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Abstract

We consider potential type dynamical systems in finite dimensions with two meta-stable states.
They are subject to two sources of perturbation: a slow external periodic perturbation of period T
and a small Gaussian random perturbation of intensity ¢, and therefore mathematically described
as weakly time inhomogeneous diffusion processes. A system is in stochastic resonance provided
the small noisy perturbation is tuned in such a way that its random trajectories follow the exterior
periodic motion in an optimal fashion, i.e. for some optimal intensity (7"). The physicists’ favorite
measures of quality of periodic tuning — and thus stochastic resonance — such as spectral power
amplification or signal-to-noise ratio have proven to be defective. They are not robust w.r.t. effec-
tive model reduction, i.e. for the passage to a simplified finite state Markov chain model reducing
the dynamics to a pure jumping between the meta-stable states of the original system. An entirely
probabilistic notion of stochastic resonance based on the transition dynamics between the domains
of attraction of the meta-stable states — and thus failing to suffer from this robustness defect — was
proposed before in the context of one-dimensional diffusions. It is investigated for higher dimensional
systems here, by using extensions and refinements of the Freidlin-Wentzell theory of large deviations
for time homogeneous diffusions. Large deviation principles developed for weakly time inhomoge-
neous diffusions prove to be key tools for a treatment of the problem of diffusion exit from a domain
and thus for the approach of stochastic resonance via transition probabilities between meta-stable
sets.

Introduction

The ubiquitous phenomenon of stochastic resonance has been studied by physicists for about 20 years
and recently discovered in numerous areas of natural sciences. Its investigation took its origin in a toy
model from climatology which may serve to explain some of its main features.

To give a qualitative explanation for the almost periodic recurrence of cold and warm ages (glacial cycles)
in paleoclimatic data, Nicolis [12] and Benzi et al. [3] proposed a simple stochastic climate model based
on an energy balance equation for the averaged global temperature T'(t) at time ¢. The balance between
averaged absorbed and emitted radiative energies leads to a deterministic differential equation for T'(t)
of the form

T(t) = b(Q(1). T(1))- (0.1)

The solar constant Q(¢) fluctuates periodically at a very low frequency of 107° times per year due to
periodic changes of the earth orbit’s eccentricity (Milankovich cycles), which coincide roughly with the
observed frequency of ice and warm ages. Under reasonable assumptions, for frozen ¢ the nonlinear func-
tion b(q,T') describes the force associated with a double well potential possessing two stable temperature
states which represent cold and warm ages. As () varies periodically, these states become meta-stable
and are moved periodically by Q(t). Most importantly, transitions between these states are impossible.



Only the addition of a stochastic forcing allows for spontaneous transitions between the meta-stable
climate states thus explaining roughly transition mechanisms leading to glacial cycles.

In general, trajectories of the solutions of differential equations of this type, subject to two independent
sources of perturbation, an exterior periodic one of period 7', and a random one of intensity ¢, say, will
exhibit some kind of randomly periodic behavior, reacting to the periodic input forcing and eventually
amplifying it. The problem of optimal tuning at large periods T’ consists in finding a noise amplitude
e(T) (the resonance point) which supports this amplification effect in a best possible way. During the last
20 years, various concepts of measuring the quality of periodic tuning to provide a criterion for optimality
have been discussed and proposed in many applications from a variety of branches of natural sciences
(see Gammaitoni et al. [7] for an overview). Its mathematical treatment started only very recently, and
criteria for finding an optimal tuning are still under discussion.

The first approach towards a mathematically precise understanding of stochastic resonance was done
by Freidlin [5]. Using large deviations theory he explains basic periodicity properties of the trajectories
in the large period (small noise) limit by the effect of deterministic quasi-periodic motion, but fails to
account for optimal tuning. The most prominent quality measures for periodic tuning from the physics
literature, the signal-to-noise ratio and the spectral power amplification coefficient (SPA) were investi-
gated in a mathematically precise way in Pavlyukevich’s thesis [13], and seen to have a serious drawback.
Due to the high complexity of original systems, when calculating the optimal noise intensity, physicists
usually pass to the effective dynamics of some kind of simple caricature of the system reducing the
diffusion dynamics to the pure inter well motion (see e.g. [11]). The reduced dynamics is represented
by a continuous time two state Markov chain. Surprisingly, due to the importance of small intra well
fluctuations, the tuning and resonance pattern of the Markov chain model may differ essentially from the
resonance picture of the diffusion. It was this lack of robustness against model reduction which moti-
vated Herrmann and Imkeller [9] to look for different measures of quality of periodic tuning for diffusion
trajectories, retaining only the rough interwell motion of the diffusion. The measure they treat in the
setting of one-dimensional diffusion processes subject to periodic forcing of small frequency is related
to the transition probability during a fixed time window of exponential length, the position of which
is tracked by a parameter of period length in which maximization is performed to account for optimal
tuning.

The subject of the present paper is to continue our previous work in the general setting of finite dimen-
sional diffusion processes. Our approach of stochastic resonance thereby is based on the same robust
probabilistic notion of periodic tuning. This extension is by no means obvious, since the multidimen-
sional problem requires entirely new methods. We recall at this point that in [9] methods of investigation
of stochastic tuning were heavily based on comparison arguments which are not an appropriate tool from
dimension 2 on. Time inhomogeneous diffusion processes such as the ones under consideration were com-
pared to piecewise homogeneous diffusion processes by freezing the potential’s time dependence on small
intervals. We study a dynamical system in d-dimensional Euclidean space perturbed by a d—dimensional
Brownian motion W, i.e. we consider the solution of the stochastic differential equation

¢
dxf:b(T,Xf) dt +EdW;, t>0. (0.2)

One of the system’s important features is that its inhomogeneity is weak in the sense that the drift
depends on time only through a re-scaling by the time parameter T" = T'¢ which will be assumed to be
exponentially large in e. This corresponds to the situation in [9] and is motivated by the well known
Kramers-Eyring law which was mathematically underpinned by the Freidlin-Wentzell theory of large
deviations ([6]). The law roughly states that the expected time it takes for a homogeneous diffusion
to leave a local attractor e.g. across a potential wall of height § is given to exponential order by
T° = exp(%). Hence, only in exponentially large scales of the form T° = exp(£) we can expect to see
effects of transitions between different domains of attraction. b is assumed to be one-periodic w.r.t. time.
The deterministic system & = b(s, &) with frozen time parameter s is supposed to have two domains
of attraction that do not depend on s > 0. In the “classical” case of a drift derived from a potential,
b(t,x) = =V,U(t, z) for some potential function U, equation (0.2) describes the motion of a Brownian

particle in a d-dimensional time inhomogeneous double-well potential.

Since our stochastic resonance criterion is based on transition times between the two meta-stable sets
of the system, our analysis relies on a suitable notion of transition or exit time. The Kramers-Eyring



formula suggests to consider the parameter x from 7 = exp(£) as a natural measure of scale. Therefore,
if at time s the system needs energy e(s) to leave some meta-stable set, an exit from that set should
occur at time

a, =inf{t >0: e(t) < u}

in the diffusion’s natural time scale. If az are the transition times for the two domains of attraction
numbered ¢ = 41, we look at the probabilities of transitions between them within a time window
[(a, — h)T=, (a}, + h)T*] for small h > 0. Assume for this purpose that the two corresponding meta-
stable points are given by x;,7 = %1, and denote by 7, the random time at which the diffusion reaches
the g-neighborhood B, (z_;) of z_;. Then we use the following quantity to measure the quality of periodic
tuning:
M(e,p) = min  sup P, (TQ_i € [(ai —h)T, (ait + h)T]),
=41 4B, (1)

the minimum being taken in order to account for transitions back and forth. In order to exclude trivial
or chaotic transition behavior, the scale parameter p has to be restricted to an interval Ir of reasonable
values which we call resonance interval. With this measure of quality, the stochastic resonance point
may be determined as follows. We first fix ¢ and the window width parameter A > 0, and maximize
M(e, i) in p, eventually reached for the time scale pg(h). Then we call the eventually existing limit
limy, 0 o (h) resonance point.

To calculate po(h) for fixed positive h we use large deviations techniques. In fact, our main result
contains a formula which states that

E1ii13)€log{1 —Me,p)} = max {n—eilal, —n)}.

We show that this asymptotic relation holds uniformly w.r.t. g on compact subsets of Ir, a fact which
enables us to perform a maximization and find pg(h). The techniques needed to prove our main result
feature extensions and refinements of the fundamental large deviations theory for time homogeneous
diffusions by Freidlin-Wentzell [6]. We prove a large deviations principle for the inhomogeneous dif-
fusion (0.2) and strengthen this result to get uniformity in system parameters. Similarly to the time
homogeneous case, where large deviations theory is applied to the problem of diffusion exit culminating
in a mathematically rigorous proof of the Kramers-Eyring law, we study the problem of diffusion exit
from a domain which is carefully chosen in order to allow for a detailed analysis of transition times. The
main idea behind our analysis is that the natural time scale is so large that re-scaling in these units
essentially leads to an asymptotic freezing of the time inhomogeneity, which has to be carefully studied,
to hook up to the theory of large deviations of time homogeneous diffusions.

The material in the paper is organized as follows. Section 1 is devoted to the careful extension of large
deviations theory to diffusions with slow time inhomogeneity. The most useful result for the subsequent
analysis of exit times is Proposition 1.8 with a large deviations principle for slowly time dependent
diffusions, uniform with respect to a system parameter. In section 2 upper and lower bounds for the
asymptotic exponential exit rate from domains of attraction for slowly time dependent diffusions are
derived. The main result Theorem 2.3 combines them. Section 3 is concerned with developing the
resonance criterion and computing the resonance point from the results of the preceding section.

1 Large deviations for diffusion processes

Let us now consider dynamical systems driven by slowly time dependent vector fields, perturbed by
Gaussian noise of small intensity. We shall be interested in their large deviation behavior. Due to the
slow time inhomogeneity, the task we face is not covered by the classical theory presented in Freidlin,
Wentzell [6] and Dembo, Zeitouni [4]. For this reason we shall have to extend the theory of large
deviations for randomly perturbed dynamical systems developed by Freidlin, Wentzell [6] to drift terms
depending in a weak form to be made precise below on the time parameter. Before doing so in the
second subsection, we shall recall the classical results on time homogeneous diffusions in the following
brief overview.



1.1 The time homogeneous case: classical results

For a more detailed account of the following well known theory see [4] or [6].

We consider the family of IR%-valued processes X<, ¢ > 0, defined by
dX§ =b(X5)dt +VedW;, X5 =z € R, (1.1)

on a fixed time interval [0,7], where b is Lipschitz continuous and W is a d-dimensional Brownian
motion. This family of diffusion processes satisfies in the small noise limit, i.e. as ¢ — 0, a large
deviations principle (LDP) in the space Cor := C([0,T],IRY) equipped with the topology of uniform
convergence induced by the metric por(p,¥) := supgei<r |t — Wel], 0,9 € Cor. The rate function or
action functional is given by 159 : Cor — [0, 4+00], o

(1.2)

170 (o) — 3 foT o — blps)||” dt, if o is absolutely continuous and ¢y = o,
or(p) = .
400, otherwise.

Moreover, 159 is a good rate function, i.e. it has compact level sets. The LDP for this family of processes
is mainly obtained as an application of the contraction principle to the LDP for the processes /e W,
€ > 0. More precisely, in the language of Freidlin and Wentzell, the functional I is the normalized
action functional corresponding to the normalizing coefficient % In the sequel we will not consider
scalings other than this one. We have Ijj?.(¢) < oo if and only if ¢ belongs to the Cameron-Martin space
of absolutely continuous functions with square integrable derivatives starting at x, i.e.

t
pe H = {f :[0,T] — R? ft) =x0 +/O g(s) ds for some g € LQ([O,T])}.

We omit the superscript zp whenever there is no confusion about the initial condition we are referring
to.

Observe that Ior(p) = 0 means that ¢ (up to time T') is a solution of the deterministic equation

£ =10(¢), (1.3)

so Ior (i) is essentially the L2-deviation of ¢ from the deterministic solution &. The cost function V of
X< defined by

V(z,y,t) =inf {Io:(¢) : ¢ € Cor,00 =2, 00 =y}

takes into account all continuous paths connecting z,y € IR¢ in a fixed time interval of length ¢, and the
quasi-potential
= inf t
V(z,y) = nfV(z,y,1)

describes the cost of X¢ going from z to y eventually. In the potential case, V' agrees up to a constant
with the potential energy to spend in order to pass from z to y in the potential landscape, hence the
term quasi-potential.

The classical LDP due to Freidlin and Wentzell requires the usual global Lipschitz and linear growth
conditions from the standard existence and uniqueness results for SDE. In our setting the coefficients
will (in general) not be globally Lipschitz since the drift is given by a potential gradient. An extension
to locally Lipschitz and e-dependent drift terms was provided by Azencott [1]. The following proposition
is a special case of Azencott [1], Chapter ITI, Theorem 2.13. See also Baldi [2], Theorem 2.1.

Proposition 1.1. Assume that the equation (1.1) has a unique strong solution that never explodes and
that the drift is locally Lipschitz. Then X€ satisfies on any time interval [0,T] a large deviations principle
with good rate function Igr. Furthermore, the LDP for X¢ holds uniformly w.r.t. the initial condition
of the diffusion. More precisely, if IP,(X¢ € -) denotes the law of the diffusion X¢ starting in y € R
and K ¢ R? is compact, we have for any closed F C Cor

limsupelog sup P, (X® € F) < — inf inf I¥,(¢). (1.4)
e—0 yeK yeK peF
and for any open G C Coyr
ligliélfslog;glf(IPy(Xg €q) > 752}8 gIelfG}gT((p). (1.5)



Remark 1.2.

(i) A sufficient condition for the existence of a non-exploding and unique strong solution is a locally
Lipschitz drift term b which satisfies

(z,b(z)) <~v(1+ ||£E||2) for all xeR? (1.6)

for some constant v > 0 (see [17], Theorem 10.2.2). This still rather weak condition is obviously
satisfied if (x,b(x)) < 0 for large enough x, which means that b contains a component that pulls X
back to the origin.

(i1) A strengthening of condition (1.6) ensuring superlinear growth will be used in subsequent sections.
In that case, the laws of (X¢) are exponentially tight, and Ior s a good rate function. Recall that
the laws of (X¢) are exponentially tight if there exist some Ro > 0 and a positive function ¢
satisfying lim,_, o @(x) = +00 such that

limsupeloglP(cr <T) < —p(R) forall R> Ry. (1.7)

e—0

Here 0%, denotes the first time that X¢ exits from Br(0).

1.2 General results on weakly time inhomogeneous diffusions

Let us now come to inhomogeneous diffusions with slowly time dependent drift coefficients. For our
understanding of stochastic resonance effects of dynamical systems with slow time dependence, we have to
adopt the large deviations results of the previous subsection to diffusions moving in potential landscapes
with different valleys slowly and periodically changing their depths and positions. In this subsection
we shall extend the large deviations results of Freidlin and Wentzell to time inhomogeneous diffusions
which are almost homogeneous in the small noise limit, so that in fact we are able to compare to the
large deviation principle for time homogeneous diffusions. The result we present in this subsection is
not strong enough for the treatment of stochastic resonance (one needs uniformity in some of the system
parameters), but it most clearly exhibits the idea of the approach, which is why we state it here.

Consider the family X¢, ¢ > 0, of solutions of the SDE
dXE =b5(t, XE)dt +edW,,  t>0, X§ =1z0 € R". (1.8)

We assume that (1.8) has a global strong solution for all ¢ > 0. Our main large deviations result for
diffusions for which time inhomogeneity fades out in the small noise limit is summarized in the following
Proposition. The e-dependence of the drift term was assumed in the same way in Azencott [1], Chapter
ITI, Theorem 2.13 and Baldi [2], Theorem 2.1. See also Priouret[14].

Proposition 1.3 (Large deviations principle). Assume that the drift of the SDE (1.8) satisfies

lim b°(t, x) = b(x) (1.9)

e—0

for all t > 0, uniformly w.r.t. x on compact subsets of R?, for some locally Lipschitz function b: R® —
RY. Assume that the time homogeneous diffusion Y associated to the limiting drift b (i.e. the solution
of (1.1) with the same initial condition xo) does not explode.

Then (X¢) satisfies a large deviations principle on any finite time interval [0, T) with good rate function
Ior given by (1.2).

Proof. For notational convenience, we drop the e-dependence of X and Y. We shall prove that X and
Y are exponentially equivalent, i.e. for any § > 0 we have

limsup e logIP (por(X,Y) > §) = —oo. (1.10)

e—0

In order to verify this, fix some § > 0, and observe that

1% - Vil < / 15 s Xo) — B(X,0) | du+ / 16(X.) — b(Y.)| du.



For R > 0 let 7 := inf{t > 0 : X; ¢ Bgr(xo)}, let 7r be defined similarly with X replaced by Y, and
or := Tr A Tr. The local Lipschitz continuity of b implies the existence of some constant K g(zo) such
that ||b(z) — b(y)|| < Kr(xo)||lx — y|| for z,y € Br(xo). An application of Gronwall’s Lemma yields

T
por(X,Y) < eKR(zO)T/ 16°(u, Xu) — b(Xy)|| du  on {og > T}.
0

Due to uniform convergence, for any 7 > 0 we can find some ¢ > 0 s.t.

sup ||b°(t,z) — b(x)|| <7y fort €]0,T], € < eo.
zE€BR(zo)

This implies

por(X,Y) < nTefr@)T  for ¢ < g on {op > T}. (1.11)
By choosing 7 small enough s.t. por(X,Y) < §/2 on {og > T} (i.e. X and Y are very close before they
exit from Br(xg)), we see that for e < g

P (por(X,Y) > 6) <P(7p < T) + P(7r < T).
Since X and Y are close within the ball Bgr (o), we deduce that if X escapes from Br(xg) before time
T, then Y must at least escape from Bp/s(20) before time T' (if R > ). So we have
I (pOT(Xa Y) > 5) <IP(Trye <T)
for € < 9. Hence the LDP for YV gives
limsupelogP (por(X,Y) > 6) < —inf {V(zo,y,t): 0<t <T,|ly — xol| = R/2}.

e—0

Sending R — oo yields the desired result (see Theorem 4.2.13 in [4]). O

It is easy to see that the uniformity w.r.t. the diffusion’s initial condition also holds for the weakly
inhomogeneous process X¢ of this proposition. One only has to carry over Proposition 5.6.14 in [4],
which is easily done using some Gronwall argument. Then the proof of the uniformity is the same as in
the homogeneous case (see [4], Corollary 5.6.15). We omit the details.

1.3 Weak inhomogeneity through slow periodic variation

In this subsection we shall deal with some particular diffusions for which the drift term is subject to
a very slow periodic time inhomogeneity. More precisely, we shall be concerned with solutions of the
following stochastic differential equation taking their values in d—dimensional Euclidean space, driven
by a d—dimensional Brownian motion W of intensity e:

E’

t
de:b(T— Xf)dt—i—\/Eth, t>0, Xo=10€R%. (1.12)

Here T is a time scale parameter which tends to infinity as € — 0. In the subsequent sections, we shall
assume that T¢ is exponentially large, in fact

T¢° = exp B with w> 0. (1.13)
€

The drift b(t, x) of (1.12) is a time-periodic function of period one. Concerning its regularity properties,
we suppose it to be locally Lipschitz in both variables, i.e. for R > 0, x € IR there are constants Kg(x)
and kg(x) such that

[0(t, y1) = b(t, y2)|| < Kr(2) ly1 — w2, (1.14)
[6(t,y) —b(s,y)|| < kr(x) |t — 5| (1.15)
for all y,y1,y2 € Br(z) and s,t > 0. Furthermore, we shall assume that the drift term forces the diffusion

to stay in compact sets for long times in order to get sufficiently “small” level sets. We suppose that
there are constants 1, Ry > 0 such that

(z,0(t, ) < —nllz]| (1.16)

for t > 0 and ||z|| > Ro. This condition is stronger than (1.6), so the existence of a unique strong and
non-exploding solution is again guaranteed. Moreover, this growth condition implies the exponential
tightness of the diffusion (see Proposition 1.4 for the precise asymptotics).



1.3.1 Boundedness of the diffusion

The aim of this subsection is to exploit the consequences of the growth condition (1.16). In fact it implies
that the diffusion (1.12) cannot leave compact sets in the small noise limit. For positive €, it stays for
a long time in bounded domains. In the following Proposition we shall make precise how the law of
the exit time from bounded domains depends on €. The arguments are borrowed from the framework of
self-attracting diffusions, see [15] or [10].

For R > 0 let 0%, :=inf{t > 0: | X{|| > R} denote the first exit time from the ball B(0).

Proposition 1.4. Let § > 0, and let r : (0,0) — (0,00) be a function satisfying lim._,q % = 0. There
exist Ri,e1 > 0 and C > 0 such that for R> Ry, € < &1

n

P.(oh<r@) <o " e o <

g. (1.17)

Proof. For convenience of notation, we suppress the superscript € in X¢, 0% etc. Choose a C?-function
h:R% - R s.t. h(z) = ||z for ||z|| > Ry and h(z) < Ry for ||z| < Ry, where Ry is the constant given
in the growth condition (1.16). By It6’s formula we have

h(Xt):h(a:)—i—\/E/O Vh(Xs)dWer/O <Vh,b(%,-)>(Xs)ds+§/0 Ah(X,)ds.

Let & := fg [VA(X,)||? ds, i.e. & is the quadratic variation of the continuous local martingale M; :=
fg Vh(Xs)dWs,t > 0. Since Vh(z) = My for llz|]| > Ro, we have d& = dt on {||X¢|| > Ro}. Now we
introduce an auxiliary process Z which shall serve to control || X|.

Let 0 < 77 < n. According to Skorokhod’s lemma (see Revuz, Yor [16]) there is a unique pair of continuous
adapted processes (Z, L) such that L is an increasing process (of finite variation) which increases only
at times ¢ for which Z; = Ry, and Z > Ry, which satisfies the equation

Z =Ry V |z|| + VeM — i + L.

We will prove that
IX:|| < Z: as. forall t>0. (1.18)

For that purpose, choose f € C%(IR) such that

f(z) >0and f'(x) >0 forall z>0,
f(z)=0 forall z<0.

According to Ito’s formula, for ¢t > 0
t
FIMXe) = Ze) = f(h(z) = [lz] V Ro) + /O f'(WXs) = Zo) d(W(X) = Z))s

3 [ 0 - 20 dnx) - 2).

By definition of h and Z we have h(X;) < Z; on {||X:|]| < Ro}, so {h(X:) > Zi} = {||Xs]| > Z:}.
Moreover by definition, h(X) — Z is a finite variation process. Hence the expression

[ 700 = 20 { i (Kot () + 5300+ 0} s
t
- [ raxi -z,

is an upper bound of f(h(X;) — Z;). Furthermore, Ah(z) = ﬁ for ||z|| > Ro, which by (1.16) implies

1 < s € . e(d—1)
Xob(22, X))+ SARK) +77 < S w0 on {I1X.] > Z,).
| Xl T* 2 2 [| X ||

The latter expression is negative if ¢ is small enough, so we can find some £y > 0 such that f(|| X;||—Z;) <
0 for € < g¢. This implies || X;|| < Z; a.s. by the definition of f, and (1.18) is established.



We therefore can bound the exit probability of X by that of Z. If @) denotes the law of the process Z,
we see that for any o > 0

P,(0r < 7)) < Qor < 7(e)) < ™) Eg[e™7r]. (1.19)

In order to find a bound on the right hand side of (1.19), let K := sup,<g, [VAh(z)||>. Then we have
& < Kt for all t > 0. Note that w.l.o.g. h can be chosen so that K < 2Ry. Now observe that, by Itd’s
formula, for any ¢ € C?(IR)

d(e(Zy) em®&) = e ¢ (Zy)e” K& dMy + ¢ (Zy) e ®5 dL,
_ o 9 - [0
e RO 2" (20) — g (Z) — ool Z0) | de.

Now let R > Ry. If we choose ¢ such that

{

then (Z;)e”%¢ is a local martingale which is bounded up to time or. Hence we are allowed to apply
the stopping theorem to obtain

©"(y) — 19" (y) — ply) =0 fory € [Ro, R,
'(Ro) =0, ¢(R)=1,

S o

P(Ro V |[2]) = Bqlp(Zyy, e~ *éon] = Egle™ #7r]. (1.20)
Hence &,,, < Kog, which implies IEg[e~ % %7r] > g [e~*°#], and we deduce from (1.19) that
Po(or < 7(e)) < e Eqle ®8n] < e p(Ro V ||2])). (1.21)
Solving the differential equation for ¢ yields

A~ (@=Ro) 4 A+ AT (= Ro)
p(x) = )\~ eX(R=Ro) 4 )\t+er (R—Ro)

with At = UEVAl et < W Hence
(AT — A7) e (@=Fo)

p(z) < (CA—) er* (R—Fo)

Taking o = 7(¢) ! in (1.21) we obtain

At = A .

Po(or < 1(e)) < exp()e(Ro Vlzll) < ——

It is obvious that exp {A\*(Ro V [|z|| — R)} < exp {— ﬁE—R} for R > 2(||z|| V Ryp), so it remains to comment
on the prefactor. We have

~2 2.
M -A 2P 2ge _ 4(77 + Kr?s))
AT VPR T '

Since lim.—, 777 = 0 the latter expression behaves like 202K @ as € — 0. Putting these estimates
together yields the claimed asymptotic bound with 7 instead of 7. Letting 17 — n finishes the proof. [

Remark 1.5. The proof of Proposition 1.4 shows a lot more. The crucial inequality (1.21) contains a
bound which is independent of X<, since ¢ is defined by means of h, €, 1 and Ry only. Thus we have
shown that the bound (1.17) holds for all diffusions satisfying the growth condition (1.16), i.e. €1 and
Ry are independent of X¢. In particular, (1.17) holds uniformly w.r.t. p.



1.3.2 Properties of the quasi-potential

Taking large period limits in the subsequently derived large deviations results for our diffusions with
slow periodic variation will require to freeze the time parameter in the drift term. The corresponding
rate functions are given a separate treatment in this subsection. We shall briefly discuss their regularity
properties. This will be of central importance for the estimation of exit rates in section 2. For s > 0,7 > 0
we consider

L (p) = {% foT lloe — b(s, 0)|| dt, if @ is z.ibsolutely continuous, (1.22)
400, otherwise.
As in the first section, we need associated cost functions. For s > 0, x,y € R? they are given by
V(z,y,t) = inf{I5,(¢) : ¢ € Cot, 0 =z, 1 = y}. (1.23)
V(x,y,t) is the cost of forcing the frozen system
dYF =b(s,YE)dt +edWy, t>0,
to be at the point y at time ¢ when starting at x. The corresponding quasi-potential
Ve(x,y) = tlgg V(z,y,t) (1.24)

describes the cost for the frozen system to go from z to y eventually. Let us note that since the drift
b is locally Lipschitz in the time variable, the family of action functionals I, is continuous w.r.t. the
parameter s, and the corresponding cost functions and pseudo-potentials inherit this continuity property.
Let us recall some further useful properties of the quasi-potentials and their underlying cost and rate
functions. The following properties are immediate.

Lemma 1.6. For any z,y,z € R and s,t,u >0 we have
a) Vi(z,y,t+u) <V3(x,z,t) + Vi(z,y,u),
b) (s,y) — V5(x,y,t) is continuous on IRy x RY,
¢) inf)y>r V*(z,y,1) > uniformly w.r.t. s > 0.

The following Lemma establishes the local Lipschitz continuity of the quasi-potential w.r.t. the state
variables, uniformly w.r.t. the parameter s.

Lemma 1.7. For any compact subset K of R? there exists T > 0 such that

sup V*(z,y) < I'gdist(x, y)
s>0

forallz,y € K.

Proof. Let « and y belong to K. There exists some radius R > 0 such that K C Bg(0). Set T' =
dist(z,y). We construct a path ¢ € Cor by setting p; = z+ m t for ¢t € [0, T]. Since b(s, ) is locally
Lipschitz uniformly w.r.t. s > 0, we obtain an upper bound for the energy of ¢:

N LT (ly=al :
I < = by — b 2dt < - = b dt
) < gow [t < 5 [ (G s el
1 (7 5 1 T 2
< 5[ (mr@ + 10wl dt < 5 [ (14 ka(0) + Kn() lod + 16(0,0)]])dt
0 0
T
< 5 (1+5R(0) + RER(0) + (0, 0)])*

For T'xc := % (1+ kr(0) + RKR(0) + [|b(0,0)]| )2 and by the definition of T', we obtain

sup V3(z,y) < sup Ijp(¢) < Trdist(x, y).
5>0 5>0



1.3.3 Large deviations

We shall now specialize the general large deviations results of the previous subsection to the family X¢,
g > 0, of solutions of (1.12). At the same time they will be strengthened, to obtain uniformity w.r.t. to
some of the system’s parameters: the scale parameter p, the starting time, and the initial condition.

It is an immediate consequence of Proposition 1.3 that the solution of (1.12) satisfies a large deviations
principle with rate function IQ, i.e. the rate function is the same as that of a homogeneous diffusion
governed by the frozen drift b(0,-). In order to see this, one only has to mention that lim._,o b(%, x) =
b(0, z) locally uniformly w.r.t. z due to the Lipschitz assumptions on b.

But this result is not strong enough. We also need some uniformity w.r.t. the starting times of the
diffusions we consider. Our large deviations statements derived so far rely on comparison arguments
which yield exponential equivalence with time homogeneous diffusions for which an LDP is well known
from the classical theory of Freidlin and Wentzell. In order to achive uniform large deviations estimates
we have to refine this technique, to derive a large deviations principle for our family of diffusions (1.12),
which is uniform with respect to both the starting time and the scale parameter. This will be our main
tool for estimating the asymptotics of exit time laws in the subsequent section.

The diffusion (1.12) is a time inhomogeneous Markov process. The solution starting at time r > 0 with
initial condition z € IR? has the same law as the solution X" of the SDE

r+t

AX]" = b( T XD )t VEAWs, 120, X§T =z € R (125)

We denote its law by IP, (), assume from now on that T = exp £ for some p > 0, and fix T > 0.

Proposition 1.8. Let K € R? be a compact set and V C (0,00). For p € V, r € [0,1] and § > 0 let
S™B(g, 1) be a neighborhood of rT¢ such that

diam(S™?
lmsup sup Snm(STTEM)
e—=0 pev,relo,1] T

3.

Then for any closed F C Cor, there exists § = 0(F) such that

lim sup ¢ log sup P, ., (X°€F) <— inf inf — Igr(p)
e—0 YEK, WEV,uES™ B (e, 1) yeK peF70,pg=y

where vo = Yo (F) = BO(F) and F° is the closed ~o-neighborhood of F.
For any open G C Cor, there exists § = 0(G) and Bo = Po(G) such that, if 8 < Bo,

lim inf ¢ log P, ,(X®€G) > —sup inf — Iop(ep),
E—

inf
yEK,p€V,ueS™ P (g,1) yek PEGY0,po=y

where vo = Y0(G) = BO(G) and G is the complement of (G¢)°.

These bounds hold uniformly w.r.t. r.

Remark 1.9. The upper bound means that for any 9 > 0 we can find eg > 0 s.t. for € < eg we have

elo su P, ., (X®eF)<— inf inf I + 9.
g yEK,,uGV,uIE)STﬂ(E,,u) yul ) yeEK @EF0 po=y or(®)

The uniformity in the statement means that g can be chosen independently of r. A similar statement
holds for the lower bound.

Observe that the expression for the blowup-factor vo(F') depends on the set F' only through §(F') which is
independent of 8, and that vo(F) — 0 as 8 — 0 for all F. In particular, if B is equal to zero, we recover
the classical bound of the uniform LDP.

Proof of Proposition 1.8. Fory € R and r € [0,1] let Y™¥ be the solution of the homogeneous SDE
dy,;"Y =b(r,Y,"Y)dt + VedW,, t>0, Y, =uy.

Let W C [0,1] and rg € W. For r € W, u € S™P(g,p),p €V and R > 0 let 7% := inf{t > 0: X;"¥ ¢
Bgr(0)}, and let 7Y be defined similarly with X*¥ replaced by Y% and op?"" = 75V AT,

10



As a consequence of Gronwall’s lemma we see just as in the proof of Proposition 1.3 that for r,rq €
[0,1],u € S™P(e, )

T

t

por(X™Y,YTo) < eKR(O)T/ Hb(u;E 7X;L,y) _ b(TO,Xtu’y)H dt  on {o%¥™ > T},
0

This implies

diam(S™% (e, u)) + T
Te

por (XY, YT0V) < kg (0)TelrOT < + |r - 7’0|) on {ox¥" > T}.

Due to our assumption the last expression is bounded by

B =pW) = BoW)M(R) ase—0, (1.26)

where

BoW) := B+ sup |r —rg| and M (R) := Trp(0)efrOT, (1.27)
rew
Upper bound: Fix some closed set F' C Cyp. For all v > 0 we have
P(X“Y e F)<IP(Y™Y € F7) 4+ P(por(X“?, YY) > ~).

This yields

lim sup ¢ log sup P, . (X eF)
e—0 yeEK,ueV,reW,ueS™h(e,u)
< limsupelog max{ sup P(Y"™¥Y € F7), sup IP(por (XY, YY) > ’7)}
e—0 yeK YyEK,ueV,reEW ueS P (e,p)

Now we wish to find some v such that the asymptotics of the maximum is determined by the left term
sup,cx IP(Y™¥ € F7). In that case the uniform LDP for ¥ will give us the bound

lim sup ¢ log sup P, .(X®€F)<—inf inf I35 (). (1.28)
e—0 yEK,ueV,reW ue S8 (e,u) YEK p€F7, po=y

Unfortunately, such a v will depend on F'. In order to see that it exists and can be chosen as claimed in
the statement, we define

O(R,¢) := sup P(rp¥ <T)+ sup P(7zY <T).

r€[0,1],y€K,uEV,ueS™P (e, 1) rel0,1],yeK
By Proposition 1.4 and Remark 1.5 we have

limsupelogO(R,e) < —nR

e—0

for all R > R;. Hence we may fix R > R; such that

limsupelog©(R,e) < — sup inf inf  Ijp(p).
e—0 7’6[0,1] YyeK peF,po=y

Let §(F) = M(R), and note that J(F) is independent of 8 and W. By (1.26), for any v > S1(W) =
BoW)S(F) we can find g9 > 0 such that for ¢ < gq

sup P(por(X*“Y, YY) > ~) < O(R,e). (1.29)
reW,yEK,neV,ueS™ A (e,u)

Hence, for v > (1 (W), the definition of §(F') implies

limsup ¢ log sup P(por(X™“¥, YY) >~) < limsupelogO(R,¢)
e—0 réEW,yeK,pneV,ueS™P(e,p) e—0

< — sup inf inf IJp(p) < — inf inf  I7%(p
ref0,1] YEK »EFpo=y or () YyEK € F7 p0=y ot (9):
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which implies (1.28). The particular choice W = {r¢} yields this bound for all v > ~o(F) = B(F') given
in the statement and proves the claimed bound. By taking the limit v — ~o(F) we get the asserted
upper bound since I is a good rate function (see [4], Lemma 4.1.6).

It remains to prove the uniformity w.r.t. r. For that purpose fix ¢ > 0, and for r¢ € [0,1] let W,, be
a neighborhood of 7. By the continuity of r — I}, and Lemma 4.1.6 in [4] we can assume W,, to be
small enough such that for r € W,,, denoting v* = So(W,,)0(F) and o = B6(F),

inf inf I\9(p) > inf inf I (p) —¥/4 > inf inf Iir () —9/2.

YEK e F7™ ,po=y YyEK pEFY0,p0=y yEK € FY0 0=y

Due to compactness we can choose finitely many points 71, ..., 75 such that their corresponding neigh-
borhoods cover [0,1]. Denote v, := Bo(W,,,)0(F). For each 1 < n < N there exists some &, > 0 such
that for e <e, and r e W,

9
elog sup P, ,(X® € F)<— inf inf  I5(p) + =
yeEK,neV,u€ S (e,1) YEK e Fn o=y 2
< — inf inf I 9.

< - jof b or(p) +

Hence for ¢ < minj<n<n €n, the preceding inequality holds for all r € [0, 1].

Lower bound: Let G C Cyr be an open set. Consider the increasing function

1
)= su inf I7(6),
0 U yezg HEGL: do=y or(®)

let lp = inf{l > 0: f(I) = 400}, and recall that n is the constant introduced in the growth condi-
tion (1.16) for the drift.

Assume first that lp < oo (this is guaranteed if G is bounded), and set

Re= (o~ BOV)V D) VR, and = Go(W)M(R),

where R; is given by Proposition 1.4. Then
PY™Y eG) <IP(X“Y € G)+P(por(Y™Y, X)) > ~).

By the uniform LDP for Y% and (1.29) we conclude that

IN

—nf(y) = — sup inf  Ij3(p)

liminf elog inf IP(Y"™¥ € G7)
yeK $EGY, vo=y e—0 yeK

IN

max { liminf ¢ log inf P(X*“Y € G),
e—0 reW,yeK,pn€V, ueS"(e,1)

lim sup ¢ log sup P(por (Y0¥, X"“Y) > 'y)}
e—0 reW,yEK, €V, u€S" (e, 1)

max { liminf ¢ log inf P(X*“Y € G),
e—0 reW,yeK,pn€V, ueS"(e,1)

limsup e log O(R, 5)}

e—0

IN

Since f is increasing and R > R;, we obtain by Proposition 1.4

—nf(y+BoW)) < —nf(y) < maX{ligLigfelogTew Jex ;g} wes (e H)IP(X“’y € G), —nR}-

Now we have to compare f() and R in order to see when the maximum is given by the left term.

If f(7) > R, theny > (lp—Bo(W))V % > Iy — By (W) by monotonicity of f, hence f(v+8(W)) = +oo by
definition of ly. Otherwise we have f(v) < R, which means that the left term dominates the maximum.
In both cases we get

- W)) < liminf el inf PX“Y € G).
nf(’y—i_ﬁo( )) - HEILI(I)I ¢ OgrEW,yEK,irelV,UEST(E,,u) ( )
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Now consider the unbounded case Iy = +o00. Recall M defined by (1.27), and let 3o(G) := sup;>g m,
the existence of which was claimed in the statement. If So(W) < (o(G), we can choose [y such that
m > Bo(W) and set v := Bo(W)M(f(l1)). Using the same arguments as in the bounded case, we
deduce that

—nf(y) < max { liminf & log P(X“Y € G), —nf(zl)}.

inf
reW,yeK,ueV,ueSr(e,u)

Since f is increasing and [; > -y, we obtain

_ o . wy
nf(FY) = h?l—}élfelogrEW,yEK,;Iel{‘i,uEST(a,u) IP(X < G)

In both the bounded and the unbounded case we have found v = 8o(W)d(G) such that the desired bound

holds: we have §(G) = M(R) + 1 in the bounded case and §(G) = M(f(l1)) in the unbounded case.

Furthermore, the choise W = {rg} corresponds to Go(W) = 3 and yields v(G) = BI(G), in complete

analogy to the situation of the upper bound. The uniformity is also proved in exactly the same way as

already shown for the the upper bound. [l

2 Exit and entrance times of domains of attraction

We continue to study asymptotic properties of diffusions with weakly periodic drifts given by the SDE
t
de:b(F,Xf)dt—s—\/Eth, >0, X5 = a0 € RY. (2.1)

In this section we shall work out the effects of weak periodicity of the drift on the asymptotic behavior of
the exit times of its domains of attraction. This will be done under simple assumptions on the geometry
associated with it. So we will have to specify some assumptions on the attraction and conservation
properties of b. Essentially, we shall assume that IR? is split into two domains of attraction, separated
by a simple geometric boundary which is invariant in time. Apart from that, we shall assume that the
drift is pointing inward sufficiently strongly so that the diffusions will not be able to leave compact sets
in the small noise limit. Let us make these assumptions more precise. We recall that, according to
the Kramers-Eyring law (see for example [9]), the mean time a homogeneous diffusion of noise intensity
€ needs to leave a potential well of depth § is of the order exp Z. Nature therefore imposes the time
scales T° with which we have to work. For simplicity we measure these scales in energy units: with
p > 0 we associate the time scale T = exp £. We assume as before that b satisfies the local Lipschitz
conditions (1.14) and (1.15), and that the growth of the inward drift is sufficiently strong near infinity
which is expressed by (1.16).

The additional conditions concerning the geometry of b are specified in the following.

Assumption 2.1. The two-dimensional ordinary differential equation

@s(t) = b(s, ps(t)), =0, (2.2)

admits two stable equilibria x_ and x4 in R which do not depend on s > 0. Moreover, the domains of
attraction defined by

Ai(s) = {y € IRd : ()bs(t) = b(87 Ps (t)) and 908(0) =y implies tliglo (Ps(t) = mi} (23)

are also independent of s > 0 and denoted by Ay. They are supposed to satisfy A_ U Ay = RY, and
0A_ = 0A,. We denote by x the common boundary.

This assumption could be weakened. We could let the stable equilibrium points and the domains of
attraction depend on s > 0. The asymptotic results concerning the exit and entrance time remain true
in this more general setting. We stick to Assumption 2.1 for reasons of notational simplicity.

The main subject of investigation in this section is given by the exit times of the domains of attraction
AL, provided that the weakly time inhomogeneous diffusion starts near the equilibrium points z+. By
obvious symmetry reasons, we may restrict our attention to the case of an exit from A_. As we shall
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Figure 1: Domains of attraction

show, this exit time depends on the quasi-potential, that is on the cost function taken on the set of all
functions starting in the neighborhood of x_ and exiting the domain of attraction through x. For this
reason we introduce the one-periodic energy function

e(s) == inf V¥(zr_,y) <oo for s >0, (2.4)
YEX
which is continuous on IR4. In the gradient case b(t,z) = —V,U(t,x), this function coincides with

twice the depth of the potential barrier to be overcome in order to exit from A_, i.e. the energy the
diffusion needs to leave A_. Therefore scales p — corresponding to the Kramers-Eyring times T°¢ =
exp(£) according to the chosen parametrization — at which we expect transitions between the domains
of attraction must be comprised between

« = inf e(t d p*:= t).

pe = nfe(t) and p 3121%)6( )

These two constants are finite and are reached at least once per period since e(t) is continuous and
periodic. Now fix a time scale parameter p. This parameter serves as a threshold for the energy, and
we expect to observe an exit from A_ at the first time ¢ at which e(t) falls below u. For p €]p., p*[ we
therefore define

Figure 2: Definition of a, and «,

a, =inf{t >0: e(t) <p}, a,=inf{t>0: e(t) < pu}. (2.5)

The subtle difference between a,, and o, may be important, but we shall rule it out for our considerations
by making the following assumption.

Assumption 2.2. The energy function e(t) is strictly monotonous between its (discrete) extremes, and
every local extremum is global.
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Under this assumption we have a, = «,. We are now in a position to state the main result of this
section. Let ¢ > 0 be small enough such that the Euclidean ball B,(z4+) C Ay, and let us define the
first entrance time into this ball by

T =1inf{t > 0: X; € By(xy)}. (2.6)
This stopping time depends of course on €, but for notational simplicity we suppress this dependence.

Theorem 2.3. Let p < e(0). There exist n > 0 and hg > 0 such that for h < hg

limelog sup IPy(7, ¢ [(ay, — h)T°, (ay + h)TF]) = p—e(a, — h).
€0 YyEBy(z-)

Moreover, under Assumption 2.2 this convergence is uniform w.r.t. p on compact subsets of |pi.,€(0)].

Note that Assumption 2.2 implies the continuity of it — p—e(a,—h). The statement of the theorem may
be paraphrased in the following way. It specifies time windows in which transitions between the domains
of attraction will be observed with very high probability. In particular, if e(t) is strictly monotonous
between its extremes, we prove that the entrance time into a neighborhood of z, will be located near
a,T° in the small noise limit. The assumption p < e(0) is only a technical assumption in order to
avoid instantaneous jumping of the diffusion to the other valley. It can always be achieved by simply
starting the diffusion a little later. We could even assume that e(0) = p* which then would yield uniform
convergence on compact subsets of ], u*[.

The rest of this section is devoted to the proof of this main result and is subdivided into separate
subsections in which lower and upper bounds are established.

2.1 Lower bound for the exponential exit rate: diffusion exit

We have to establish upper and lower bounds on the transition time 7, which both should be exceeded
with an exponentially small probability that has to be determined exactly. It turns out that the proba-
bility of exceeding the upper bound (¢, — h)T*® vanishes asymptotically to all exponential orders, so the
exact large deviations rate is determined only by the probability 1P, (Tg < (au — h)TE) of exceeding the
lower bound.

For a lower bound of the latter probability as well as for an upper bound on IP, (Tg > (ay — h)Tg),
one has to prove large deviations type upper bounds of the asymptotic distribution 1P, (TQ > s(g)) for
suitably chosen s(¢). This can be expressed in terms of the problem of diffusion ezxit from a carefully
chosen bounded domain.

Recall that 7, is the first entrance time of a small neighborhood B,(z+) of the equilibrium point .
Consider for R, o > 0 the bounded domain

D = D(R, o) := Br(0) \ By(+),

and let
Tp:=inf{t >0: X, ¢ D}

be the first exit time of X from D. An exit from D means that either X enters B,(z4), i.e. we
have a transition to the other equilibrium, or X leaves Br(0). But, as a consequence of our growth
condition (1.16), the probability of the latter event does not contribute on the large deviations scale due
to Proposition 1.4, as the following simple argument shows.

Let s(e, ) = sT¢ for some s > 0. Since 7p = 7, A o where op is the time of the diffusion’s first exit
from Br(0), Proposition 1.4 provides constants Ri,e1 > 0 s.t. for R > Ry, e < &4

P, (1, > s(e, 1) S Po({mo = s(e, )} N{or > s(e, w)}) + Pu(or < s(e, 1))
<P, (1p > s(e, 1)) + Cn? @ e for ||z| < g

By the choice of s(e, u) and T¢ = exp (’f), the right term in the last sum is of the order % exp ”—_877—}?‘, ie.
it can be assumed to be exponentially small of any exponential order required by choosing R suitably
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large. Obviously, this holds uniformly with respect to p on compact sets. This argument shows that the
investigation of asymptotic properties of the laws of 7, may be replaced by a study of similar properties
of 7p, with an error that may be chosen arbitrarily small by increasing R.

Similarly to the time homogeneous exit problem, we need a lemma which shows how to approximate the
energy of a transition by the cost along particular trajectories which exit some neighborhood of D. This
is of central importance to the estimation of the asymptotic law of 7p.

Lemma 2.4. Let 9 > 0 and M a compact interval of Ry. Then there exist Ty > 0 and § > 0 with the
following property:

For all x € D and s € M, we can find a continuous path (** € Cor, starting in ;" = x and ending at
some point of distance d( ;&S, D) > 6 away from D such that

I57, (") <e(s) +0  forall s M.

Proof. This proof extends arguments presented in Lemma 5.7.18 and 5.7.19 in [4].

Fix ¢ > 0, and let us decompose the domain D into three different ones. Fixing [ > 0, define a domain
B by
G ={z € D: dist(z,x) <}

We recall that x is the separation between A_ and A;. Then we define two closed sets D_ = (D\ G;)NA_
and Dy = (D \ 5;) N Ay. We shall construct appropriate paths from points y € D to points a positive
distance away from D not exceeding the energy e(s) by more than ¢ uniformly in s € M in four steps.
Step 1. Assume first that y € D_. For [ > 0 small enough we construct 6; > 0,5} > 0 and a path
¢2Y! defined on a time interval [0, 7% with 7% < S! for all y € D_, s € M and along which we exit
a di—neighborhood of D_ at cost at most e(s) + 29.

Step 1.1 In a first step we go from y to a small neighborhood B;(x_) of x_, in time at most 7T} < oo,
without cost.
We denote by ga‘i’y’l the trajectory starting at @f’y’l(()) =yeD_of

P1(t) = b(s, 1(2)),
Y,s,l Y,s,l

and reaching Bj(z_) at time 07>, Since D_ C A_ and due to Assumption 2.1, o7"™" is finite.
Moreover, since b is locally Lipschitz, stability of solutions with respect to initial conditions and
smooth changes of vector fields implies that there exist open neighborhoods W, of y and W of
s and TP%! > 0 such that, for all z € W,, u € W, o®" < TP¥! Recall that D_ is compact.
Therefore we may find a finite cover of D_ x M by such sets, and consequently T} < oo such that
for ally € D_ and s € M, 0¥ < T, Denote z5vt = o3 (g8 0h,

Step 1.2 In a second step, we go from a small neighborhood B;(z_) of z_ to the equilibrium point z_,
in time at most 1, at cost at most %.
In fact, by the continuity of the cost function, for [ small enough, s € M, there exists a con-
tinuous path 5" of time length o5¥" < 1 such that ©5¥'(0) = 25! P5¥! (o5¥") = z_ and
1
IOG;,y,z (p3¥") < 9/3.

Step 1.3 In a third step, we exit some d—neighborhood of D_, starting from the equilibrium point z_,

in time at most T3 < 0o, at cost at most e(s) + g for s € M.
By (2.4) and the continuity of the cost function for any s € M there exists zs ¢ A_ D D_, T5 < o0,
some neighborhood W of s and for u € W, we have 3 € Coou such that o3 (0) =z, p§(0}) = 2,
o3 < T4 and

sup Iy (o) < els) + /3.

ueEWs 3
Use the compactness of M to find a finite cover of M by such neighborhoods, and thus some
T35 < oo such that all the statements hold with o§ < T3 for all s € M. Finally remark that the exit
point is at least a distance = inf;c s |2;| away from the boundary of D_ | if z;,i € J, are the exit
points corresponding to the finite cover.
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In order to complete step 1, we now define a path > e Cy, =1 by concatenating el o3 and
1

©5. This way, for small [ > 0 we find S! > 0 such that for all s € M,y € D_ we have 5% < St
P =y, e () € A and

IS

s,y,1
07y

(wf7y7l)§e(3)+§ﬂ forall se M,ye D_.

At this point, we can encounter two cases. In the first case wf’y’l exits a d;—neighborhood of Bgr(0). In
this case we continue with step 4. In the second case, z/Jf’y’l exits D_ into (§;, and we continue with Step 2.

Step 2. For [ small enough, we start in y € 3, to construct S} > 0 and a path w;y’l defined on a time

interval [0, 75%""] with 75%"! < S4 for all y € D_,s € M and along which we exit 3 into the interior of
D, at cost at most %.
In fact, due to the continuity of the cost function (see Lemma 1.6), there exists [ > 0 small enough
such that for any s € M,y € [3; there exists Zs.y, in the interior of Dy, such that wg’y’l(O) =y,
sV vty = 2,0 and 18 S¥1) < 9/3. We may take S} = 1.
2

Step 3. We start in y € Dy, to construct 65 > 0,54 > 0 and a path wg’y’l defined on a time interval
[0, 75Y"!] with 75¥! < SL for all y € D_, s € M and along which we exit D, into B,_si (2+) at no cost.
Let 5§ = p/2. Since D is compact and contained in the domain of attraction of x4, stability of the
solutions of the differential equation ¢(t) = b(s, ¢(t)) with respect to the initial condition y € D and
the parameter s guarantees the existence of some time S > 0 such that the entrance time Ts Wl of
B,/2(x4) by the solution starting in y is bounded by S’é. Therefore we may take 1/1§’y’l to be defined by
this solution restricted to the time interval before its entrance into B, /(x4 ).

Step 4. For [ > 0 small enough we start in € D_ and construct Ty > 0,d > 0 and a path (** defined
on the time interval [0, Tp], exiting a é—neighborhood of D at cost at most e(s) 4+ o for all s € M.

For [ small enough, take Tp = S} + S% + S4. We just have to concatenate paths constructed in the first
three steps. Recall that 5" passes through the equilibrium z_ due to Step 1. In case ¢{"*" exits a
8! —neighborhood of Br(0), just let the path spend enough time in x_ without cost to obtain a path
¢5® ! defined on [0, Tp], and take § = 8%, In the other case, we concatenate three paths constructed in
Steps 1 - 3, to obtain a path defined on a subinterval of [0, 7] depending on s,z,! and which exits a
§t-—neighborhood of D. Recall from step 1 that this path also passes through z_. It remains to redefine
the path by spending extra time at no cost in this equilibrium point, to complete the proof. O

We now proceed to the estimation of uniform lower bounds for the asymptotic law of 7p. The uniformity
has to be understood in the sense of Remark 1.9.

Proposition 2.5. Let K be a compact subset of D.

a) If e(s) > u, then
liminfelog inf P, (7p < sT°) > p — e(s),
e—0 reK

locally uniformly on {(s,n) : p« < p < min(e(0),e(s)),0 <s < 1}.

b) If e(s) < p, then

lim e log sup IP,(7p > sT°) = —o0,
e z€K

locally uniformly on {(s,n) : e(s) < p <e(0),0 <s<1}.
Proof. We choose a compact subset L of [0,1] and a compact subset M of Ju.,e(0)[ as well as some

¥ > 0 such that
le(s) —pu| >0 V(s,pu) € L x M.

Later on we shall assume that e(s) — p is uniformly positive resp. negative in order to prove a) resp. b).
In a first step, we apply Lemma 2.4 to approximate the energy function e(s) by the rate function along
a particular path, uniformly w.r.t. s. For the chosen ¥ it yields Ty > 0 and § > 0 as well as continuous
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paths (¢ indexed by € D and s € [0,1] ending a distance at least 6 away from D such that for all

x €D and s € [0,1]
, 0
g, (€5°) < els) + 7.
In a second step, we use the Markov property to estimate the probability of exiting D after time sT°¢ by
a large product of exit probabilities after time intervals of length independent of € and . Since for € > 0,
1 € M the interval [0, sT¢] becomes arbitrarily large as ¢ — 0, we introduce a splitting into intervals of
length v > T independent of € and u. For k € INg let ¢, = ti(s,e,u) := sT° — kv. Then we have for

k€ INg and z € D

Py (1p > 1) = I, (l{TDZtk}l{Tthk+1}) = I, (l{TDEtk+1} I [l{Tthk} | thHI] )

<P, (7p > tey1) supPyy, ., (70 > v)
yeD

Here P, ; denotes the law of X *¥, defined by the SDE

s+t
TE

de’y:< ,Xf’y)dtJrﬁth, t>0, Xg'=yeR".

On intervals [0, 7] it coincides with the law of the original process X on [s, s 4+ v], but of course paths
may differ. Denoting g (s, ¢, i) := sup, e p Py.1, (Tp > v), an iteration of the latter argument yields

N(e,p)
sup IP, (7p > sT°) < H qr(s, €, 1) (2.7)
zeK k1

whenever N (e, ) v < sT¢. For the further estimation of the ¢ we apply some LDP to the product (2.7).
This relies on the following idea. We choose N(e, ) of the order eT°. Then the starting times ¢
appearing in the product belong to some neighborhood of s7°® that, compared to T, shrinks to a point
asymptotically. Consequently, the family of diffusions underlying the product is uniformly exponentially
equivalent to the homogeneous diffusion governed by the drift b(s, ).

This will be done in the following third step. For x € D, s € [0, 1] let

U(z,s):= {1/1 € Cor, : por, (¥, ¢%%) < %}

be the open d§/2-neighborhood of the path chosen in the first step, and let

U(x) = U U(z,s).

s€[0,1]

To apply our large deviations estimates in this situation, note first that conditions concerning 7p translate
into constraints for the trajectories of X¢ as figuring in the preceding section: due to the definition of
U(z,s), the choice v > Ty and Lemma 2.4 we know that for y € D,k < N(e, p), if Xt ¥ belongs to
U(z), then for sure X ¥ exits D before time v. Keeping this in mind, we may apply Proposition 1.8 to
the neighborhoods

550(e, p) = [sT° —vN (e, ), sT° + v]

of sT¢. Each of the intervals [ty, t; + 1] is contained in S*°(e, ). As mentioned before, N (e, u) is chosen
of the order €T¢, and this can be done uniformly w.r.t. 4 € M. More precisely, we assume to have
constants 0 < ¢1 < ¢g such that ¢1eT¢ < N(e, u) < coeT*. Then

) diam S*9(g, )
lim sup ————

= ()7
e—0 86[0,1], nEM Te
and by the large deviations principle of Proposition 1.8 we obtain the lower bound

liminfelo inf P Tp < V) > —su inf I
e—0 & yEK, peM, k<N (e,p) wtn (7D )= yeg HET(y) 0To (¥)

> %

> —sup L, (CV°) > —e(s)
yeK
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We stress that this bound is uniform w.r.t. s in the sense of Remark 1.9, so we can find €9 > 0 independent
of s such that for e <ep, u € M and k < N(e, u)

1—gg(s,e,pu) = inf Py, (Tp < v)
yeD
> el Py <)z e { - 2 (e §)}
in (T v) >expd — —|e(s — ).
~ yED, peM, j<N(e,p) wi D = P € 2
From this we obtain

N(e,p)

sup I, (1p > sT°) < H qr(s,e,p) < (1 — eXp{ - %(e(s) + é)})N(E’”)

rzeK 1

= exp{N(s,u) log (1 - exp{ - %(e(s) + g)})} =:m(e, p).

Since log(1 — z) < —z for 0 < x < 1 we have
1 o
m(e, p) < exp{ —c1e exp{g — g(e(s) + 5)}}

In the fourth and last step, we exploit this bound of m(e, i) to obtain the claimed asymptotic bounds.

In order to prove a), assume that pu < e(s) for (s, u) € L x M. Then the inner exponential approaches 0
on L x M. Using the inequality 1 —e™® > zexp(—1) on [0, 1], we conclude that there exists e; € (0,&p)
such that for all € < ey and (s,u) € L x M

slogxig( P, (tp < sT°) > elog (1 — m(s,u))

1 9
> clog (501 exp(—1) exp {g(,u —e(s) — 5)})
9
= —e+eloge; +eloge +u—e(s)—§
>u—e(s)—9.
For b) assume p > e(s) on L x M. Then
elog sup P, (p > sT°) < elogm(e, n)
zeK
<-acon{ -2 (n-e)- )}
_ I P A B O
< —cieexp el =5) ) =

O

As a consequence of these large deviations type results on the asymptotic distribution of 7p and the
remarks preceding the statement of Lemma 2.4 and Proposition 2.5, we get the following asymptotics
for the transition time of the diffusion.

Proposition 2.6. Let x € A_. There exists hg > 0 such that
limiélfelogIPz(Tg <(ay—h)T¢) > p—e(a, — h), (2.8)
E—

lir%slogIPm(Tg > (ay + h)T°) = —o0, (2.9)
£—

for h < hg. Moreover, these convergence statements hold uniformly w.r.t. x on compact subsets of D
and w.r.t. p on compact subsets of |, e(0)].

Proof. As the estimation based on Proposition 1.4 at the beginning of the section shows, we may derive
the required estimates for 7p instead of 7,, if R is chosen large enough.

Let M be a compact subset of Ju,,e(0). Then 0 < a, < 1 for p € M which yields the existence of
ho > 0 such that the compact set Ly, := {a, —h: p € M} is contained in 0, 1[ for h < hg. Moreover,
we have e(s) > p for 0 < s < a,, due to the assumptions on e, uniformly w.r.t. (s,u) € Ly x M by the
continuity of e. Hence by Proposition 2.5 a)

o . < T >
112251f€10g112£ P,(p < sT°) > pu—e(s),
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uniformly on L, x M for all h < hy. By setting s = a, — h we obtain the first asymptotic inequality.
The second one follows in a completely analoguous way from Proposition 2.5 b) since a, = a, and
e(ay, + h) < p for small enough h. O

2.2 Upper bound for the exponential exit rate

Let us next derive upper bounds for the exponential exit rate which resemble the lower bounds just
obtained. We need an extension of a result obtained by Freidlin and Wentzell (Lemma 5.4 in [18]).

Lemma 2.7. Let K be a compact subset of A_ \ {z_}. There exist Ty > 0 and ¢ > 0 such that for all
T >To, s €10,1] and for each p € Cor taking its values in K we have

Igr () = (T = To).
Proof. Let ¢, , be the solution of the differential equation

Gon(t) =b(5, bsa(t)), ¢s2(0) =2 €K,

Let 7(s, z) be the first exit time of the path ¢, , from the domain K. Since A_ is the domain of attraction
of z_ and since K is a compact subset of A_ \ {z_}, we obtain 7(s,z) < oo for all z € K.

The function 7(s, x) is upper semi-continuous with respect to the variables s and x (due to the continuous
dependence of ¢, on s and z). Hence the maximal value T} := sup,eo 1], zex 7(a, ) is attained.

Let Ty = 71 + 1, and consider all functions ¢ € Coyr, with values in K. This set of functions is closed
with respect to the maximum norm. Since there is no solution of the ordinary differential equation in
this set of functions, the functional I§y, reaches a strictly positive minimum on this set which is uniform
in s. Let us denote it by m. By the additivity of the functional I, we obtain, for ' > Tp and ¢ € Cor
with values in K

Grl) 2 m| 2| 2 m (L -1) = e - T

0 0

with ¢ = Tﬂo O

Let us recall the subject of interest of this subsection:
To=1inf {t >0: X; € By(z1)},

the hitting time of a small neighborhood of the equilibrium point ;. First we shall consider upper
bounds for the law of this time in some window of length BT¢ where ( is sufficiently small. The
important feature of the following statement is that 3 is independent of s while the uniformity of the
bound again has to be understood in the sense of Remark 1.9.

Proposition 2.8. For all ¢ > 0, there exist > 0, n > 0 such that for all s € [0,1]

limsupelog sup [P, (sT° <7, < (s+0)T°) < p—e(s)+ .
e—0 r€By(x_)

This bound holds locally uniformly w.r.t. u €]u., e(0)[ and uniformly w.r.t. s € [0,1].

Proof. Let M be a compact subset of |u.,e(0)], and fix 9 > 0. We first introduce some parameter
dependent domains the exit times of which will prove to be suitable for estimating the probability that
T, is in a certain time window.

For this purpose, we define for 6 > 0 and s € [0, 1] an open domain

1
D@,s) = {y e R s V*(w_y) <" + g dist(y, A > o},
and we let D = D(0) = Uge(o,1)D(0,5). Then D is relatively compact in A_, dist(y, Ay) > § for all
y € D(§), and a transition to a g-neighborhood of ; certainly requires an exit from D(d). The boundary
of D(0) consists of two hyper surfaces one of which carries an energy strictly greater than p* and thus
greater than e(s) for all s € [0,1]. The minimal energy is therefore attained on the other component
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of distance ¢ from Ay which approaches x = dA_ as § — 0. Thus, by the joint continuity of the
quasi-potential, we can choose dg > 0 and 7 > 0 such that for 6 < dg and s € [0, 1]

)
=inf V(z_,2) > inf V®(@x_,z)> inf inf V*(y,z) > - —. 2.10
e(s) zlrelx (w-,2) 2 zelal}:)(a) (z-,2) yeérnl(z,)zela%(a) (y2) 2 e(s) 4 ( )

Let 7p be the first exit time of X from D. For s € [0,1] and 8 > 0 we introduce a covering of the
interval of interest [sT, (s + 3)T¢] into N = N (0, ¢, u) intervals of fixed length v, i.e. v is independent
of €, u, s and 8. We will have to assume that v is sufficiently large which will be made precise later on.
Thus we have Nv > 61°¢, and we can and do assume that N < 8T¢. For k € Z, k > —1, let

tr =tr(s,e,p) = sT° + kv

be the starting points of these intervals. We consider ¢_; since we need some information about the past
in order to ensure the diffusion to start in a neighborhood of the equilibrium z_. Then for € B, (z_)
we get the desired estimation of probabilities of exit windows for 7, by those with respect to 7p:

N
P, (sT° <7, < (s 4+ B)T°) < Y Pu(ti < 7p < trya).
k=0

In a second step we will fix £ > 0 and estimate the probability of a first exit from D during each of the
intervals [t,tr+1] separately. Here the difficulty is that we don’t have any information on the location
at time ¢;. We therefore condition on whether or not X< has entered the neighborhood B, (z_) in the
previous time interval. For that purpose, let

op:=inf{t >t VO0: X; € By(z_)}, k=>-1.
Then for £ > 0
P,(ty <7p <tpy1) <Pyt <7p < tpqilon—1 <trx) +Po(7p Aok—1 > ti). (2.11)

In the next step we shall estimate the second term on the right hand side of (2.11). Let K = K(d,7n) =
D(6) \ By(z—). Then K is compact, and by the Markov property we have

P,(tp ANog—1 > 1ty) <sup Py, ,(Tp Aoy > v),
yeK

where IP, ; is as defined in the previous section. Now we wish to further estimate this exit probability
using large deviations methods. The neighborhoods

SP (e, u) = [sT° — v, (s + vN (B, e, 1))T°)
of sT¢ contain each interval [tg,tx+1], —1 < k < N(B,¢e, 1), and they satisfy

diam(S*#
limsup  sup diam(5™7(e, 1))
e—0  peM, se[0,1] Te

<p.

Hence by the uniform LDP of Proposition 1.8, applied to the closed set
Pr(6,n)={p€Coy: pr € K(d,n) foral tel0,v]},
we obtain the upper bound

lim sup ¢ log sup Py ,(TpAo1 >v)
e—0 yeK, peM, k<N

< lmsupelog sup Py (X7 € Dk (6.1)) (2.12)
=0 yEK, pEM, t€S®8 (e,u)

< — inf inf I3
= VEK oed i (5.)70 0,1/(50)7

where 79(8) = B6(Px(d,n)) is the “blowup-factor” induced by the diameter 8. Since vo(3) — 0 as
B8 — 0, we can find By > 0 such that for g < gy

B (6, n)'yo(ﬁ) C @K(g, 121)
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which amounts to saying that, instead of blowing up the set of paths, we consider the slightly enlarged

domain K(3,2). Thus

— inf inf I3 < — inf inf I3 _
YEK ped g (8,1)70(8 0,1/(90) T ek pedn (5,1 O,u(@)

By Lemma 2.7 the latter expression, and therefore the r.h.s. of (2.12), approaches —oo as v — oo,
uniformly w.r.t. s € [0,1]. So the second term in the decomposition of P, (tx < 7p < tx41) can be
neglected since it becomes exponentially small of any desired order by choosing v suitably large.

In the next and most difficult step, we treat the first term on the r.h.s. of (2.11). It is given by
the probability that, while X¢ is in B,(z_) at time oj_;, it exits within a time interval of length
tk+1 — 0x—1 < 2v. Hence by the strong Markov property

Pyt <7p < tigi|og—1 < tg) < sup P, +(tp < 2v).
t—1 <t<tp, y€EBy(z-)

Applying the uniform LDP to the closed set
Fp(0) :={p € Coav: po € D), v, € D(9) for some ty < 2v},

yields the upper bound

S

lim sup ¢ log sup P, (mp <2v) < — inf inf 15 2, (), (2.13)

e—0 YEBy(z_), pEM, tES"B(e,p) YEBn(z-) peFp(5)10®

where v9(8) = 280(Fp(9)). By the same reasoning as before we can replace the blow-up of the path sets
Fp(9) by an enlargement of the domain D(§). We find 37 > 0 such that for 8 < 5y

— inf inf I§0,(p) < — inf inf I5,,(p) <— inf inf  V?*(y,z2).

YyEBy(z-) pEFp(8)70(B) " y€By(z-) peFp(3) T y€By(z-) 2€0D(3)

Now we apply (2.10) and recall the uniformity of the LDP w.r.t. s. We find ¢ > 0 such that we have
fore <ep,s€[0,1], u€ M and 8 <

, 9
¢log sup P, (p <2v) < — inf inf V®(y,z)+ —
YEB, (2-), t€S*8 (e,) yEBy(2-) z€0D(3) 4
Y
< —e(s)+ 5 (2.14)

We finally summarize our findings. We conclude that there exists €1 > 0 such that for ¢ < e, p € M
and s € [0, 1] we have

elog sup IP,(sT° <71, < (s+5)T°)
z€By(z-)
N(B,e,1)

Y
clog{ > 0 P (1 <70 < finfons < w5
k:O T n T —

IN

1 9 9 3
< e _Z _Z Z = — 2
_Elog{ﬁT eXp( 5[6(8) 2})}4—4 elogfB+ u e(s)—|—419
< p—e(s)+ 9.
This completes the proof. [l

Remark 2.9. If we stay away from s = 0, in the statement of Proposition 2.8 the radius of the starting
domain By (x_) can be chosen independently of the parameter ¥. It may then be brought into the following
somewhat different form.

Proposition 2.10. Let L and M be compact subsets of 10, 1] resp. |u«, e(0)[. Let n > 0 be small enough
such that By(z_) belongs to the domain

{ycR*: V¥(x_,y) <pu* forall seclL}.
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Then, for all 9 > 0, there exists some 3 > 0 such that we have

limsupelog sup IP(sT° <7, < (s+6)T°) < p—e(s)+7.
e—0 zE€By(z_)

uniformly w.r.t s € L and p € M.

Proof. To prove Proposition 2.10, one has to modify slightly the preceding proof. Instead of just n one
has to choose two different parameters: 7o for the definition of the starting domain D and some n; for
the description of the location of the diffusion at time tj, i.e. for the definition of the stopping times
Of. O

In the following Proposition, we derive the upper bound for the asymptotic law of transition times,
corresponding to the lower bound obtained in Proposition 2.6.

Proposition 2.11. Let pu < e(0), and recall from (2.5) the definition a,, = inf{t > 0: e(t) < u}. There
exist v > 0 and hg > 0 such that for all h < hg

limsupelog sup IP,(7, < (a, —h)T°) < p—e(a, —h). (2.15)
e—0 zEB(z_)

This bound is uniform w.r.t. p on compact subsets of |, e(0)][.

Proof. Let M be a compact subset of ], e(0)[. To choose hg, we use our assumptions on the geometry
of the energy function e. Recall Assumption 2.2 according to which e is strictly monotonous in the
open intervals between the extrema |, p*[. It implies that e is monotonically decreasing on the interval
[@e(0), ay] for any p € M. By choice of M, we further have a.) < inf,ens a,. Now choose hg such that

inf a, — hg > agq0)-
penr P 0 e(0)

Then we have for h < hy

Mlg]fw ay, —h >0, (2.16)
e(0) > sup e(ay, —h), (2.17)
nEM h<ho
e(s) > e(ay, —h) forall s<a,—h. (2.18)

To see (2.18), note that for 0 < s < ac(g), by definition of a(g), the inequality e(s) > e(0) > e(a, — h)
holds, while for a.) < s < a, — h by monotonicity e(s) > e(a, — h).

Next fix h < hg. For p € M, let Ag = Aog(p) = 0, and Ay(p) < inf,enr(ay —h)Te. For N € IN* we set
Ai(p) = A+ =% ((a — h)Te — Ay), 2 < i < N, thus splitting the time interval [0, (a, — h)T¢] into the
N intervals [A;(p), Ait1(p)], 0 <i < N —1. Then for v > 0, z € B,(z_)

=

-1

P, (1, < (a, —h)T°) < : P (7, € [Ai(1), Aia(p)]),

~
i
=]

which implies
limsupelog sup IPy(r, < (a, —h)TF)
e—0 zEB(x_)

< max limsupelo su P.(r, € [Ai(1), A; .
< e limsupelog sup (7o € [Ai(p), Air ()])

Fix ¥ > 0 such that for h < hg,x € M we have e(0) > e(a, — h) + ¥. This is guaranteed by (2.17). We
shall show that

limsupelog sup  Pa(ry € [Ai(), A (1)) < i — ey — h) + 9
e—0 z€B~(x_)

uniformly in 0 <¢ < N —1 and pu € M.
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Let us treat the estimation of the first term separately from the others. In fact, by Proposition 2.8, setting
s =0, 8 =A1/T¢, we may choose A, €9 > 0 and vy > 0 such that for Ay < AT¢, e <eg,v <yo,p €M
the inequality
elog sup  Py(7, € [Ao(p), A1 (p)]) < pp—e(0) + 9
TE€EBy(z_)
holds. Now we use the inequality e(0) > e(a, — h) + ¥, valid for all € M. Hence there exists A > 0,
go > 0 and g > 0 such that for Ay < AT e <eg,y <o, pu €M

elog sup  Pu(7y € [Ao(p), Ar(w)]) < p—elay — h).

z€By(z-)

Let us next estimate the contributions for the intervals [A; (1), Aiy1(p)] with ¢ > 1. We use Proposition
2.8, this time with s = A;(n)/T°, B = 7~ sup,ep au- By the definition of a,, we get e(s) > e(ay,) for
all s < a,. By (2.18), we have e(s) = e(A;(n)/T°) > e(a, — h). By Remark 2.9,
(7o

limsupelog sup IP,(7, € [Ai(p), Nit1(p)]) <p—elay—h)+0

e—0 zEBy(x_)
uniformly w.r.t 1 <¢ < N and pu € M. Letting ¥ tend to 0, which implies that N tends to infinity and
A7 tends to zero, we obtain the desired upper bound for the exponential exit rate. O

3 Stochastic resonance

Given the results of the previous section on the asymptotics of exit times which are uniform in the scale
parameter u, we are now in a position to reconsider the problem of finding a satisfactory probabilistic
notion of stochastic resonance that does not suffer from the lack of robustness defect of physical notions
such as spectral power amplification. We continue to study the SDE

dXE:b( Xs)dt—i-\/_th, >0, X = a9 € R

introduced before, thereby recalling that the drift term b satisfies the local Lipschitz conditions (1.15)
and (1.14) in space and time, as well as the growth condition (1.16). Moreover, b is assumed to be
one-periodic in time such that T is the period of the deterministic input of the randomly perturbed
dynamical system described by X¢.

In typical applications, b = —V,U is given by the (spatial) gradient of some time periodic double-well
potential U (see Pavlyukevich [13]). The potential possesses at all times two local minima well separated
by a barrier. The depth of the wells and the roles of being the deep and shallow one change periodically.
The diffusion X¢ then roughly describes the motion of a Brownian particle of intensity € in a double-well
landscape. Its attempts to get close to the energetically most favorable deep position in the landscape
makes it move along random trajectories which exhibit randomly periodic hopping between the wells.
The average time the trajectories need to leave a potential well of depth 3 being given by the Kramers-
Eyring law T = exp(%) motivates our choice of time scales T = exp(£) and also our convention to
measure time scales in energy units .

The problem of stochastic resonance consists of characterizing the optimal tuning of the noise, i.e. the
best relation between the noise amplitude € and the input period T° — or, in our units the energy
parameter o — of the deterministic system which makes the diffusion trajectories look as periodic as
possible. Of course, the optimality criterion must be based upon a quality measure for periodicity in
random trajectories.

In this section we shall develop a measure of quality based on the transition probabilities investigated
in section 2 and with respect to this measure for fixed small € (in the small noise limit ¢ — 0) exhibit
a resonance energy fo(e) for which the diffusion trajectories follow the periodic forcing of the system
at intensity € in an optimal way. We shall in fact study the problem in a more general situation which
includes the double-well potential gradient case as an important example, and draws its intuition from
it. The deterministic system

@S(t) = b(S, @S(t))a 3 Z Oa
has to satisfy Assumption 2.1, i.e. it possesses two well separated domains of attraction the common
boundary of which is time invariant. In the first subsection we shall describe the resonance interval i.e.
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the set of all parameter values p for which in the small noise limit trivial behavior, i.e. either constant
or continuously jumping trajectories, are excluded. The second subsection shows that a quality measure
of periodic tuning is given by the exponential rate at which the first transition from one domain of
attraction to the other one happens within a fixed time window around a,7°. This quality measure is
robust, as demonstrated in the last subsection: in the small noise limit the diffusion and its reduced
model, a Markov chain jumping between the domains of attraction reduced to the equilibrium points,
have the same resonance pattern.

3.1 Resonance interval

According to Freidlin [5], quasi-periodic hopping behavior of the trajectories of our diffusion in the small
noise limit of course requires that the energies required to leave the domains of attraction of the two
equilibria switch their order periodically: if e1 denotes the energy needed to leave AL, then e} needs to
be bigger than e_ during part of one period, and vice versa for the rest. We assume that e+ both satisfy
Assumption 2.2 and associate to each of these functions the transition time

af(s) =inf{t > s: es(t) < pu}.

The time scales p for which relevant behavior of the system is expected, clearly belong to the intervals

I, =]inf e;(t),supe;(t)[, i€ {—,+}.
t>0 t>0
Our aim being the observation of periodicity, we have to make sure that the process can travel back
and forth between the domains of attraction on the time scales considered, but not instantaneously. So,
on the one hand, in these scales it should not get stuck in one of the domains. On the other hand,
they should not allow for chaotic behavior, i.e. immediate re-bouncing after leaving a domain has to be
avoided.

To make these conditions mathematically precise, recall that transitions from A; to A_; become possible
as soon as the energy e; needed to exit from domain ¢ falls below p which represents the available energy.
Not to get stuck in one of Ay, we therefore have to guarantee
pu > max tuzlf(; e;(t).

To avoid immediate re-bouncing, we have to assure that the diffusion cannot leave A_; at the moment
it reaches it, coming from A;. Suppose we consider the dynamics after time s > 0, and the diffusion is
near i at that time. Its first transition to A_; occurs at time al,(s)T' where a,(s) is the first time in
the original scale at which e; falls below p after s. Provided e_;(ay,(s)) is bigger than y, it stays there
for at least a little while. This is equivalent to saying that for all s > 0 there exists 6 > 0 such that on
[al,(s),al,(s)+ 0] we have y < e_;. Since by definition for ¢ shortly after al,(s), we always have e;(t) < p,
our condition may be paraphrased by: for all s > 0 there exists § > 0 such that on [a},(s), a;,(s) + J] we
have u < max;—4 e;. This in turn is more elegantly expressed by

inf i(1).

# iyl
Our search for a set of scales p for which the diffusion exhibits non-trivial transition behavior may be
summarized in the following definition. The interval

Ip = inf e;(t), inf (t
n =l ighelt), )|

is called resonance interval (see Figure 3).
In this interval, for small £, we have to look for an optimal energy scale () in the following subsection.
See [9] and [8] for the definition of the corresponding interval in the one-dimension case and in the case of

two state Markov chains. In Freidlin’s [5] terms, stochastic resonance in the sense of quasi-deterministic
periodic motion is given if the parameter u exceeds the lower boundary of our resonance interval.

Let us briefly consider the potential gradient case. Assume that b(t,z) = =V, U(t,z), t > 0, x € RY,
where U is some time periodic double-well potential with time invariant local minima x+ and separatrix.
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Figure 3: Resonance interval

Then A_ and A, represent the two wells of the potential, x the separatrix. The energy ey is, in fact,
the energy some Brownian particle needs to cross x. Freidlin and Wentzell [6] give the link between this
energy and the depth of the well.

Lemma 3.1. If D4 (t) = inf,e, U(t,y) — U(t,z+) denote the depths of the wells, then e4(t) = 2D+ (t)
for allt > 0.

This link is the origin of the name “quasipotential”. The minimal energy e is reached by some path
which intersects the level sets of the potential with orthogonal tangents. This path satisfies an equation
of the form

0s =V, U(t,0s5), s€(—0,T), r€x.

The resonance interval is given by

Ir = inf 2D; inf 2D;(t)].
r =) max inf 2D:(1), jnf max 2Di(0)]

3.2 Transition rates as quality measure

Let us now explain in detail our measure of quality designed to give a concept of optimal tuning which,
as opposed to physical measures (see Pavlyukevich [13]), is robust for model reduction to Markov chains
just retaining the jump dynamics between the equilibria of the diffusion. We shall use a notion that is
based just on this rough transition mechanism. In fact, generalizing an approach for two state Markov
chain models (see [8]), we measure the quality of tuning by computing for varying energy parameters
1 the probability that, starting in x;, the diffusion is transferred to x_; within the time window [(aL —
h)T*, (a;, + h)T¢] of width 2hT*. To find the stochastic resonance point for large T (small ) we have
to maximize this measure of quality in u € Ir. The probability for transition within this window will be
approximated by the estimates of the preceding section. Uniformity of convergence to the exponential

rates will enable us to maximize in p for fixed small e.

Let us now make these ideas precise. To make sure that the transition window makes sense at least for
small h, we have to suppose that afL > 0,7 = =+1 for u € Ir. This is guaranteed if

e(O)>%121011_n:e§E<e() i

If this is not granted from the beginning, it suffices to start the diffusion a little later. For o small enough
so that B,(z+) C Ay we call

M(e, i, 0) = miﬁ sup P,(r," € [(ait —h)T®, (aL + h)T*]), €>0,u¢€ Ig, (3.1)
== zeBy(x:)

transition probability for a time window of width h. Here
mi=inf{t >0: X{ € By(z)}.
We are ready to state our main result on the asymptotic law of transition time windows.

Theorem 3.2. Let M be a compact subset of I, hg > 0 and g be given according to Theorem 2.3. Then
for all h < hy .
lim < log(1 ~ M(e. 1. 0)) = max {p — es(al, — )} (3.2)

uniformly for p € M.
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Proof. This is an obvious consequence of Theorem 2.3. |

It is clear that for h small the eventually existing global minimizer pg(h) of
Ir > pr— max {pn— ei(a, — h)}

is a good candidate for our resonance point. But it still depends on h. To get rid of this dependence, we
shall consider the limit of ugr(h) as h — 0.
Definition 3.3. Suppose that
Irsp— max {n—eila), —h)}
possesses a global minimum pgr(h). Suppose further that
=1 h

pr = lim pp(h)

exists in Ir. We call ugr the stochastic resonance point of the diffusion (X¢) with time periodic drift b.

Let us now illustrate this resonance notion in a situation in which the energy functions are related by a
phase lag ¢ €]0,1[, i.e. e_(t) = e4(t + ) for all ¢ > 0. We shall show that in this case the stochastic
resonance point exists if one of the energy functions, and thus both, has a unique point of maximal
decrease on the interval where it is strictly decreasing.

HR

N e (t)

Figure 4: Point of maximal decrease

Theorem 3.4. Suppose that e_ is twice continuously differentiable and has its global mazimum at tq,
and its global minimum at to, where t1 < to. Suppose further that there is a unique point t1 < s < tg
such that e_|yy, o is strictly concave, and e_|j5 ., is strictly convex. Then ur = e_(s) is the stochastic
resonance point.

Proof. As a consequence of the phase lag of the energy functions,
max {pn- ei(ait —h)}={n—e_(a, —h)}.

Write a;, = a,,
bility assumption yields

and recall that on the interval of decrease of e_, a, = e_"(u). Therefore, the differentia-

1
e’ (ay) .
Our hypotheses concerning convexity and concavity of e essentially means that e” (s) = 0, and e” |j;, o <

0,€e” 15,6, > 0, which may be stated alternatively by saying that p +— e’ (a,) has a local maximum at
a, = s. Hence for h small there exists a unique point a,(h) such that

and

To show that a,(h) corresponds to a minimum of the function
o= [p—e—(ay = h)],
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we take the second derivative of this function at a,(h), which is given by

e’ (au(h) —h)e” (au(h)) — e’ (au(h) — h)e’ (au(h))
e’ (au(h)) '
But €’_(a,(h)),e”(au(h) —h) <0, whereas €” (a,(h) —h) > 0,e” (a,(h)) < 0. This clearly implies that

a,(h) corresponds to a minimum of the function. But by definition, as h — 0, a,(h) — s. Therefore,
finally, e_(s) is the stochastic resonance point. O

3.3 The robustness of stochastic resonance

In the small noise limit € — 0, it seems reasonable to assume that the periodicity properties of the
diffusion trajectories caused by the periodic forcing the drift term exhibits, are essentially captured
by a simpler, reduced stochastic process: a continuous time Markov chain which just jumps between
two states representing the equilibria in the two domains of attraction. Jump rates correspond to the
transition mechanism of the diffusion. This is just the reduction idea ubiquitous in the physics literature,
and explained for example in McNamara, Wiesenfeld [11]. We shall now show that in the small noise
limit both models, diffusion and Markov chain, produce the same resonance picture, if quality of periodic
tuning is measured by transition rates.

To describe the reduced model, let e+ be the energy functions corresponding to transitions from A+ to
Ay as before. Assume a phase locking of the two functions according to the previous subsection, i.e.
assume that e_(t) = ey (t + ¢),t > 0, with phase shift ¢ €]0,1[. So, let us consider a time-continuous
Markov chain {Y?, t > 0} taking values in the state space S = {—, +} with initial data Y = —. Suppose
the infinitesimal generator is given by

GZ(@%)w@a )
W) )

where ¥(t) = o(t + ¢),t > 0, and ¢ is a 1-periodic function describing a rate which just produces the
transition dynamics of the diffusion between the equilibria +, i.e.

o(t) = eXp{ - 6+T(t)}, t > 0. (3.3)
Note that by choice of ¢,
b(t) zexp{ - e‘—g(t)} t>0. (3.4)

Transition probabilities for the Markov chain thus defined are easily computed (see [8], section 2). For
example, the probability density of the first transition time o; is given by

p(t) = @(t)exp{—/ot go(s)ds}, if i=-—, (3.5)

sty {~ [ els o) it i=+,

L

—
~+

~—

t > 0. Equation (3.5) can be used to obtain results on exponential rates of the transition times o; if
starting from —i, i = +. We summarize them and apply them to the following measure of quality of
periodic tuning

N(e, ) = minTPi(o; € [(a], = )T, (a, + W)T7]), &> 0, € Ig, (3.6)

which is called transition probability for a time window of width h for the Markov chain.

Here is the asymptotic result obtained from a slight modification of Theorems 3 and 4 of [8] which
consists of allowing more general energy functions than the sinusoidal ones used there and requires just
the same proof.

Theorem 3.5. Let M be a compact subset of Ir, ho < sup(a,',T/2—a,"). Then for 0 < h < hg
1111(1)5111(1 —N(e,p) = max {n—e_(aj, —n)} (3.7)

e—

uniformly for p € M.
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It is clear from Theorem 3.5 that the reduced Markov chain Y ¢ and the diffusion process X¢ have exactly
the same resonance behavior. Of course, we may define the stochastic resonance point for Y¢ just as we
did for X¢. So the following final robustness result holds true.

Theorem 3.6. The resonance points of (X¢) with time periodic drift b and of (Y¢) with exponential
transition rate functions e+ coincide.
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