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Abstract

Random dynamical systems can be generated by stochastic differential equa-
tions (sde) on the one side, and by random differential equations (rde), i.e. ran-
domly parametrized ordinary differential equations on the other side. Due to
conflicting concepts in stochastic calculus and ergodic theory, asymptotic prob-
lems for systems associated with sde are harder to treat. We show that both
objects are basically identical, modulo a stationary coordinate change (cohomol-
ogy) on the state space. This observation opens completely new opportunities for
the treatment of asymptotic problems for systems related to sde: just study them
for the conjugate rde, which is often possible by simple path-by-path classical ar-
guments. This is exemplified for the problem of local linearization of random dy-
namical systems, the classical analogue of which leads to the Hartman-Grobman
theorem.
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Introduction

The concept of random dynamical system comprises a big variety of different mathe-
matical objects. As their deterministic counterparts, which describe products of maps,
or flows of difference or differential equations, they may have a variety of different
generators. As opposed to the deterministic setting, however, besides the dynamics on
the state space induced by the recursive equations, difference or differential equations,
there is a stationary dynamics on the random basis in the background induced by a
basis flow, i.e. a (semi)group of measure preserving transformations which interacts
with the foreground random motion to produce the mathematical object of cocycles
on skew products. Arnold [1] treats this subject along with its generators in depth and
detail.

Of particular importance for the treatment of their asymptotic properties such as
stability, Lyapunov exponents, random attractors, invariant manifolds, bifurcations, is
the variant of ergodic theory suitable for the flow level, namely multiplicative ergodic
theory, based on the powerful theorem due to Oseledets [15]. It provides the stochastic
analogue of eigenvalues and eigenspaces of a matrix inducing a simple autonomous
differential equation. Lyapunov exponents and the Oseledets spectrum play analogous
roles for the asymptotic exponential growth of trajectories of linear random cocycles.
The particular values asymptotic exponential growth rates can take are described by
the Lyapunov numbers, realized by those trajectories whose initial vector belongs to
the corresponding Oseledets spaces. These spaces can be described as intersections
of forward and backward random flags, and therefore are created by a mixture of a—
and w—limits - a quite common fact in the context of ergodic theory. If the particular
cocycle to be treated by these methods of ergodic theory is generated by stochastic
differential equations, however, also methods of stochastic analysis, in particular It6’s
calculus, enter the scene. And the strict causality behind the stochastic integral notion
of Ito is bound to conflict with the causality breaking notions containing time limits
at both +oo.

For this reason in Arnold’s [1] book, there is a clear-cut boundary between the
asymptotic treatment of cocycles generated by random matrices or their continuous
time counterparts, random differential equations, on the one hand, and stochastic
differential equations on the other hand. The border line is marked by the limits of
available methods, and the indicated conflict between ergodic theory and stochastic
analysis leaves much more question marks and open problems on the side of stochastic
differential equations, while on the side of random differential equations, often due to
pathwise classical arguments solutions are more readily available.



The bottom line of what we propose to show in this paper is that both classes of co-
cycles, those generated by random differential equations, and by stochastic differential
equations, are basically the same objects. In fact, we shall prove that under only very
mild regularity assumptions concerning the vector fields involved there always exist
cohomologies, i.e. stationary coordinate changes by means of which flows of stochastic
differential equations may be viewed as ordinary differential equations with a random
parameter. This may remind the reader of the result by Doss and Sussman expressing
solutions of sde as solutions of ordinary non-autonomous equations along a determin-
istic flow. In fact, the idea of a flow decomposition which is behind this and other
approaches (see Bismut, Michel [5], [6]) just has to be refined by the requirement that
the flow component related to the diffusive part of an sde be stationary with respect to
the basis flow. This is achieved by writing its diffusive part in an alternative moving
average type representation of the diffusion vector fields with respect to a Wiener pro-
cess. It exactly parallels the derivation of the stationary Ornstein-Uhlenbeck process
as a moving average of a constant vector field with respect to the ordinary Brownian
motion.

This surprising result is shown to circumvent elegantly the trouble caused by the
conflict of ergodic theory and stochastic analysis: the non-classical fluctuation of the
driving noises is absorbed into a stationary fluctuation in the base flow, and thus
becomes tractable for ergodic theory. As a consequence, we show that formerly inac-
cessible asymptotic problems for sde provide solutions via a passage to associated rde
for which pathwise classical arguments have already provided solutions of the anal-
ogous problems. We consider the local linearization problem for cocycles generated
by stochastic differential equations, with the famous Hartman-Grobman result as its
deterministic counterpart. We prove that they can be linearized in a small random
neighborhood of a hyperbolic fixed point of the linearized motion.

The structure of the paper is as follows. In section 1 the basic concepts of random
cocycles, their generators, and cohomologies are briefly discussed. Section 2 is devoted
to the main cohomology Theorem relating cocycles of stochastic and random differential
equations by random stationary coordinate changes (Theorems 2.1, 2.2). In section 3,
adapting a deterministic improvement of the Hartman Theorem by Palmer [16] to the
stochastic setting, we give a short proof of a global (Theorem 3.1) and a local (Theorem
3.2) linearization result for random differential equations. Using cohomology, we carry
Theorem 3.2 over to the setting of stochastic differential equations (Theorem 4.1).

1 Stochastic and random differential equations and
cocycles

According to Arnold [1], random dynamical systems may be generated by a variety
of different objects. Random matrices may as well act as generators as random or
stochastic differential equations. To see that the second type of generator is just the
continuous parameter version of the discrete time products of random matrices, let
us briefly explain the notions. If (2, F, P) is a stochastic basis with a P—preserving
mapping 0 : Q — Q, and A : Q — R%9 is a random d x d—matrix, we may define for



ne€Zy,wefll
d(n,w) = A" w) o A(B"2w) o - - 0 A(w).

Then for n,m € Z,,w € Q

dn+myw) = AO 0 w)o--- A(0"w) o A0 'w) o -+ A(w)
= ¢(n’ emw) °© ¢(m’ w)? (1)

and trivially
¢(0a w) = ide' (2)

So in case T = Z, and the semigroup of P—preserving mappings (;)cz is interpreted
by 0, = 0! for t € Z, our flow of products of random matrices ¢ is a random cocycle or
random dynamical system in the sense of the following definition.

Definition 1.1 Let T € {Z,,Z,R,,R} and d € N. Let (2, F, P, (6;)tct) be a metric
dynamical system, i. e. a stochastic basis endowed with a (semi)group of P—preserving

maps. Then a map
d:Tx QxR R

is called random dynamical system or random cocycle on R? if the following conditions
are fulfilled:

(i) ® is B(T) @ F ® B*-measurable,

(i) for s,t € T,w € Q we have

O(s+t,w) = P(t, Osw) o (s, w),
@(O,W) = Zde

At places, we shall also refer to random cocycles as random flows, slightly abusing
the standard terminology. Here and in the sequel we shall write ®(t,w) or ®;(w) for
the (¢, w)—section of ®.

Random dynamical systems induced by products of random matrices may be viewed
slightly differently in the following random difference equation version. Setting

g: QxR R (w,y) — (A —idga)(w,y),

we obtain the random dynamical system generated by the above products of translates
of A by 6 also as the solution flow generated by the random difference equation

Yn+1 — Yn = g(en'a yn)a ne Z+- (3)

The continuous time version of this random dynamical system will then be generated
by a metric dynamical system with a continuous time (semi)group of P—preserving
transformations 6; : Q — Q, t € R (¢ > 0) and a random mapping g :  x R? — R4
with some smoothness, e. g. local Lipschitz properties, in the spatial variable, through
the random differential equation

dy, = g0y, y)dt, teR (t>0). (4)
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The random cocycle corresponding to such an equation is naturally induced by the
flow of solutions of the differential equation (see Arnold, Scheutzow [3]).

The third canonical source of random dynamical systems is stochastic differen-
tial equations. For the smooth form of this object, one usually departs from the
m—dimensional canonical Wiener space (2, F, P). Here Q is the space of continu-
ous R™—valued functions on R endowed with the o—algebra F of Borel sets for the
topology of uniform convergence on compact subintervals of R. Together with the
canonical group of time shifts 6, : Q@ — Qw — (s = wys —wy), t € R (t > 0),
the canonical space creates a metric dynamical system. Given smooth vector fields

fo,**+, fm on R% the stochastic differential equation in Stratonovich form
dzy = fo(a,) dt + Y fi(z) odW, teR (t>0), (5)
i=1

induces a flow of solutions which gives rise to a random cocycle indexed by R resp.
R,.

Be the stochastic differential equations given in Stratonovich or It6 form, contrary
to random differential equations, it is by no means trivial to prove the cocycle property
of the induced flow, not even the flow property of the solutions itself. If it comes
to asymptotic properties of cocycles generated by random differential equations resp.
stochastic differential equations, this clear dichotomy of difficulties in the stochastic and
analytical treatment becomes even more pronounced. The multiplicative ergodic theory
of random differential equations often just requires an w-by-w extension of arguments
available for deterministic differential equations. In contrast to this, the multiplicative
ergodic theory of stochastic differential equations is essentially harder to handle, due
to some incompatibility between the causality notions of stochastic analysis and It6’s
calculus on the one hand, and the notions of ergodic theory on the other hand reflecting
causality only in a rather restricted way: asymptotic notions involving both a— and
w—limits for instance depend on information from the far past and future at the same
time.

Here we propose a way out of this dilemma. It is based on the following notion
investigated in [9], [10] for sde with special algebraic conditions to be fulfilled by the
diffusion vector fields. Suppose from now on that the metric dynamical system on
which our random dynamical systems are based, is composed of the m—dimensional
canonical Wiener space with the canonical group of time shifts.

Definition 1.2 Two random dynamical systems ® and ¥ on R% are called conjugate,
if there exists a random homeomorphism H : Q x RY — R? such that for all (w,t) we
have

U (w) = H(Ow, ) o ®(w) o H H(w, -).
In this case H is called cohomology of ® and V.
A cohomology of two random dynamical systems may be considered a random co-

ordinate change through which the dynamical behaviour described by one of them is
translated into the dynamical behaviour described by the other. Intrinsic asymptotic



notions of random dynamical systems such as Lyapunov exponents or random attrac-
tors should not be altered by coordinate changes providing cohomologies. Hence if e.g.
the attractor of one of them is known, it should be easy to obtain an attractor for the
other by simply mapping the former by means of the cohomology.

We shall prove in the following section that under very mild conditions on the
vector fields of a stochastic differential equation there always exists a random vector
field such that the random dynamical system generated by the rde related to this field
is conjugate to the random dynamical system generated by the sde. This opens a
new way to construct for example random attractors for sde given some knowledge
on attractors of related rde. This idea has been used in Crauel, Flandoli [8], Keller,
Schmalfuss [11] in very particular cases, and exploited more systematically in [9] and
[10] under algebraic conditions concerning the Lie algebras generated by the diffusion
vector fields.

2 The cohomology theorem

Let smooth vector fields fy,-- -, f,» on R?% induce the stochastic differential equation

dzy = fo(ze) dt + ) filzy) o dW}, t>0, (6)

=1

which generates the smooth random dynamical system ® on R?. Then the following
decomposition of its flow is well known from Bismut, Michel [5], [6], and has been used
in a number of papers. Given a differentiable map g : R — R¢, we denote in the
sequel by a% g the Jacobian of g. Let H be the random dynamical system generated by
the stochastic differential equation induced by the diffusion vector fields alone

dX, =" fi(Xy) odW}, t>0. (7)
i=1
Denote by ¥ the flow generated by the non-autonomous random differential equation

0

dy, = (%Ht)_l(-, Vi) fo(Hy(-Y3)) dt, 2> 0. (8)
Then, according to the It6-Ventzell formula, we have
0
d(Hi(-, U4(-,2)) = %Ht('ﬂ Uy(+,2)) 0 dWy(, x) + dHy(-, y)|y:‘1’t(',m)

= fO(Ht('a \Ijt('v .T))) dt + Z fz(Ht(: \Ijt('a x))) © dI/VtZ
i=1
Therefore, by uniqueness of solutions
@t:-Ht O‘Ilt:Ht O\Ift Old;{}i (9)

Stated alternatively, ® and ¥ are related by the coordinate changes idg« and H; at time
t > 0. This, of course, usually fails to be a cohomology, since H;(w) will in general be
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very different from Hy(6;w), for w € Q, t > 0. But the flow decomposition idea points
into the right direction. The random cocycle generated by (7) just lacks the property
of being stationary, expressed by the equation

Hi(w) = Hy(bw), weQ,t>0.

To obtain this property, we shall in the sequel modify the sde induced by the diffusion
vector fields so that it generates a stationary flow of diffeomorphisms of R%. To catch
the idea of how this could be done, let us briefly re-examine the well known Doss-
Sussmann flow decomposition of a simple stochastic differential equation. Suppose in
addition to the above smoothness hypotheses that the diffusion vector fields commute,
i.e. in the usual sense of differential geometry that

Then the partial differential equation

99
8wz~

(w1, W, x) = fi(d(w, -, Wm,x)), 1<i<m,
¢(Oax) =z,

possesses a smooth solution ¢ : R™ x R — R¢. To obtain the flow of diffeomorphisms
solving (6), it is now enough to take the random flow H, = ¢(W;,-),t € R. And in
this setting it is easy to make this non-stationary flow stationary. We just replace the
Wiener process by its stationary companion, the Ornstein-Uhlenbeck process given by

. t .
Zt’:e’t/ e dWi, teR, 1<i<m. (10)

Then redefining H by
Ht = ¢(Zta )at € Ra

will just provide the right object, a cohomology. Which objects does this cohomology
relate? On the one hand, we still have the flow ® of the original equation (6). But on
the other hand, the corresponding generator is altered by a correcting drift, due to the
well known relation

dZt = th - Zt dt
In fact, applying It0’s formula produces
dXy =) fi(Xy) o dW] =Y Z; fi(Xy) dt.
i=1 i=1
This drift term has to be taken into account in an analogue of (8) given by

dYt=(%Ht)‘l(-,n)[fo(Ht(-,n))+f:Z§fi(Ht(-,n))]dt, t>0,  (11)

so that we will obtain the sde generating ® as its random cocycle. Defining

0

06 = G Ho) () Ul Holt.9) + 3 23 ol ). v € B
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thus solves the problem of finding a random differential equation and a cohomology
such that the flow of our original equation (6) and the flow of the random differential
equation dy; = g(6;-,y;) dt are conjugate, in the particular case of algebraic simplicity
of the diffusion vector fields. At the same time, it suggests a two step algorithm which,
appropriately modified, could give the solution in general:

(i) find a stationary solution of an sde containing the diffusion part (7), and determine
the cohomology as its flow H,

(ii) given H, find the random vector field g which determines the conjugate flow ¥
through the random differential equation dy; = g(6;-, y:) dt.

Suppose now that we are back to the general setting, i.e. the commutation property
of the diffusion vector fields is possibly not satisfied. Now of course there is in general
no integral form as above into which we just have to plug a random process R to get a
flow generated by the sde containing only the diffusion vector fields with R as driving
noise. In order to carry out step 1 of our algorithm, we therefore have to think of a
different way to obtain a stationary flow of solutions of an sde containing (7). To get
an idea, let us briefly think about the relationship between the scalar Wiener process
and the stationary scalar Ornstein-Uhlenbeck process. In the setting of our sde, this
corresponds tom = d =1, fy = 0, f; = 1. To obtain the flow of the diffusion part which
now is identical to the whole equation, we have to solve the trivial integral equations

Xf=xz+W,, teR, zeR. (12)

To obtain a stationary flow of an sde containing the right diffusion part, thinking of
the moving average description of the stationary OU process, we may solve the non
canonical integral equations

t
hf:x+e—t/ e*dW, teR, z€R. (13)

To carry this idea further, in the general setting, instead of solving the sde (7), we may
therefore try to solve the non canonical sde

m t )
he =g+ e_tZ/ e fi(h®) o dWi, teR, z e R (14)
i=177%

To make sense of the sde (14), we shall introduce a free parameter 7 € R for the
averaging factor, and investigate the parametrized sdes

m t .
T =stey [ e fi(hT)odW], tTER, zERY, (15)
i=177®

by means of the usual arguments of stochastic calculus. Its solutions will provide a
random cocycle parametrized by the pair (¢,7), and finally we will have to set t = 7
in order to obtain the stationary cocycle H we are looking for. The only aspect that
might seem bothering is the infinite interval of integration appearing in (15). As we
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shall see, a simple change of time scale will cast us back to the usual setting. To obtain
the desired properties of the flow of parametrized systems as in (15), we will need some
notation borrowed from Kunita [13]. For m € Z,,8 > 0 denote by C;™° the set of
functions f : R? — R which possess partial derivatives D*f of order up to |a| < m,
are linearly bounded and for which the derivatives of order m are §—Hélder continuous,
i. e. for which the following inequality holds

|Df(z) — D*f(y)]

f@)] &
sup + sup |D*f(z)| + sup < 00.
reR4 1 + |./E| |aZ=1 zcR4 |aZ:m z,yeR% x4y |-/E - y|(5

In this setting, the following slight generalization of well known results about the
existence of global flows holds.

Proposition 2.1 Let § > 0, and suppose fo,---, fm € C,}"s. Then for any o € R the
Ito stochastic differential equation

dz, = offo(z,) dt + i fi(z,) dW}] (16)

=1

generates a global flow of diffeomorphisms ®* which is differentiable in the parameter
Q.

Proof:
We shall in fact prove the existence of a global flow of diffeomorphisms on the space
R¢ x R which is at least differentiable in the second coordinate. Formally, this is done
by enlarging our sde by the equation da; = 0. In this enlarged equation the vector
fields (z, ) — « fi(x),0 < i < m, are only locally Lipschitz. We therefore know that
there exists a local flow of diffeomorphisms (see Kunita [13]) ® on R¢ x R which is
differentiable in «. It remains to verify that this flow is indeed global. This will be
done by using the continuity criterion for stochastic processes due to Kolmogorov, and
the particular structure of the vector fields.

Denote by X®“ the solution of the enlarged (16) with initial conditions (z, a). Fix
an arbitrary compact set K C R? x R, T > 0, and p > 2. Note first that there exists
a constant ¢; such that for (z,a), (y,a) € K, 0 < i < m we have

afi(z) —afi(y)] < ealz -yl
o fiz)] < el +|x).

Hence, the usual combination of Burkholder’s, Jensen’s and Hoélder’s inequalities pro-
vides the following estimate for (z, ) € K with a constant ¢, independent of K

E( sup | X
0<t<T

T
") Seallol + [ B(sup [X7°P) ds].

Hence Gronwall’s lemma is applicable and we obtain that

M = sup E(sup |X;P) < oc.
(z,0)EK 0<t<T

9



Note next that for (z,«), (y,8) € K,t € [0,T] we may write (abbreviating dW = dt)

Xtm,a _ Xg/,ﬂ = -y -+ QZA [fZ(X;;’a) - fz(ngﬂ)]dWSZ
1=0

[ y:8 i

A slightly different estimation from the one above then yields a constant c3 independent
of K but depending on M such that

T

E(sup | X7 = XPOP) < csllo— g+ 18— o + [ B(sup [X2® — X297 ds)].
0<t<T 0 0<t<s

Another application of Gronwall’s lemma produces a constant ¢, such that for (z, a), (y, 8) €

K, T > 0 we have

E(sup |XP*— XPPP) <eylle —ylP + 18 — af?).
0<t<T

K and T being arbitrary, Kolmogorov’s continuity criterion therefore implies that our
flow ® on R¢ x R is global. O

We are ready to formulate and prove the main result of this section. It describes
the cohomology through a stochastic differential equation. Denote in what follows the
components of vector fields by upper indices.

Theorem 2.1 Let § > 0. Suppose that fi,---, fm € C ,and Y Y ff gﬂ’:ﬁ € C

Then there exists a random flow of diffeomorphisms ® on R? x R such that for any
(z,7) € RY x R the process ®(z,T) satisfies the stochastic integral equation

m t ]
Si(r, 1) =z +eT Z/ e fi(®(x, 7)) 0 dWi, teR. (17)
i=1"7"%
Let
Ht = q)t('at)a (18)
9

Then H is a stationary cocycle of diffeomorphisms on R%, T' a stationary random vector
field on R%, and for any v € R? the processes H(x) and ['(x) satisfy the sde

dH,(z Z fi(Hy(z)) o dW{ +Ty(z)dt, te€R. (20)
Moreover, for x € R%, T'(x) satisfies the stochastic integral equation

@) = —(Hi) %z/ ¢ 2 L(H @) oW (21)
— _tZ/ sz OdWZ
+et;/_m esafi(Hs(x))Fs(ac) odWi, teR.

10



Proof:
For (z,7) € R? let us consider the stochastic integral equation

T =ateT Y [ e fhT)odWi, teR. (22
i=17"

To be able to use the result of Proposition 2.1, we rescale time for the processes involved
in the following way. For t > 0,z € R%, 7 € R,1 < i < m, let

) 12t .
B = / e* dWi,
—0o0

Zz,T _ Zz,T
g = Mgy

Then B = (B',---, B™) is an m—dimensional Wiener process indexed by R.,, and (22)
is equivalent to the transformed stochastic integral equation

m t )
T —gte T Z/O Fi(g®T) 0 dBi, > 0. (23)
=1

Setting o« = e~ ", we are therefore in the situation of Proposition 2.1. We conclude

that there exists a random flow of diffeomorphisms ¥ of R? x R such that for any
(z,7) € R? x R the process ¥(x, 7) satisfies the stochastic integral equation

m t ]
Uz, r) =246 Z/ Fi(Uy(z,7)) 0dB, t> 0. (24)
i=1"0
It is therefore clear that
@t:\p%ezt, tER,
defines the random flow of diffeomorphisms satisfying (17). Now let
Ht:q)t(,t), tG R

Due to the smoothness properties of ®, choosing x € R¢, we may apply a version of
the It6-Ventzell formula to get

0
dHt(.’E) = d@t($,7)|72t+5¢t($,t)dt (25)

— .0
= Y fi(H(z)) o dW] + 5o i 1), tER.
i=1
It is therefore clear how I' has to be chosen. The sde it satisfies is straightforward, and

differentiation is justified by our hypotheses.
It remains to prove stationarity. For this purpose let s,¢t € R,z € R%. Then

H,(6;,z) = x+§;[es/

m
= z+>e” [
i=1

S

. e fi(Hy(-, 1)) o dW!] 06,

" f;(Hy (0, 7)) 0 AW,

m s+t .
= 24+ e / ¢ fi(Hy 465, 7)) 0 dW?.
i=1 -

o0

11



By uniqueness of solutions, and by smoothness in z, we therefore obtain the equation
Hy(0r, ) = Hopa(, ) (26)

Via a perfection argument (see Lederer [14], Satz 2.8, Arnold, Scheutzow [3]), station-
arity is obtained from (26). The argument needed to show that I is stationary is quite
similar. O

This completes at the same time the first step in our two-step algorithm for solving
the cohomology problem for (6). The second step is now very easy.

Theorem 2.2 Let § > 0. Suppose that fy € C;’J, fi,o  fm € CE’J, and
imy 2?21 1l % € CF°. Let H and T be given by Theorem 2.1. Define the random
J

vector field g : @ x R¢ — R? by

9

) L < §
g(’y) ax 0

(y) [fo(Ho(y)) + Lo(y)]- (27)
Then

(i) the random differential equation
dy: = g(0-,y¢) dt, t€R, (28)
generates a global random cocycle of diffeomorphisms ¥,
(i) the sde
dzy = fo(zy) dt + i fi(z) odW}i, teR, (29)

=1

generates a global cocycle of diffeomorphisms ®.

® and ¥ are conjugate with cohomology Hy, i.e. we have fort € R,w € €}
Py (w) = Ho(byw,-) o Uy(w) o Hy(w, ). (30)

Proof:
According to Arnold [1], (29) generates a global cocycle of diffeomorphisms of R¢. The
smoothness properties of g allow to conclude only that (28) generates a local cocycle,
say W. But by the Ito-Ventzell formula, we can show that

At:HO(ot'a')o\I]toH()_la tERa

is another cocycle of diffcomorphisms generated by (29). But this cocycle must, by
uniqueness of solutions, coincide with ®, which is global. Hence W is global as well,
and the cohomology is established. O

To illustrate our cohomology Theorem, let us briefly discuss some examples. Let
us first return to the simple case of commuting diffusion vector fields, in which, as

12



we mentioned in the outset, the random cohomology can be explicitly calculated in a
generalization of the Doss-Sussmann representation.

Example 1:
Let Ag,- -, Ay, € R¥? be such that [A;, 4;] =0 for 1 < 4,5 < m and

d.ﬁt:Ao.Ttdt-f-ZAzxtOdW;

i=1
Let Z be the stationary solution of the m—dimensional Langevin equation
dZt = th - Zt dt

Then, as explained at the beginning of the section, the cohomology H will be given as
the cocycle generated by the solutions of the sde induced by the diffusion part alone
with W replaced by Z

dX, =Y A; X, 0dZ}.

=1

This cocycle is easy to determine. Due to the commutation property of the matrices

Ay, ---, A, the system of linear differential equations
a¢ m d -
6—(2,$):A1¢(Z,.’IJ), zeR™MzeR", 1<i<m,
%

#(0,2) =2, z€RY

possesses the fundamental solution

d(z,-) = exp(i A; zi)-

i=1

Hence . .
Ht = d)(Zt, ) = eXp(Z AZ Z;) = eXp(z AZ Z(Z)) e} Gt = HO e} Gt.
i=1 =1

According to (11) the random vector field of the cohomologous rde is given by

g(w,y) = Hy'(w) Ao Ho(w) y + iAiyZé(w)a

i=1
we N,y eRL

Let us next consider the case of affine vector fields, with commuting linear parts.
Here, the cohomology is almost as simple as in the preceding case.
Example 2:
Let Ag, -+, Ay € R4 by, -+ b, € RY be such that [4;, 4;] =0 for 1 <i,j < m and
consider .
dr, = Az dt + > (A; 2y + b;) o dW}.

i=1
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As before, let Z be the stationary solution of the Langevin equation
dZt - th - Zt dt,

and
Go=exp(A1 Zy + -+ A Z7).

Denoting by A~! the pseudo-inverse of a matrix A, we let

Hy(-,z) = Go(+,x) + ZAi_l(exp(Ai Zé) -Db;, z€ R.

=1

This defines our random cohomology by
Ht:Hooet, tER

According to (11), the random vector field of the cohomologous rde is given by
g(w,y) = Hy " (w) Ag Ho(w)y + Y Hy ' (w) A Ho(w) Zg(w) v,
i=1

weNyeR

In a third example, we allow the Lie algebra generated by the linear diffusion vector
fields to be slightly more complicated. We shall see that the computation of the asso-
ciated cohomology still gives an explicit result, though it is more involved this time.
We follow an algorithm developed in [10].

Example 3:

The following is a simplification of the well known noisy Duffing-van der Pol oscillator
with independent noise sources coupled to the position and velocity components. Its
cohomology to an rde has been used in [10] to show the existence of a random attractor
for this system. In the usual position-velocity coordinates the simplified system has
the following description

dxs = folwy) dt + Ay zp 0 AW, + Ay 0 AW,

00 0 0
Al_[l 0‘|7 A2_[0 1‘|7

and a nonlinear vector field f; for which the system is conservative, i.e. possesses
global solutions for any initial vector. The algorithm proposed in [10] rests upon the
complexity of the Lie algebra £ generated by A; and A,. We define recursively, denoting
by

with the matrices

[A,B] = AB — BA
the Lie bracket of the matrices A and B in R%*¢,

Ly =[L,L], and L,y =[Ls, L], ne€N.

14



The Lie algebra is called solvable, if for some n € N we have £,, = 0. In the case of the
two matrices appearing in our sde we have

L= span{Al, AQ}, and [AQ, Al] = Al.
Hence
Ll = span{Al}, [,2 =0.

So L is solvable, but not nilpotent. Now according to the degree of solvability 2 of the
underlying Lie algebra we construct the cohomology in two steps essentially similar to
the one presented in Example 1. First write the sde in the form

2

i=1

and denote its induced flow by ¢°, where the stationary vector field B? is defined by

Bi(z) = folz)+>_ A} Zj(t)z, (32)

=1

AY = A;i = 1,2, and Z° = Z is the 2-dimensional stationary Ornstein-Uhlenbeck
process. Define the linear stationary vector field

2
Gy = X AVZ)(1), teR, (33)
i=1

let
H) = exp(-C}),

and define the flow ¢! by
¢y = H) ¢, (Hy)™. (34)

Now if A;, Ay were commuting, according with the results of Example 1, we would
be able to conclude that ¢! has a vanishing diffusion part, so that H° would give an
appropriate cohomology. In this case we would be able to stop the algorithm after this
step. Since they do not commute, we write for convenience the flow of the first step in
the form

dgy (x) = By (¢;(x)) dt + odC} ¢¢(x),
and derive the sde determining ¢' in the form
dy(z) = od® ¢} (®)~'(z) + ] odey (Bg)~" (x) (35)
= |-#toact- [ U5 €75 [C0, 0dCV)es ds 8] ¢ (89)7(x)
+ @) [BYg) dt +odCy ¢7] (2)) ()
= - /0 U5 €750 [C0, 0dCVes ds ¢} + OVBYGY(®Y) " db
= - /0 U5 e 10 (09, 0dCYe*® ds ¢! + BOBIEY) ! gl dt.

15



Here the second equation is based on the simple derivation formula for smoothly
parametrized exponentials e (see [10], Lemma 3.1.)

%eAW = a0 - [ U5 e AOA(N), A(N)] A ds AN,
0

Next consider the process I'! defined by the Stratonovich exponential
1
odl'} = —/ s e 57 [C’?,odC?]esc? ds,
0

which possesses stationary increments but is not stationary. We make it stationary by
defining

¢
C} = e’t/ efodll, teR. (36)

The obvious equation
odl'} = odC} + C} dt

then allows to write (35) in the suggestive form
dg; (z) = B, ¢;(z) dt + 0dC; ¢, (), (37)
with the stationary vector field
B; = @) B/ (®})™" + Cy,
t € R. Now the recursive step is evident. We have to define
H! =exp(-C}), teR,
which is stationary by definition, and set
¢ = Hy ¢; (Hy)™', teR. (38)

Then due to £, = 0, the diffusion part of ¢? has to vanish, our algorithm can be
stopped here, and we see that

H,=H, oH{, t€R,
is a suitable cohomology of our sde to an rde generated by the random vector field
9(,y) = Hy o Hy fo((Hy o Hy)~'y) + Hy Cy (Hy) ™' y + Hy o Hy Gy (Hy 0 Hy) ™"y,

y € R
Let us finally calculate H. Since Cf = Z?(0)A; + Z3(0) Az, we have

Hg:e_cgzll 0],

V2 U1
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where 20)
_ =730 _ _“ _ =z
vy =e 20 gy = ZS(O)(l e ()).

To compute C', let us start with the following special case of (36)

¢ 1

_ _¢(0 0

C! = —e t/ e“/ se 5% [0 odCle*“ d
—00 0

t 1 2
= —e_t/ e“/ se S 2m AW A [A1, Ag]eszl 1 B W) A g o daia(u),
—00 0

where

odaya(u) = Z2(u) 0 dZ3(u) — Z3(u) o dZ?(u) = Z%(u)dZI(u) — Z3(u)dZ? (u)

(39)

is the differential of the Ornstein- Uhlenbeck area process corresponding to Z and 7.

In our special case, this gives

/ se =5 Y00 Z0(w) A [A1, Az]eszl 1 B A g

1 1 0 1 0
- A va(s d
/oslw(S) ms)] 1[—;&5 %] §

v1(s

1
= Tl e W — Z9(u) e B Ay

s Z3()

Here vy(s) = e~ , Va(s) = ()). Consequently, noting

we arrive at the equations
0 O 1 1 0
1 1_ —Ch _
CO_[—U;), 0], Hy=e O_lvg 1].
Therefore, finally, the cohomology is given by

1 0

HO:H&OHS:[UQ-FW (2]

£Z
1
w= = [ et gl = e - Z(u) e o da(u),

], Ht:HOOOta tER

3 Local linearization for random differential equa-

tions

A famous theorem due to Hartman and Grobman states that deterministic dynamical
systems can be linearized in the vicinity of hyperbolic points. More formally, suppose

f:R% — R%is a smooth function, inducing the autonomous differential equation

dzy = f(z4)dt,

17
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with a global flow ® of diffeomorphisms of R%. Suppose further that the fixed point 0
of f is hyperbolic, i.e. that
of
A=—(0
5z 0

possesses only eigenvalues with nonvanishing real parts, and let ¥ be the linear flow
associated with the linear differential equation

The theorem states that there exists a (usually non-linear) homeomorphic coordinate
change h : R* — R such that locally ® and ¥ are conjugate via h:

&, =hoW,0oh™!, for t| sufficiently small. (42)

Generalizations of this theorem to the setting of random or stochastic differential
equations are clearly conceivable. In the first case one might consider, on a basic metric
dynamical system, a smooth random mapping f : Q2 x R? — R possessing 0 as a fixed
point, with a random Jacobian A at 0 which is hyperbolic, i.e. all of its Lyapunov
exponents do not vanish. The equations become

dil?t == f(@t-, ilit) dt, (43)
In the second case, on the canonical metric dynamical system induced by Wiener
space discussed above, we may consider smooth vector fields fo,-- -, fm : R? — R, all

having 0 as a fixed point, and with Jacobians at 0 given by Ay, ---, A,, respectively.
This leads to the equations

dxt = f() (.’Ct) dt + Z fz(l't) 9 thi, (45)
=1

dy, = Aoyrdt + > A;yp o dW. (46)
=1

The hyperbolicity condition in this case has to be formulated in terms of the Lyapunov
spectrum of (46).

In this and the following section, we shall prove that random dynamical systems
generated by stochastic differential equations can be locally linearized in the vicinity of
hyperbolic points. This way we generalize the theorem due to Hartman and Grobman,
and close a gap which was open since about 10 years. To complete this task, we will
exemplify how the cohomology theorem typically can be brought to work. In a first step,
we will show in the present section how arguments valid in the deterministic setting
can be generalized to the neighboring setting of random differential equations. As
indicated above, the multiplicative ergodic theorem (MET) of Oseledets will play a key
role (see Arnold [1], Oseledets [15]). This theorem provides the random counterparts
of eigenvalues and the corresponding eigenspaces associated with autonomous linear
equations such as (41): Lyapunov exponents and Oseledets spaces play analogous
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roles for the investigation of asymptotic properties of trajectories of linear random
or stochastic differential equations such as (44) or (46) . Cohomologies will be seen
to preserve the ergodic invariants of a linear random dynamical system, the Lyapunov
exponents. The Oseledets spaces of the two conjugate systems will be seen to naturally
correspond to each other via the cohomology mapping. Equipped with this observation,
the game to be played is rather easy: the local linearization result readily extends from
random to stochastic differential equations, as will be seen in the following section.

The local linearization for random differential equations we deal with in this section
has been treated in Wanner [18]. The proof we shall give is much shorter than Wanner’s.
In addition, we will not need any assumptions concerning the block diagonal form of
the linear part of the random differential equation considered. The normal form theory
of [4] and [2] attempts a globalized version of linearization with C'*—transformations
instead of just homeomorphic ones. Hyperbolicity is replaced by more restrictive non-
resonance conditions.

If the Lipschitz constants for the deviations from linearity z — f(z) — Az are small
enough, then in the deterministic setting we can obtain a global linearization result with
which we will start our analysis. We shall modify the essential parts of the arguments
used by Palmer [16] to suit the needs of random systems, in particular so that it fits
well in the framework of Oseledets’ theorem. It will turn out to be practical in the
proof to employ the following simple topological argument (see also Protter [17]).

Proposition 3.1 Let h : RY — R? be continuous and one-to-one. Suppose further
that limyg|_,e0 |h(z)| = 00. Then h is a homeomorphism of R%.

Proof:
Let T = R?U {oo} denote the Alexandrov compactification of R%. Extend h to T by
setting
h(z), if xe R4,

k:T—>T,x»—>{ :
oo, if z=o0.

T being compact, k£ is a homeomorphism onto its range. Furthermore, 7' is homeo-
morphic to the sphere S¢. It is well known that S is not homeomorphic to nontrivial
subsets of itself. Hence k£ must be a homeomorphism of 7', and consequently h a home-
omorphism of R%. O

Let us now turn to the local linearization of deterministic systems. To fit with our
non-autonomous setting in the random differential equation case, we shall consider non-
autonomous deterministic equations. Hyperbolicity of the corresponding matrix valued
function A(t),t € R, at t = 0 will appear in a form in which it can be best exploited
in the context of multiplicative ergodic theory later. The non-existence of vanishing
real parts of eigenvalues of A(0) will be hidden in the existence of two (not necessarily
orthogonal) projectors P™ and P~ on the vector product of the stable eigenspaces, i.e.
those belonging to negative eigenvalues, and the product of the unstable eigenspaces,
so that Pt + P~ = idg«. The constant « appearing in the following Proposition will
play the role of a lower bound on the smaller of the two spectral gaps between 0 and
the positive and negative eigenvalues of A(0).
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Proposition 3.2 Let o > 2¢c > 0, A : R — R%? be continuous, and ® the flow of
diffeomorphisms generated by the linear differential equation

Suppose that there exist linear projectors PT, P~ on R% 0 < € < o and a function
R, : R —]0, 0o[ such that

|®, PO | < R(t)e @l for s >t
|, P | < R.(t)e o=l for s <t
R(s+1t) < e R.s), fors,teR.

Let f: R x R? — R be bounded and continuous such that f(-,0) = 0. Fort € R
let f(t,-) be Lipschitz continous with Lipschitz constant L(t), and suppose

L(t) R(t) < c.
Let W be the flow generated by the non-linear differential equation
dxy = [A(t) x + f(t,z¢)] dt. (48)
Then there exists a continuous mapping h : R x R* — R? satisfying
(i) h(t,-) is a homeomorphism of R% and h(t,0) =0, t€ R,
(i) ®; = h(t,-) o U, 0 h(0,)"', t€R.

Proof:
For t € R, z € RY, define

o] t
ht,z) = z + / ®,PT1 f(s, U0 ) ds — / ®,P-O-" f(s, U, 0, ) ds.
t —00

Due to the inequalities of the hypothesis, A is well defined and continuous, and we have
h(t,0) = 0. More precisely, we may estimate

0t 2) — ) < R(0) |1l [~ s 4 [ o) = 2Ol

Let us first prove that h maps solutions (z;):cr of (48) to solutions of (47). Indeed,
for t € R, let y; = h(t,2;). Since ¥, ¥, 'z, = ¥, 2y = x,, we obtain

yy = h(t,zy) = ¢ + Dy [/ PTo, !t f(s,x,)ds — / P &, f(s,x,)ds],
t -0

hence by differentiating
d _d d © a1 t
pr d:vt—i—dt(I)t[/t PTo, f(s,acs)ds—/_ooP O f(s,zs)ds]
+®,[—PT O, f(t, 1) — PO, f(t, 1))

= A(t)z+ f(t,24)
FA(t) @t[/ Proct f(s,z,) ds—/ P&t f(s,2,) ds]
—f(t,m)

= A(t) h(t, z:) = A(t) yr-
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This also proves the cohomology property
®; = h(t,-) oV, 0h(0,-)"!, teR.

This property reveals that in order to prove h(t,-) to be a homeomorphism for all
t € R, it is enough to show this for ¢ = 0. So it remains to show that A(0,-) is a
homeomorphism. But (48) implies that lim|4 s [2(0, 2)| = co. Hence Proposition 3.1
tells us that it is enough to establish that A(0,-) is one-to-one. For this purpose, let
z,y € R? be such that h(0,z) = h(0,y). Let £ resp. n be solutions of (48) with initial
conditions z resp. y, and set p = & — 1. Then, writing b(t) = f(¢,n) — f(t,&), t € R,
p satisfies the differential equation

a
dtpt -

whose solution, by variation of constants, is seen to satisfy the equations

A(t) pe + b(t),

t
=0, [0 pro + /t &' b(s)ds], to,t € R. (50)
0

We will establish p = 0. To do this, let us first estimate the unstable part of (50) in
the form

t
@, P07y = |B P 0 py, + /t ®,P~ & b(s)ds| (51)
0
t
< 1@ P 0 | Ipw| + [ [1@:P 0| [b(s)ds
0

¢
< Re(t)e o] + Re(t) [ e L(s)\ps| ds,
to
ty < t. For |py| in the last line of (51) a less accurate estimate will be sufficient.
To get this estimate, note that by uniqueness of solutions for (47) we have h(t,&;) =
h(t,m:),t € R. Hence for t € R by (49)

ARO[ lee

5 (52)

el <& = h(t, &) + [me — h(t, me)| <
Substituting (52) into (51) yields the estimate

t
efa\t7t0|4R€(t0) ||fHOO +R€(t) / 6fa|tfs\ L(S)Re(s) ds”%”oo

[0 to
(53)
Now with t; — —oo, using the hypothesis ¢ < « and the bound ¢ for the product
L(s)R.(s), we get

[®,P~®; ' pu| < Re(t)

|, P~ ®;  py
R(t)
We finally estimate the stable part of p in an analogous way to get the inequality

C,p
< —||=|oo- 4
< Sl (54)

14 2c p
| <

Eolleo < Sl
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Since 2¢ < «, this is only possible if p = 0. This completes the proof. O

For the next step of our program we now return to the stochastic setting. Our goal
is to generalize the preceding result to the setting of random differential equations. The
stochastic analogues of the linear projectors P* are given by the random projectors
on the stable and unstable parts of the Oseledets spectrum. We shall recall some well

known facts about multiplicative ergodic theory of linear random cocycles. For more
details see Arnold [1].

Proposition 3.3 Let (2, F, P) together with a group (0;)icr of P—preserving trans-
formations of Q be an ergodic metric dynamical system, ® a linear cocycle with this
basis, such that the integrability condition of the MET

sup [In"||®,]| +In" ||®;!||] s integrable
0<t<1

holds. Let Ay, ---,\, be the Lyapunov exponents, suppose that none of them vanishes,
i.e. ® is hyperbolic. Let Ey,---,E, be the corresponding Oseledets spaces. Moreover,
let

ET =@,0E;, E~ =&k,

the splitting of R® into unstable and stable parts, P*, P~ the associated random linear
projectors.

Finally, let o < minyi<;<p |A\i|. Then there exists 0 < € < a and a random variable
R, : Q — [1, 00| satisfying

(i) R is e—slowly varying, i.e. fort € R

Re(et') S GEM R€7

(ii)for s,t € R we have

[kl
29 st |

Re(Ht-)e_o‘lt_S‘ for s >t,
Re(ﬁt-)e_alt_s‘ for s < t.

Proof:
This is a consequence of Theorem 4.3.4 and Corollary 4.3.11 of Arnold [1], where a
variant of the statement based on the single Oseledets spaces is proved. Its generaliza-
tion to the whole unstable or stable part of the Oseledets spectrum is straightforward.
To better adapt the arguments given in Arnold [1], note that the cocycle property and
the invariance of the Oseledets spaces implies for s,t € R

O, PED = &, PE(0_,0,)P_,(0,-) = B;®_, (0, ) PE(0,-) = ®;_o(0,-) PE(0,-).

We are ready to prove a global linearization result for random differential equations.
Given the random vector field f and its linearization A at the fixed point 0, we will
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have to impose continuity conditions concerning the maps ¢t — A(fw) as well as
(t,z) — f(6w,x), which may seem restrictive at first glance. We therefore recall
that the linearization results for rde are of auxiliary character for our ultimate aims: in
the following section on local linearization of sde, these vector fields will be naturally
derived from the vector fields determining the sde and their linearizations in 0. The
continuity conditions will then be seen to be easy consequences of the smoothness
properties of the cohomology mediating the passage between sde and rde.

Theorem 3.1 Let (2, F, P, (6;)icr) be an ergodic metric dynamical system, A : Q —
R¢ x R? a random matriz, and f : Q x R* — R? a random vector field such that
f(-,0) = 0. Suppose that for allw € Q the mapst — A(Oyw) as well as (t,z) — f(Ow, x)
are continuous.

Let ® be the flow of the random differential equation

dyt = A(et) Yt dta te R7 (55)

and suppose that ® satisfies the integrability property of the MET and is hyperbolic.
Let P*, P~ ¢, and R, be given according to Proposition 3.3. For w € Q, let f(w,-)
be Lipschitz continuous with (measurable) Lipschitz constant L(w), and let a constant

c < § be given such that
LR, <ec

Let W be the random cocycle generated by the random differential equation

Then there exists a measurable mapping h : Q x R? — RY satisfying the following
properties

(i) h(w,-) is a homeomorphism of R? and h(w,0) =0, w € Q,
(ZZ) ¢, = h(et':')o‘l}tOh(':')_la teR.

Proof:
Apply Proposition 3.2 w-by-w. This will yield a measurable mapping b : @ x R x R% —
R? such that

(i) h(w,t,-) is a homeomorphism of R? and h(w,?,0) =0, w €,
(ii) ®; = h(-,t,-) o U, 0 h(-,0,-)"!, teR.

The explicit integral representation given in the proof of Proposition 3.2 and the cocycle
properties of ® and ¥ then yield for t € R

h(-t,-) = h(6;-,0, ).

We therefore have to take h(w,:) = h(w,0,:),w € Q. O
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The existence and at the same time smallness of a random Lipschitz constant re-
quired in the global linearization theorem is of course far from being guaranteed in
general. Given a non-linear random differential equation, we will have to modify
the non-linear parts of the vector fields by cutting them where they become too big.
This leads to the following local linearization theorem which is much more natural for
stochastic systems.

Theorem 3.2 Let (2, F, P, (6:)tcr) be an ergodic metric dynamical system, F' : 2 X
R¢ — RY a random vector field satisfying the following properties

(i) for w € Q we have F(w,-) € C}(RY), F(w,0)=0,
(it) for w € Q the maps (t,x) — F(w,z), and (t,2) — ZF (6w, ) are continuous.
Let A = %F(-, 0), let @ be the flow generated by the random differential equation

and suppose that ® satisfies the integrability property of the MET and is hyperbolic.
Let W be the local random cocycle generated by the random differential equation

dﬂft = F(@t-, l‘t) dt. (58)

Then there exist measurable mappings p : 2 —]0,00[ and h : Q@ x R? — R satisfying
the following properties

(i) h(w,-) is a homeomorphism of R* and h(w,0) =0, w € Q,
(ii) t — p(Biw) is continuous, w € S,

(iii) for w € Q,x € R4, 7_(w,2) <t < 74 (w,7) we have ®4(w) = h(Bw, ) o ¥y(w) o
h(w,z)t, t € R, where

T (w,z) = inf{t<0:|¥,(w,x)

| < p(bsw) for allt < s <0},
Ti(w,z) = sup{t>0: |V (w,z)| <p

(Osw) for all 0 < s < t}.

Proof:
Let
fG,x)=F(,z)— Az, z€ R4,

be the non-linear part of F'. The problem we face being a local one, we may and do
assume that f(w,-) vanishes outside a deterministic compact set for all w € Q. So in
particular ¥ may be assumed global. Our hypotheses allow to apply Proposition 3.3
to the random dynamical system ®. So let o, 0 < € < o, and R, be given according to
Proposition 3.3.

Let 0 < ¢ < § be arbitrary. To be able to apply the global linearization result of
the preceding Theorem, we have to find suitable random neighborhoods of time 0 and
the origin in R% so that the product of R, with the Lipschitz constant of the generator
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of ¥ does not exceed the bound ¢ there, and then modify the generator so that this is
valid globally.

To this end, define the random Lipschitz bound for the non-linear part on balls of
radius r by
0
Aw,r) =sup | —f(w,z)|+71, weQr>0,
jal<r O
and determine the random radius at which the bound c is reached by AR, via the
equation
p(w) =sup{r > 0: A(w,r) R(w) < ¢c}.

Note that A(-,0) = 0, so that p is indeed positive. The hypotheses on F' moreover
yield that the random mapping (¢,7) — A(6;-,7) is pointwise continuous and strictly
increasing in r. By definition of e—slow variation also ¢ — R.(6;-) is pointwise continu-
ous. This implies that also ¢t — p(6;w) is continuous. So (ii) of the assertion is verified
for p.

Let us next modify the non-linear part of the generator on the random neighborhoods
to obtain a generator with small enough Lipschitz bounds. Let

9(,7) = £ X (2)),

where for 7 > 0 we use the retraction mapping from R to the ball of radius r defined
by

T
Xr(x) = 1p0,)(|]) + Tl 1,001 (|])-

The retraction mapping being Lipschitz with Lipschitz constant 1, we conclude that
for w € Q, g(w,-) is globally Lipschitz with a Lipschitz constant L(w) satisfying the
required

LR, <ec

We may now apply Theorem 3.1 to the random cocycle = generated by the random
differential equation
dl’t = [A(Ot) Ty + g(9t-, JTt)] dt, (59)

to obtain a random coordinate transform h satisfying (i) of the asserted properties.
Since the trajectories of ¥ and = coincide on the random intervals [7_, 7], (iii) follows.
Finally, note that continuity implies infs<;<, p(6-) > 0 for any interval [s, u] C R. This
implies that 7, 7, are positive which says that the assertion in (iii) is not trivial. The
proof is complete. O

4 Local linearization of stochastic differential equa-
tions

We now come to the final step of our program. Given a random dynamical system
generated by a stochastic differential equation, we want to relate it by local home-
omorphisms to its linearization in the fixed point 0. To do this, we shall pass to a
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conjugate random differential equation. For the cocycle of the latter and its lineariza-
tion in the fixed point 0, the local linearization results of the previous section will be
applied. Passing back to the sde setting via the cohomology, we will find the required
homeomorphism relating locally the cocycles of the nonlinear sde and its linearization
in the fixed point 0. Of course, the passage from sde to rde and back via stationary
coordinate changes has to preserve concepts of multiplicative ergodic theory, such as
Lyapunov exponents and Oseledets spectra. The following Proposition states that this
is in fact the case, if the coordinate change satisfies some basic integrability require-
ments.

Proposition 4.1 Let ® be a linear cocycle which fulfills the integrability of the MET,
i.e.

sup [In" ||®;|| + InT |[®;!]|] s integrable.

0<t<1

Let moreover H : 1 x RY — R? be a random linear mapping satisfying
(i) t — H(6;) is continuous, w € €,
(1) H satisfies the integrability condition

sup [Int |[|H(0,)|| +1In™ [|H(6,)7||] is integrable. (60)
0<t<1

Then
U, =H-)®H', teR, (61)

defines a linear cocycle which satisfies the integrability condition of the MET. U pos-
sesses the same Lyapunov exponents as ®. If By, ---, E, are the Oseledets spaces of @,
then the Oseledets spaces of ¥ are given by H Ey,---, H E,.

Proof:
The cocycle and integrability properties for ¥ are immediate from our hypotheses.
Stationarity and a simple Borel-Cantelli argument moreover show that

. 1
Jim —In*(|H(@)]| =0 P-as.

This easily entails that ® and ¥ have identical Lyapunov exponents, while the Os-
eledets spaces are related in the asserted way. O

Remark:

In the terminology of Arnold [1], Proposition 4.1 contains the statement that H is
tempered if it satisfies the integrability condition (60).

We can now state the main result of this section. We shall impose additional inte-
grability assumptions for the vector fields of our sde. They are needed for the following
reasons. The passage from the sde to a cohomologous rde requires the existence of
a stationary diffeomorphism according to Theorem 2.2. The Jacobian of this diffeo-
morphism enters into the random vector field g generating the rde. In a second step,
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this vector field has to be linearized. Hence, we obviously need the stationary diffeo-
morphism to be C?. This fact formally increases the smoothness degree of the vector
fields by one compared to the theory exposed in section 2. Now note that the passage
to cohomologous rde is just an auxiliary step in our algorithm which primarily aims
at obtaining a homeomorphism for the local linearization. So it is natural to suggest
that the additional smoothness required formally can probably be disposed of. One
possibility to justify this conjecture would consist in first smoothing the vector fields
uniformly e.g. by a smooth convolution, obtaining the associated homeomorphism,
and then going to the limit on the homeomorphism level, without explicit intervention
of cohomologous rde.

Theorem 4.1 Let § > 0. Suppose that fy € Cf"s, fi,  fm € 03’5, and
A E?:l fi gx% € CE”J. Suppose further that 0 is a fized point for the vector fields

fos s fm, and let A; = %fi(()),() <i<m.
Let ® be the cocycle generated by the linear sde
dy; = Aoy dt + Z Aiys odWY, teR, (62)
i=1

and suppose that ® is hyperbolic, i.e. all Lyapunov exponents are non-zero. Let VU be
the cocycle generated by the sde

dxy = fo(z,) dt + i fi(zs) odW}, teR. (63)

=1

Then there exist measurable mappings p : Q —]0, 00[ and h : QxR?* — R? satisfying
the following properties

(i) h(w, ) is a homeomorphism of R% and h(w,0) =0, w € Q,

(ii) t — p(Biw) is continuous, w € S,

(iii) for w € Q,x € R4, 7_(w,z) <t < 74 (w,x) we have ®y(w) = h(Bw, ) o ¥y(w) o
h(w,z)™, te€R, where

T (w,z) = inf{t <0:|¥,(w,x)

| < p(bsw) for allt < s <0},
Ti(w,z) = sup{t > 0: |V, (w,z)| <p

(Osw) for all 0 < s < t}.

Proof:
Choose H and I' according to Theorem 2.2, let
0 4 d
9(,y) = 5-Ho (W)lfo(Ho(y)) + To(y)l, vy € R,

and denote by W the cocycle associated with the random differential equation induced
by g. Since 0 is a fixed point for all the vector fields involved in (63), by construction
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this is the case for Hy and I'y. Hence also g(+,0) = 0. By our differentiability hypotheses
we know that the vector field ¢ may be differentiated at 0. Let
0
A=—q.
03:9
By construction of H and I' we further know that the flow ®° of the linearized random
differential equation

is conjugate to ¢ via the cohomology %H . We now have to show that Theorem 3.2 is
applicable to the cocycles ®° and WO,

By Theorems 2.1 and 2.2, g satisfies the smoothness properties required in Theorem
3.2. It remains to see that ®° satisfies the integrability properties of the MET and
is hyperbolic. Both conditions follow from Proposition 4.1 provided we can establish
that ® satisfies the integrability condition of the MET, and

sup [In" |[Ho(0;-)|| + In' ||Ho(6;-) '||] is integrable. (65)
0<t<1

The linear cocycle ® automatically satisfies the integrability conditions of the MET.
Property (65) follows from the construction of H and the boundedness properties of
moments of the flows of diffeomorphisms ®¢ established in the proof of Proposition 2.1
which led to the definition of H in Theorem 2.1.

Now we apply Theorem 3.2, and denote by h° the random homeomorphism and by
p° the random radius of neighborhoods of 0 it provides. We finally have to set

0 -
h = a—xHo(-, 0)oh®o Hyt,

and modify p° slightly by multiplying it with random constants depending on the pos-
itive random variable || 2 Hy||. This completes the proof. O
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