p) is not
always strictly less than g(p). However these and some other differences to [5] do not
prohibit to carry over the theory of moment Lyapunov exponents to the system (2.1).
The basic theorems relating to stability properties of the system (2.1) are analogous
to the corresponding ones from [18], [5], and [9] and their proofs will not be included
here.

In Theorems 2.2-2.4 X, 5, (t), t > to, is the solution of the system (2.6) with
X (to) = zo, To # 0. The following theorem is an analogue of the Khasminskii theorem
(see also [22], [23]).

Theorem 2.2. Let the hypothesis (2.9) be fulfilled. Then the process (9,A) on D
=S x S?1 is ergodic, there ezists an invariant measure u|D and the following P-a.s.
limit \* exists and does not depend on (to, o), To # 0:

1 1
N = lim 210Xy oo (0)] = lim ~E1n|Xsy a0 (2)] :/ Q(0, Ndu(6, ),  (2.12)
t ’ t—oo ’ D

t—o00

where

q q

Q(0,)) = (40(9)A, ) + % D ((An(8) + AT )N, AL(O)X) = D (A ()M, N). (2.13)

r=1 r=1

The limit A* is called Lyapunov exponent of the system (2.1).
The following theorem is an analogue of the Arnold-Oeljeklaus-Pardoux theorem
from [5] (see also [22], [23]).
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Theorem 2.3. Let the hypothesis (2.9) be fulfilled. Then the limit (which is called
the p-th moment Lyapunov exponent for (2.1))

.1
Jim 20 B[ Xy 0 ()7 = 9(r) (2.14)
exists for any p € R and is independent of tg,zg, o # 0. The limit g(p) coincides
with the eigenvalue g(p) given by Theorem 2.1 and consequently it satisfies the prop-
erties stated there. g(p) is a conver analytic function of p € R, g(0) =0, g(p)/p is
increasing, and g'(0) = \*.

If, for example, A* < 0 and g(p) — oo as p — oo then the equation

9(p) = 0 (2.15)

has a unique positive root v*. It is clear that the trivial solution of (2.1) is p-stable
for 0 < p < 7* and p-unstable for p > +*. The root v* of (2.15) is related to the
asymptotic behavior of the probability P{sup;,, |X, . (t)| > 4}, |zol/d — O, if
7* > 0 and of the probability P{inf;>¢, |X, , (t)| <6}, [zo|/d — oo, if ¥* < 0.

The following theorem is an analogue of the Baxendale theorem from [9] (see also

[22], [23]).

Theorem 2.4. Let the hypothesis (2.9) be fulfilled. If \* < 0 and the equation
(2.15) has a positive root v* > 0, then there exists K > 1 such that for all § > 0 and
for all zy with |zo| < &

(120l /)" < Psup |X,,.., ()] > 8} < K (jaol )" (2.16)
t>to

If X* > 0 and the equation (2.15) has a negative root v* < 0, then there exists
K > 1 such that for all 6 > 0 and for all o with |zg| > 6

2 (0l/8)7" < P{inf [Xiy.,(0)] < 8} < K[zl /3)"" (217)

This theorem states that the probability with which a solution of the linear system
(2.1) exceeds a threshold is controlled by the number v*. Arnold and Khasminskii call
this number stability index. Their main result of [4] consists in proving that the
estimates (2.16)—(2.17) remain true for a nonlinear system as well.

This result can be carried over to nonlinear nonautonomous systems of the form

g
dY = ao(t,Y)dt + Y a,(t,Y) o dw,(t). (2.18)
r=1
In system (2.18) the coefficients a, = (al,...,a?)T, r =0, 1,...,q, are l-periodic

in t and are equal to zero at y = 0: a.(t,0) =0, r =0, 1,...,q.
The variational system for (2.18) has the form (2.1), where

it
A.(t) = {M}, ,7=1,..,d; r=0,1,...,q.
OyJ
The following theorem is an analogue of the Arnold-Khasminskii theorem (see
also [22], [23]).
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Theorem 2.5. Assume that the linearization (2.1) of the system (2.18) satisfies
hypothesis (2.9). Let A* and v* be the Lyapunov exponent and the stability indez for
(2.1). Then

in case \* < 0, v* > 0 there emists a sufficiently small § > 0 and positive
constants cy, ¢y such that for all |yo| < d the solution Y,  (t) of (2.18) satisfies the
inequalities

c1(|yo| /8)7" < Plsup Y, ,, (1) > 0} < c2(|90l/8)"", (2.19)
t>t0

in case \* > 0, v* < 0 there exists a sufficiently small r > 0, positive constants
cs, ¢4, and a constant 0 < o < 1 such that for any 6 € (0, ar) and all § < |yo| < ar
the solution Y,  (t) of (2.18) satisfies the inequalities

Yo

callyol/8)7" < P{inf|Xioyeo(t)] < 6} < callyol /6)"" (2.20)

Here 7 :=inf{t: |Y, (t)| > é}.

3. Perturbed oscillators. Consider the following two-dimensional system

q
dX® = wIXdt +eA(t) X dt + e 3 _ A (t)X° o dw,(t), (3.1)

r=1

0 1
-1 0
I-periodic elements, € is a small parameter. The system (3.1) describes a simple
harmonic oscillator perturbed by small fluctuations both deterministic periodic and
random diffusive.

Its angular component can be represented in the Khasminskii type form (see [19])

where w > 0, J = ] , A(t), A.(t), r = 1,...,q, are 2 X 2-matrices with

dd° = —wdt — eAT (B°) A(9)A(D°)dt — /e i B.(9,8%) o dw,(t),  (3.2)
r=1
dd = dt,

where

Moo= mr | aw =] e
B.(8,9) = AT (¢) Ar(0)A ().

For the p-th power of the radial part | X¢|P, —co < p < oo, we get the following
linear equation

q
dIXEP = epAT (B°)A(9)A(FF)| XE[Pdt + Vap 3 an(9, 8°)| XE[P o du, (), (3.3)
r=1

where

ar(0,9) = AT () Ar (6)A().
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Let us write the equations (3.1)-(3.3) in the Ito form. This gives

dX® = wJXedt + e A(t) Xdt + EZAZ Xsdt+\/_ZA )X Edw, (t),
r=1 r=1

q
d®° = —wdt — eAT (%) A(9)A(D°)dt + %e > %, (9, 9°)B8,. (9, ®°)dt

Op

r=1

_\/EZIBT-(’HJ (}s)dwr(t%
r=1
o = dt,

dIX°[P = \ep ) an(9,8°)| X°|Pdw,(t) + ep[A T (3°) A(9)A(D7)

r=1

6041- £ £ 1 . 2 € €
——E (9, ®°)8,.(9, °) + ipZozr(ﬂ,@ )]|X¢|Pdt.

r=1

The corresponding semigroup is defined by the formula

T; (p)f (8, %) = Ef (96(t), ®5,, (1)) Xg A ()[", (6,¢) €D, f € C(D),

sin @
The infinitesimal generator L®(p) of the semigroup is given by

where D is the torus {(0,¢) : 0<0<I,0<p<7}and A= |: cose ]

L#(p) = L1 + eLs(p),

where

2.0
Op 06’

q 82
L) = 5 3 Bls + (- S

r=1

+p(ATAA — = Zﬂr %": 1p2 3 a2

r=1

The eigenvalue problem (2.10) takes the form

L#(p)f(0,;p) = g°(p) (6, ;5 p), (6,¢) € D,

of¢ : 8+<(l. v
7500, 3p) = f°(L, 3 p), f (2:990:?) _of (a,ecp,p)7

(3.6)

(3.9)

(3.10)

(3.11)
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0f<(6,0;p) _ 8f°(0,7;p)

75(6,0;p) = (6, m;p), 9 PR

F(0,0;p) = f4(1,0;p) = f°(0,m;p) = f(I,m;p) = 1, f€(6,;p) > 0.

In this section and in Sections 4-6 we shall work under the following incommen-
surability condition:

T wl
— and [ are incommensurable, i.e. — is irrational. (3.12)
w ™

This condition ensures the ergodicity of the process (¢, ) even if € = 0.

For two-dimensional systems (d = 2) the nondegeneracy condition (2.7) means
that for any (8, ), 6 outside the exceptional set S, not all the vectors a1 (0, A), ..., aq(6, A)

vanish. Since if A = [ :);f: ] , B.(6,9) and a.(6,)), are simultaneously equal or
nonequal to zero, condition (2.7) is equivalent to

q

D B0,9) #0, if 6 ¢ S, (3.13)

r=1

with a set Sg of Lebesgue measure zero.
Let us consider the weaker condition

q

D BA0,9) #0, if 6 ¢ Sp or p ¢ Fy, (3.14)

r=1

with a finite set Fo = {¢y, ..., C [0,7). Condition (3.14) allows the vector fields
in (2.7) to vanish for finitely many values of (.

Let us sketch a proof of the fact that condition (3.14) implies hypothesis (2.9).
For convenience of notation, let us omit the parameter €.

Let P(t, (8, ¢), (d8,d®)) be the transition probability function of the Markov pro-
cess (9, ®) generated by system (??). Since by assumption the diffusion in the first
equation of (??) vanishes only for finitely many, hence discrete values of ¢, or during a
time set of measure zero, the transition probability is positive if t + 6 € df. Moreover,
regularity of the span of the vector fields in ¢ implies that it has the form

P(t, (6, ), (8, dp)) = 6(t + 6, dB)p(t, (9, ), P)d, (3.15)
where p is a density in @, which is continuous and positive for all ¢ if ¢ > 0, and

1, t+60¢cdb,

5(t+9’dé):{ 0, t+0 ¢ df.

A precise proof of (3.15) rests on the Malliavin calculus (see, e.g. [11]).
For the semigroup we have

Ti(p)f (6, ) = E[f(Js(t), P, (1)) E(| Xo,x(£)[7/ Po,, (£))] (3.16)

= E[f(96(t), ®o,5(1))g(t,0, 0, 0,5 (1))]
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- / " H(t+6,2)9(6,0,0,@)p(t, 6, 0), ?)d.

In (3.16)

(8,6, 0, @o,4(t)) := E(|Xox(1)|7/®s,4(1))-

Due to (2.8), we obtain the representation

R(u L(p)) /(6 ¢) = / - / " (10, 2)9(t, 0,0, D)p(t, (0, ), P)dpdt.  (3.17)

From this representation it follows that the resolvent R(u, L(p)) is strongly pos-
itive and consequently irreducible. Therefore (see [15], [12]) the semigroup T:(p)
is irreducible as well. Moreover, it is not difficult to prove directly that for suffi-
ciently large p > 0 the representation (3.17) implies the compactness of the operator
R(p, L(p)). Due to Hilbert’s resolvent equality the resolvent R(u, L(p)) is compact
for any p € p(L(p)), where p(L(p)) is the resolvent set of L(p). So, we have jus-
tified that condition (3.14) implies hypothesis (2.9). In theorems dealing with the
two-dimensional system (3.1) condition (3.14) will therefore be used instead of (2.9).

4. The procedure of asymptotic expansion. Recalling the eigenvalue prob-
lem (3.11), let us suppose that g°(p) and f€(6, ;p) allow asymptotic expansions

g°(p) = go(p) +eg91(p) + ... +€"gn(p) + ...
(6, 9;p) = fo0, v;p) +f1(8, ;) + ... + €™ fn(0,050) + ...
f0(0a07p) = fO(la(]:p) = fO(Oa”r;p) = fO(laﬂ—;p) = 17 fO(ga(P;p) > 0)

Jn(0,0;p) = fn(l,0;p) = fu(0,m5p) = fu(l,m;p) =0, n =1,2,....

Inserting these expressions into (3.11) and equating coefficients of equal power of
¢ leads to the following set of equations in which we write Ly instead of La(p) (see

[20])

L1 fo = gofo, (4.1)
Lifi + La fo = gof1 + 91 fo,
Ly fo + Lo f1 = gof2 + 91 f1 + g2 fo,

Lifn+Lafn1=gofn+ g1fn-1+ ... + gnfo.

Each function f; is periodic in 6 and ¢. Consider the first equation of (4.1):

—w——+ ——= = goJfo- (4.2)
1z
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Integrating (4.2) in 6 from 0 to [ and in ¢ from 0 to w, and using periodicity
and positivity of fy, we find that go(p) = 0. Therefore fo(0,p;p) = F(wb + ¢;p),
(0, ¢) € D,where F' is some function of one variable. Again by periodicity, and since
the condition of incommensurability (3.12) is fulfilled, we conclude that fo(6,¢;p) = 1.
Consequently the second equation of (4.1) has the form:

Lifi +tc=g1, (4.3)
where ¢ denotes the function periodic in 0 and ¢ given by

aar 1 2
c(8,9;p) = Lafo = p(ATAA — ZﬁT 5 +50° D al.
r=1

Due to periodicity of f; in 8 and ¢, we get

// Llfldcde—// —w% %J;l)d d6 = 0.
0= [ l | ct0.eidoas. (4.4)

The function ¢(f, ¢;p) can be written as a partial sum of a Fourier series in ¢
with coefficients depending on 6

Hence

1
c(0,;p) = =

501(05p) + a1 (6;p) cos 2¢ + by (0 p) sin 2

+a3(0; p) cos 4 + b3 (6; p) sin 4.

Clearly

l
[ 016) = 3a0ids =o. (45)
0

The function f1(6,p;p) has to be determined as periodic in 6 and ¢ with the
boundary condition f1(0,0;p) = 0, and also of the form of a partial sum of a Fourier
series in ¢

1 .
F1(0,0;p) = 5 A1(0;p) + A1(0;p) cos 2¢ + By (6; p) sin 20 (4.6)

+A2%(6; p) cos 4p + B2(6;p) sin 4ep.

Substituting (4.6) in (4.3), we obtain the system of linear differential equations
with constant parameters with respect to the unknown coefficients AY, Al, B}, A? B2
the dot denoting differentiation with respect to 6:

1.,

A =g -

; (4.7)

0
Eu‘l)

Al —2wB} = —a} (4.8)
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B! +2wAl = —b!,
A? — 4wB? = —a? (4.9)

Bf +4wA% = —bf.

This system consists of three subsystems (4.7), (4.8), and (4.9). Our aim is to
find I-periodic solutions for these systems. Due to (4.5) the periodic solution of (4.7)
has the form

]
A9(6;p) = A%(0; p) + / (201(p) — ad(9; p))d, (4.10)

where the constant A?(0; p) will be determined below.

All the solutions of the homogeneous part of (4.8) are 7 /w-periodic. But due to
the condition of incommensurability, this part has no l-periodic solution. The same
statement holds for the homogeneous part of (4.9) with w replaced by 2w. Since
the right hand sides of the systems are given by [-periodic functions, both (4.8) and
(4.9) have unique [-periodic solutions. We do not need the explicit description of these
solutions, which are obtained via integrations. Let us finally determine A(0;p). Using
the condition f1(0,0;p) = 0 and (4.6), we get

1
74105 p) + A1(0;p) + AT(0;p) = 0. (4.11)
Because Aj(0;p) and A?(0; p) are already known, we can solve for A9(0; p). There-

fore both g;(p) and f1 (6, p;p) are determined.
In the next step we find g5 and fs from the equations

Lifo =92+ 91f1 — Laf1, f2(0,0;p) =0. (4.12)

Again periodicity in € and ¢ lead to

92(p) = // (L2f1 — g1.f1)depdf. (4.13)

From the preceding step and the definition of Ly it is easy to see that the function
g1f1 — La f1 can be represented in the form

4
gifi — Lafi = —‘12 ) + Z (65 p) cos 2k + b5 (6; p) sin 2k¢p) (4.14)
k=1

with known coefficients a9, af, b%, k=1,...,4.
An analogous ansatz as before leads us to

4
f2(0,p;p) = —A2 (0;p) + Z A% (8; p) cos 2k + BE (8; p) sin 2k¢p) (4.15)
k=1

and the subsequent calculation of the coefficients A9, A%, B% 1 < k < 4. Using the
additional boundary condition caused by periodicity

4
1
5A5(0p) + ) 45(0;p) =0,
k=1
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the function fs is uniquely determined.
The recursive step of order n starts with the averaging condition which leads to

1 T
9nlp) = - /0 /0 (Lafact — g1 fact — o — gnr fr)dipde), (4.16)

continues with the observation that Lo f,_1 — g1 fn_1 — ... — gn_1f1 pOssesses a repre-
sentation as a trigonometrical polynomial in ¢ of order 4n and consequently motivates
the ansatz

2n

1
Fn(0,03p) = SAL(6:p) + D _(A5,(6; p) cos 2kep + By (6; p) sin 2kep). (4.17)
k=1

Starting with (4.17) we determine A% (8;p) from a one-dimensional linear differential
equation, and every pair Ak(6;p), BE(0;p), k = 1,...,2n, via integration from a
two-dimensional system of linear differential equations. Analogously to (4.11) the
following condition has to be used

2n

%Aﬂ(ﬂ;p) + (45(0;p) =0. (418)

Thus, the procedure (4.1) is justified and the following theorem holds true.

Theorem 4.1. Let the condition of incommensurability (3.12) be fulfilled. Then
the procedure (4.1) can be realized in the form (4.16)-(4.17). We have go =0, fo = 1.
The coefficients A% (0;p), AX(0;p), BE(O;p), k = 1,..,2n, n € N, are uniquely
determined, and can be explicitly given by integrations.

5. Theorem on asymptotic expansion of moment Lyapunov exponent.
Theorem 5.1. Assume the condition of incommensurability (3.12) are fulfilled. Let

91(p); - 5 gn(p) and fo(0,0;p), f1(6,9;p), -, fn(0,p;p) be the functions obtained
from the algorithm (4.16)-(4.17) described in Theorem 4.1. Then for any n € N we

have

9°(p) = 91(p) + .. + €"gn(p) + O(™) (e = 0), (5.1)

where O(e™*1) is bounded uniformly in p restricted to compacts of R.

Proof. Fix n € N and introduce

9n(P) = 90(p) + €91(p) + .- + €"gn(p), (5.2)
fa20,9:9) = fo(0,95p) +f1(6,0;p) + ... + €™ fu (6,05 p). (5.3)

The algorithm of Theorem 4.1 immediately gives
L (p) fr = g (p)f7 + O(e™), (5.4)

where O(e"*1) is uniformly bounded in p restricted to compacts in R.
By means of Ito’s formula, (5.4) guarantees that

df (96 (1), o, (8); P)| Xg A (D)|” = g5, (P) F (96 (t), Ro,o (2); P)| X5 5 (£) [Pt (5.5)
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+O(e™ )| X5 5 (8) Pdt + dM,,

where M, denotes a martingale part which is not explicited further, and O(e"*!) is
again uniformly bounded in p restricted to compacts in R.
Omitting the subscripts 6, ¢, A\, we conclude, taking expectations

d
T BIIXE = gL (p) ELL| X[ + B[O )| X7, (5.6)
As fo = 1, (5.3) implies that for any compact K C R there exists g > 0 such
that for € < gg
1 3
5 Sfa0,ep) <5, (6,0) €D, peK. (5.7)

It is not difficult to deduce from (5.6) and (5.7) that there exist positive constants
K and C such that the following inequalities true for (6,) € D,p € K

d
(95.(p) = Ke" EfI|X|P < Z Eff| X[ < (g7.(p) + Ke"T)Ef7| X, (5.8)

C exp(gé(p) — Ke™)t < Ef¢|X¢|P < Cexp(gs(p) + Ke™)t. (5.9)
Taking the logarithmic time average of (5.9) yields

InEfi|X¢? InC
< B8 T BT o

€ - K n+1l
9n(p) — K" < p — <

g5 (p) + Ke™Tt. (5.10)

Due to (5.7), the following limits exist

InEfS|Xé|p  InE|XPP .
m —————— = lim ——— =

li 9°(p), (5.11)

t—o0 t t— o0 t

and therefore (5.10) implies
95.(p) — Ke™* < g°(p) < g7,(p) + Ke™*.

This completes the proof of Theorem 5.1.

6. Asymptotic expansion of the stability index. The stability index ¢ is
defined as the nonzero root of the equation

9°(v°) = 0. (6.1)
An asymptotic expansion for the stability index
V=7 +V1EF o FYE" + (6.2)

is obtained without any essential modification of the arguments given in [20].
Let us insert the expansion into the formal equation

91(7°) +eg2(7°) + ... + E"flgn('ys) +...=0.

Equating coeflicients of equal power of ¢ leads to a hierarchy of equations the first
four of which are given by

g1(7) =0, (6.3)
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91(70)71 + 92(70) = 0,

1. .
~G1(v0)7T + G2(7¥0)v1 + 93(70) =0,

91(70) 72 + 5

B2 + 5o () + 51 (o)1 + 582090003 + 820072 + 5 (ro) 91 +9a(r0) = 0.
Here the dot denotes differentiation with respect to p. In the algorithm of The-
orem 4.1, every function gi(p) is a polynomial in p. If the first equation in (6.3)
possesses a root vy 7 0 and g1 (v,) # 0, then the system (6.3) can be solved.
The function g; (p) is given by formula (4.4), which states that g; (p) is a quadratic
function of the form g; (p) = cop? + c1p, where

1 l T 4 ) 1 i 604
= dodh, ¢, = — (ATAA — - ’d de. (6.4
co m/ﬂ/g;arw,q zw/O/Z Zﬂ (6.4)

If ¢ #0, c1 # 0, then

c .
Yo = _c_l #0, g1(70) = 2co7y +c1 = —c1 # 0.
0

3c 5¢
To be more precise, assume that —¢; > 0. Consider the interval I = [——1 ~2.
460 460
. 3¢t 5c3 . .
The function g; (p) takes the values — and at the boundaries of this interval.

1660 1600
On I the function g°(p) has form g¢°(p) = eg1(p) + O(g?), where |O(e?)| < Ke? and
K is independent of p € I. Therefore, just as g;(p), the function g°(p) for sufficiently
small ¢ has different signs at the boundaries of I. Since g°(p) is convex, its unique
root on I is given by «° on this interval. Furthermore, we may write with some £ € I

0=g°(v°) =eq1(7°) + O(e?) = eq1(70) + €41 (§)(v° = ¥0) + O(e?).
Since g1 (7o) = 0 and §, > —c1/2 on I, we get the asymptotic relation
7* =70 = O(e).
Now consider the function
9n(p) :=€91(p) + .- + €"gn(p)-

For sufficiently small e this function has different signs at the boundaries of I
and its first derivative on I is bounded below by —c;e/4. Hence similar arguments as
above, more precisely,

0=g°(v") = g (v°) + O(e™™)
= gn(72) + 9 (6) (7 = 75) + O(™) = g5 (€,) (v — 75) + O(e™H),

yield the following estimate for the unique root % of the function g (p) :

v =5 = O(e").
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Further, system (6.3) implies that
F(Vo +ME+ e+ V1™ ) = O(™H)
and so the argument above can be applied again. We get
Yo+ V1€ + o+ Yno1€"F =75 = O(e™).

Consequently the following theorem is proved (see [20]).

Theorem 6.1. Let the conditions of Theorem 5.1 be fulfilled. Assume ¢y #
0, c1 # 0. Then the stability index of the system (3.1) has the following asymptotic
eTpansion:

Y= Yo+ NEF e+ e + O™,

C1

where Yo = ——, Yq1,--, Y can be found recursively from (6.3).

Co

7. The finite expansion of the moment Lyapunov exponent in the com-
mensurable case. In Section 4, it was shown that the algorithm of Theorem 4.1
produces unique solutions. In the commensurable case the property of uniqueness is
violated from the very beginning. Let us show this fact. Consider equation (4.2).
Again gg = 0 since we look for periodic and positive fy. The equation

0fo 0o
w&p + 20 =0 (7.1)
has besides fo = 1 many other solutions. Indeed, let wl/m = m/k and F be an
arbitrary differentiable 7 /k-periodic positive function. Then fo(8,¢) = F(wf + ¢) is
a solution of (7.1) which is positive, I-periodic in 8, and w-periodic in ¢.

Among the solutions of (7.1) we choose fo =1 in the following, as in the incom-
mensurable case.

Let us analyze the existence of an expansion. Supposing that go =0, fo =1, g1,
f17 ey 9n—1,
fn—1 are found (maybe they are not unique), let us return to the n-th step of the
algorithm of Theorem 4.1. The coefficient g,(p) is found via (4.16). The function
fn(6,0;p) is determined by A%, A¥ BF k = 1 .., 2n. For A% we obtain a one-
dimensional linear differential equation which does not cause any difficulties. For
every pair A¥, B¥ we obtain a two-dimensional system of linear differential equations
of the form

Ak _2kwBF = —ak (7.2)

BF 4 2kwAk = —bk

k

k. bE are some I-periodic functions in  which depend also on the parameter p.

In general the functions a¥, b% as [-periodic ones have frequencies w,, = 2rm/l, m =

where a

1, 2,.... If all these frequencies are present, the necessary and sufficient condition for
the existence of an I-periodic solution of (7.2) consists in

2mm
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Moreover, under (7.3) system (7.2) has only one [-periodic solution.
So, if

m

—, k

kl’

then all the systems (7.2), k = 1, ..., 2n, have a unique [-periodic solution.

w# =1,.,2n, m=1, 2,.., (7.4)

Consider now the case when one of the frequencies w,, = 2am/l coincides with
2kw and the right-hand side of (7.2) possesses a harmonic of this frequency, then
the system has no [-periodic solution. In this case the n-th step of the algorithm
considered is impossible. However if the right-hand side of (7.2) does not possess any
nontrivial harmonic of the frequency 2kw, this system does have an [-periodic solution
and even an infinite set such solutions. So, even if the condition (7.4) is violated, for
a fixed n there is a possibility that each of the systems of (7.2), k¥ = 1,...,2n, has
an [-periodic solution, and the n-th step of the algorithm of Theorem 4.1 is feasible.
In case of solvability we find go = 0, fo = 1, 1(p), f1(8,%iP)s-s 9n(p); fu(6,3P),
maybe not uniquely. As earlier we can introduce g5, f¢ in accordance with (5.2), (5.3)
and obtain equation (5.4). All the arguments in the proof of Theorem 5.1 remain true
in the considered situation as well, and consequently we obtain the finite expansion
(5.1). As a result the following theorem is obtained.

Theorem 7.1. Let go = 0, fo = 1, suppose the algorithm of Theorem 4.1 is solv-

able to the (n—1)-st step, and gives g1(p), f1(6,¥;P); s gn-1(P); fn-1(0,¥;P), gu(p)-
Assume that each of the systems (7.2), k = 1,...,2n, possesses an l-periodic solution.
Then the following finite expansion holds

a°(p) = eg1(p) + ... + €"gn(p) + O(e™) (e = 0),

where O(e™t1) is bounded uniformly in p restricted to compacts of R. A sufficient
condition of solvability for the systems (7.2) is given by (7.4). In particular, if
™

w # 91
or if systems (4.8), (4.9) are solvable, then
9°(p) = eg1(p) + O(e?). (7.6)

m=1, 2, .., (7.5)

Remark 7.1. Clearly g1(p),...,gn(p) are obtained uniquely in spite of the fact
that the functions fi, ..., f» may not be unique.

Remark 7.2. Let g;(p) = cop® +c1p where cg # 0, ¢; # 0. Assume the algorithm
of Theorem 4.1 is solvable to the n-th step. Then the stability index of system (3.1)
has the finite expansion

V=Y +V1E + o+ V16" + O(7),

where v, Y1, -+, 7n_1 can be found recursively from (6.3). In particular, if (7.5) is
fulfilled or if system (4.8), (4.9) is solvable, then

7 =1 +0(e) = =2 +0(). .7

Co

Remark 7.3. If in the commensurable case 2mm /! coincides with 2kw, resonance
occurs and the system (7.2) may possess no [-periodic solution. However in the incom-
mensurable case, a similar situation arises. Indeed if wl/7 is close to some rational
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number m/k, we encounter difficulties which are close to resonance problems, because
the periodic solution obtained has a very large amplitude.

Remark 7.4. If the systems (4.8), (4.9) are solvable, and g; and f; are found,
then along with (7.6) it is possible to get a bound for € such that the sign of g¢(p) is
conserved. Knowing g; and f; actually provides

L (p) £ (0, 0;p) = egi f§ + €%(Laf1 — g1f1) = €91(p) + €2 La f1(6, ¢; p). (7.8)

Let, for instance, g1(p) < 0 for some fixed p. Clearly for all sufficiently small ¢
the system (3.1) is p-stable. Let us find an upper bound for & such that the system
remains p-stable. For p-stability it is sufficient that f& > 0 and L°(p)ff < 0, more
precisely

L+efi(8,95p) >0, g1(p) +eL2f1(8,p;p) <O, for all (6,9) €D.  (7.9)

Introduce m(p) := ming,, f1(0, v;p), M(p) := maxg,, L2 f1(8, p;p). If m(p) > 0,
then the first part of condition (7.9) is fulfilled for all ; if M (p) < 0, then the second
part of condition (7.9) is fulfilled for all £. In these cases the system of two inequalities
reduces to a single one. Consider the more complicated case m(p) < 0 and M (p) > 0.
In this case for all € satisfying the inequality

. 1 91(p)
0<e< mm{_M’_M(p)}

p-stability of (3.1) is ensured.

8. The Hill and Mathieu oscillators with small damping and noise.
Let us start by giving a more constructive general formula for g;(p). Using the
expressions for a, and B, from Section 3, and denoting the coefficients of A, by

a¥, r=1,..,q,i,j = 1, 2, one can use (4.4) to evaluate

1 o~ (13 3 1
91(p) = cop® +c1p = gPZE/ (i(ai1)2+§((132)2+‘111a32+5(“i2+031)2)d9 (8.1)
r=170

1 ! 1 : ! 12 21\2 11 22)\2
b | (oo + o3 [ a2 + (@ = )

So, if system (4.8), (4.9) is solvable, then due to Theorem 7.1 g°(p) = eg1(p) +
O(g?).

Let us consider the Stratonovich form of the Hill equation with small friction and
small noise

X = —w?(1 4+ ea)X — eaX + eBX oy + /ey X o i, (8.2)

where a, @, B, v are 2m-periodic functions in ¢, i.e., | = 2m. If a(t) = cost the Hill
1 1

equation is known as the Mathieu equation. Introduce X; = —X, X5 = — X. Then
w w

equation (8.2) takes the form of system (3.1):

Xm = ngdt, (83)



LINEAR STOCHASTIC SYSTEMS WITH PERIODIC COEFFICIENTS 19
dX, = —w(l + sa)det —eaXodt + \/EEX]_ odwy + \/E’YX2 o dwy.
w

Our next aim is to get systems (4.7)-(4.9) for (8.3). For the convenience of
the reader we give some formulae of routine calculations which are necessary for
determining f; and Lo f;.

We have A = [cosg sing]T, A = [sinp — cosy]"

0 0 0 0

ao=| 0, S ao=| g, 0] e0=]0 5]

1 _
ap:=ATAA = —5wa sin 2 — asin? @, Bo == ATAA = wacos? o + %sin 2,
ATan B CRATAA_ B o
a; = A AN = sin2¢p, 8, = A A1A = cos” ¢,
2w w

=ATAA =vsin? p, B, = AT AxA = —% sin 2.

Further,

2 2 2

Zaf:'g—sm 20 + 2 sin’ @, Zarﬂ '8 sm290cos go—’y—sm psin 2¢p,
4w? = 2w? 2

2 ,32 dar ,82 2 7
Z,Brzw—cos go-l—Zsm 2(p,2ﬁ ——Ecos (pcos2ga—75in 2,

9 2 2
- B, = —'8—2 cos” @sin 2¢ + T sin 4.
— "oy w 4
Therefore
2 2
1 Oa, 1
c(8,;p) = plao = 5 Zﬂrw) +5p7 ) e (8.4)

r=1 r=1

where
1, R N o 1 B>, p*?
501 o( 2+8w2+8)+16(w2+ 7)), ay P(2+4w2) , (8.5)
1 g ¥ p B
by = —gpwa(®), af =p(e— — =)~ 5( -9, b =0
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So,
c—lao—}—alcosZ —1 in 2 2 4 8.6
3% 1 4 21"‘)‘15111 ¥ + aj cosdp, (8.6)

where a?, al, a? are given by (8.5).
Now systems (4.8)-(4.9) acquire the form

. . 1
Al —2wB! = —al, B] 4+ 2wA] = 2Pwa, (8.7)

A? — 4wB? = —a?, B? + 4wA? = 0. (8.8)

Clearly, if 4w # 1, 2, ..., the systems (8.7), (8.8) possess 27-periodic solutions and
consequently (see Theorem 7.1 and condition (7.5) with [ = 27) formula (7.6) holds.
Consider the case of constant 8 and -, i.e. the case of constant intensities for random
excitations in the Hill equation. Then a? is a constant, system (8.8) has a 27-periodic
solution, and the condition 2w # 1, 2, ... ensures (7.6). So, we get

Proposition 8.1. For the Hill equation with general random excitations, if

4w #1,2,...,
then
5*(5) = e01(¢) + () (89)
with
2w 2 2 27 2
a) =5 [ 100+ 0 4 opan+ o [T ED wavonan

For the Hill equation with random excitations of constant intensities, formula

(8.9) holds if

2w#1, 2, ...

Consider now the Mathieu equation with random excitations of constant intensi-
ties and with constant friction, i.e. with constant @, 3, and «. Then in (8.7)-(8.8) a}
and a? are constants and we recall that a(f) = cos#. The following statement is true.

Proposition 8.2. For the Mathieu equation with random excitations of constant
intensities and with constant damping, the condition

1
implies (8.9) with
2 2 2 2
a B, B 2
=p(—-—5+to5+—< —(= +3v°).
Let us note that the value w = 1/2 corresponds to the strongest parametric

resonance (see, e.g., [7]).
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Proof. For Mathieu’s equation with constant «, 3, v, and w # 1/2, it is not
difficult to find a function f; (8, p; p) periodic in § and ¢ with f1(0,0;p) = 0 from (4.6)-
(4.9). One should take into account (8.7)-(8.8) with a(f) = cosf and the equation

- 1
A =0as g = Ea? in this case. If w # 1/2, the system (8.7)-(8.8) always has a

27-periodic solution which is not unique for some w. For example, we can take the
following solution

2 _ 1 2

f1(60,¢;p) = %(—1 + cos 0 cos 2¢) + (Wpuil) sin 6 + ;—:}) sin 2 + Z—:} sin 4.
(8.10)
Now the proposition follows from Theorem 7.1.
We continue the consideration of the Mathieu equation under
w=1,=*=a. (8.11)
We have
ap
9(p) = L(p-1) (812)

Due to (7.7), the stability index satisfies
7 =1+ 0(e),

and if 0 < p < 1, then for all sufficiently small € the considered system is p-stable.
Let us apply Remark 7.4 in case (8.11) with & = 1. In this case

p
ai = 1(3_p)a a% = Oa

f1(0,p;p) = g(—l + cosf cos 2¢p) + (—g sin 0 + 5(3 — p))sin2¢p,
1 9? 3 d
Ly, = 3 cos? <pa—802 + (= cosfcos® p — 1 sin 2¢p + g sin2cp)%
+(—E + 3p cos2p + p_2 sin ¢ — P cos 0 sin 2¢)
4 4 2 2 '

The following rough bounds for f; and Lo fi under, for example p = 1/2, are
evident:

O fi
Op?

0
max |f1| < 0.6, max|i| < 0.9, max | | < 1.7, max|Laf1] < 2.8.
9,0 0,0 8(,0 0,p 0,0

Using these calculations and Remark 7.4, we obtain that the considered equation
is 1/2-stable if 0 < £ < 0.02.
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