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Abstract

We consider potential type dynamical systems in finite dimensions with two meta-stable states.

They are subject to two sources of perturbation: a slow external periodic perturbation of period T

and a small Gaussian random perturbation of intensity ε, and therefore mathematically described

as weakly time inhomogeneous diffusion processes. A system is in stochastic resonance provided

the small noisy perturbation is tuned in such a way that its random trajectories follow the exterior

periodic motion in an optimal fashion, i.e. for some optimal intensity ε(T ). The physicists’ favorite

measures of quality of periodic tuning – and thus stochastic resonance – such as spectral power

amplification or signal-to-noise ratio have proven to be defective. They are not robust w.r.t. effec-

tive model reduction, i.e. for the passage to a simplified finite state Markov chain model reducing

the dynamics to a pure jumping between the meta-stable states of the original system. An entirely

probabilistic notion of stochastic resonance based on the transition dynamics between the domains

of attraction of the meta-stable states – and thus failing to suffer from this robustness defect – was

proposed before in the context of one-dimensional diffusions. It is investigated for higher dimensional

systems here, by using extensions and refinements of the Freidlin-Wentzell theory of large deviations

for time homogeneous diffusions. Large deviation principles developed for weakly time inhomoge-

neous diffusions prove to be key tools for a treatment of the problem of diffusion exit from a domain

and thus for the approach of stochastic resonance via transition probabilities between meta-stable

sets.

Introduction

The ubiquitous phenomenon of stochastic resonance has been studied by physicists for about 20 years

and recently discovered in numerous areas of natural sciences. Its investigation took its origin in a toy

model from climatology which may serve to explain some of its main features.

To give a qualitative explanation for the almost periodic recurrence of cold and warm ages (glacial cycles)

in paleoclimatic data, Nicolis [12] and Benzi et al. [3] proposed a simple stochastic climate model based

on an energy balance equation for the averaged global temperature T (t) at time t. The balance between

averaged absorbed and emitted radiative energies leads to a deterministic differential equation for T (t)

of the form

Ṫ (t) = b(Q(t), T (t)). (0.1)

The solar constant Q(t) fluctuates periodically at a very low frequency of 10−5 times per year due to

periodic changes of the earth orbit’s eccentricity (Milankovich cycles), which coincide roughly with the

observed frequency of ice and warm ages. Under reasonable assumptions, for frozen q the nonlinear func-

tion b(q, T ) describes the force associated with a double well potential possessing two stable temperature

states which represent cold and warm ages. As Q varies periodically, these states become meta-stable

and are moved periodically by Q(t). Most importantly, transitions between these states are impossible.
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Only the addition of a stochastic forcing allows for spontaneous transitions between the meta-stable

climate states thus explaining roughly transition mechanisms leading to glacial cycles.

In general, trajectories of the solutions of differential equations of this type, subject to two independent

sources of perturbation, an exterior periodic one of period T , and a random one of intensity ε, say, will

exhibit some kind of randomly periodic behavior, reacting to the periodic input forcing and eventually

amplifying it. The problem of optimal tuning at large periods T consists in finding a noise amplitude

ε(T ) (the resonance point) which supports this amplification effect in a best possible way. During the last

20 years, various concepts of measuring the quality of periodic tuning to provide a criterion for optimality

have been discussed and proposed in many applications from a variety of branches of natural sciences

(see Gammaitoni et al. [7] for an overview). Its mathematical treatment started only very recently, and

criteria for finding an optimal tuning are still under discussion.

The first approach towards a mathematically precise understanding of stochastic resonance was done

by Freidlin [5]. Using large deviations theory he explains basic periodicity properties of the trajectories

in the large period (small noise) limit by the effect of deterministic quasi-periodic motion, but fails to

account for optimal tuning. The most prominent quality measures for periodic tuning from the physics

literature, the signal-to-noise ratio and the spectral power amplification coefficient (SPA) were investi-

gated in a mathematically precise way in Pavlyukevich’s thesis [13], and seen to have a serious drawback.

Due to the high complexity of original systems, when calculating the optimal noise intensity, physicists

usually pass to the effective dynamics of some kind of simple caricature of the system reducing the

diffusion dynamics to the pure inter well motion (see e.g. [11]). The reduced dynamics is represented

by a continuous time two state Markov chain. Surprisingly, due to the importance of small intra well

fluctuations, the tuning and resonance pattern of the Markov chain model may differ essentially from the

resonance picture of the diffusion. It was this lack of robustness against model reduction which moti-

vated Herrmann and Imkeller [9] to look for different measures of quality of periodic tuning for diffusion

trajectories, retaining only the rough interwell motion of the diffusion. The measure they treat in the

setting of one-dimensional diffusion processes subject to periodic forcing of small frequency is related

to the transition probability during a fixed time window of exponential length, the position of which

is tracked by a parameter of period length in which maximization is performed to account for optimal

tuning.

The subject of the present paper is to continue our previous work in the general setting of finite dimen-

sional diffusion processes. Our approach of stochastic resonance thereby is based on the same robust

probabilistic notion of periodic tuning. This extension is by no means obvious, since the multidimen-

sional problem requires entirely new methods. We recall at this point that in [9] methods of investigation

of stochastic tuning were heavily based on comparison arguments which are not an appropriate tool from

dimension 2 on. Time inhomogeneous diffusion processes such as the ones under consideration were com-

pared to piecewise homogeneous diffusion processes by freezing the potential’s time dependence on small

intervals. We study a dynamical system in d-dimensional Euclidean space perturbed by a d–dimensional

Brownian motion W , i.e. we consider the solution of the stochastic differential equation

dXε
t = b

( t

T
,Xε

t

)

dt+
√
ε dWt, t ≥ 0. (0.2)

One of the system’s important features is that its inhomogeneity is weak in the sense that the drift

depends on time only through a re-scaling by the time parameter T = T ε which will be assumed to be

exponentially large in ε. This corresponds to the situation in [9] and is motivated by the well known

Kramers-Eyring law which was mathematically underpinned by the Freidlin-Wentzell theory of large

deviations ([6]). The law roughly states that the expected time it takes for a homogeneous diffusion

to leave a local attractor e.g. across a potential wall of height v
2 is given to exponential order by

T ε = exp( vε ). Hence, only in exponentially large scales of the form T ε = exp(µε ) we can expect to see

effects of transitions between different domains of attraction. b is assumed to be one-periodic w.r.t. time.

The deterministic system ξ̇t = b(s, ξt) with frozen time parameter s is supposed to have two domains

of attraction that do not depend on s ≥ 0. In the “classical” case of a drift derived from a potential,

b(t, x) = −∇xU(t, x) for some potential function U , equation (0.2) describes the motion of a Brownian

particle in a d-dimensional time inhomogeneous double-well potential.

Since our stochastic resonance criterion is based on transition times between the two meta-stable sets

of the system, our analysis relies on a suitable notion of transition or exit time. The Kramers-Eyring
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formula suggests to consider the parameter µ from T ε = exp(µε ) as a natural measure of scale. Therefore,

if at time s the system needs energy e(s) to leave some meta-stable set, an exit from that set should

occur at time

aµ = inf{t ≥ 0 : e(t) ≤ µ}
in the diffusion’s natural time scale. If aiµ are the transition times for the two domains of attraction

numbered i = ±1, we look at the probabilities of transitions between them within a time window

[(aiµ − h)T ε, (aiµ + h)T ε] for small h > 0. Assume for this purpose that the two corresponding meta-

stable points are given by xi, i = ±1, and denote by τ−i% the random time at which the diffusion reaches

the %-neighborhood B%(x−i) of x−i. Then we use the following quantity to measure the quality of periodic

tuning:

M(ε, µ) = min
i=±1

sup
x∈B%(xi)

IPx

(

τ−i% ∈ [(aiµ − h)T, (aiµ + h)T ]
)

,

the minimum being taken in order to account for transitions back and forth. In order to exclude trivial

or chaotic transition behavior, the scale parameter µ has to be restricted to an interval IR of reasonable

values which we call resonance interval. With this measure of quality, the stochastic resonance point

may be determined as follows. We first fix ε and the window width parameter h > 0, and maximize

M(ε, µ) in µ, eventually reached for the time scale µ0(h). Then we call the eventually existing limit

limh→0 µ0(h) resonance point.

To calculate µ0(h) for fixed positive h we use large deviations techniques. In fact, our main result

contains a formula which states that

lim
ε→0

ε log
{

1 −M(ε, µ)
}

= max
i=±1

{

µ− ei(a
i
µ − h)

}

.

We show that this asymptotic relation holds uniformly w.r.t. µ on compact subsets of IR, a fact which

enables us to perform a maximization and find µ0(h). The techniques needed to prove our main result

feature extensions and refinements of the fundamental large deviations theory for time homogeneous

diffusions by Freidlin-Wentzell [6]. We prove a large deviations principle for the inhomogeneous dif-

fusion (0.2) and strengthen this result to get uniformity in system parameters. Similarly to the time

homogeneous case, where large deviations theory is applied to the problem of diffusion exit culminating

in a mathematically rigorous proof of the Kramers-Eyring law, we study the problem of diffusion exit

from a domain which is carefully chosen in order to allow for a detailed analysis of transition times. The

main idea behind our analysis is that the natural time scale is so large that re-scaling in these units

essentially leads to an asymptotic freezing of the time inhomogeneity, which has to be carefully studied,

to hook up to the theory of large deviations of time homogeneous diffusions.

The material in the paper is organized as follows. Section 1 is devoted to the careful extension of large

deviations theory to diffusions with slow time inhomogeneity. The most useful result for the subsequent

analysis of exit times is Proposition 1.8 with a large deviations principle for slowly time dependent

diffusions, uniform with respect to a system parameter. In section 2 upper and lower bounds for the

asymptotic exponential exit rate from domains of attraction for slowly time dependent diffusions are

derived. The main result Theorem 2.3 combines them. Section 3 is concerned with developing the

resonance criterion and computing the resonance point from the results of the preceding section.

1 Large deviations for diffusion processes

Let us now consider dynamical systems driven by slowly time dependent vector fields, perturbed by

Gaussian noise of small intensity. We shall be interested in their large deviation behavior. Due to the

slow time inhomogeneity, the task we face is not covered by the classical theory presented in Freidlin,

Wentzell [6] and Dembo, Zeitouni [4]. For this reason we shall have to extend the theory of large

deviations for randomly perturbed dynamical systems developed by Freidlin, Wentzell [6] to drift terms

depending in a weak form to be made precise below on the time parameter. Before doing so in the

second subsection, we shall recall the classical results on time homogeneous diffusions in the following

brief overview.
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1.1 The time homogeneous case: classical results

For a more detailed account of the following well known theory see [4] or [6].

We consider the family of IRd-valued processes Xε, ε > 0, defined by

dXε
t = b(Xε

t ) dt+
√
ε dWt, Xε

0 = x0 ∈ IRd, (1.1)

on a fixed time interval [0, T ], where b is Lipschitz continuous and W is a d-dimensional Brownian

motion. This family of diffusion processes satisfies in the small noise limit, i.e. as ε → 0, a large

deviations principle (LDP) in the space C0T := C([0, T ], IRd) equipped with the topology of uniform

convergence induced by the metric ρ0T (ϕ, ψ) := sup0≤t≤T ‖ϕt − ψt‖, ϕ, ψ ∈ C0T . The rate function or

action functional is given by Ix0

0T : C0T → [0,+∞],

Ix0

0T (ϕ) =

{

1
2

∫ T

0 ‖ϕ̇t − b(ϕt)‖2
dt, if ϕ is absolutely continuous and ϕ0 = x0,

+∞, otherwise.
(1.2)

Moreover, Ix0

0T is a good rate function, i.e. it has compact level sets. The LDP for this family of processes

is mainly obtained as an application of the contraction principle to the LDP for the processes
√
εW ,

ε > 0. More precisely, in the language of Freidlin and Wentzell, the functional Ix0

0T is the normalized

action functional corresponding to the normalizing coefficient 1
ε . In the sequel we will not consider

scalings other than this one. We have Ix0

0T (ϕ) <∞ if and only if ϕ belongs to the Cameron-Martin space

of absolutely continuous functions with square integrable derivatives starting at x0, i.e.

ϕ ∈ Hx0

0T :=
{

f : [0, T ] → IRd
∣

∣

∣
f(t) = x0 +

∫ t

0

g(s) ds for some g ∈ L2([0, T ])
}

.

We omit the superscript x0 whenever there is no confusion about the initial condition we are referring

to.

Observe that I0T (ϕ) = 0 means that ϕ (up to time T ) is a solution of the deterministic equation

ξ̇ = b(ξ), (1.3)

so I0T (ϕ) is essentially the L2-deviation of ϕ from the deterministic solution ξ. The cost function V of

Xε, defined by

V (x, y, t) = inf
{

I0t(ϕ) : ϕ ∈ C0t, ϕ0 = x, ϕt = y
}

takes into account all continuous paths connecting x, y ∈ IRd in a fixed time interval of length t, and the

quasi-potential

V (x, y) = inf
t>0

V (x, y, t)

describes the cost of Xε going from x to y eventually. In the potential case, V agrees up to a constant

with the potential energy to spend in order to pass from x to y in the potential landscape, hence the

term quasi-potential.

The classical LDP due to Freidlin and Wentzell requires the usual global Lipschitz and linear growth

conditions from the standard existence and uniqueness results for SDE. In our setting the coefficients

will (in general) not be globally Lipschitz since the drift is given by a potential gradient. An extension

to locally Lipschitz and ε-dependent drift terms was provided by Azencott [1]. The following proposition

is a special case of Azencott [1], Chapter III, Theorem 2.13. See also Baldi [2], Theorem 2.1.

Proposition 1.1. Assume that the equation (1.1) has a unique strong solution that never explodes and

that the drift is locally Lipschitz. Then Xε satisfies on any time interval [0, T ] a large deviations principle

with good rate function I0T . Furthermore, the LDP for Xε holds uniformly w.r.t. the initial condition

of the diffusion. More precisely, if IPy(X
ε ∈ ·) denotes the law of the diffusion Xε starting in y ∈ IRd

and K ⊂ IRd is compact, we have for any closed F ⊂ C0T

lim sup
ε→0

ε log sup
y∈K

IPy(X
ε ∈ F ) ≤ − inf

y∈K
inf
ϕ∈F

Iy0T (ϕ). (1.4)

and for any open G ⊂ C0T

lim inf
ε→0

ε log inf
y∈K

IPy(X
ε ∈ G) ≥ − sup

y∈K
inf
ϕ∈G

Iy0T (ϕ). (1.5)
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Remark 1.2.

(i) A sufficient condition for the existence of a non-exploding and unique strong solution is a locally

Lipschitz drift term b which satisfies

〈x, b(x)〉 ≤ γ
(

1 + ‖x‖2 )
for all x ∈ IRd (1.6)

for some constant γ > 0 (see [17], Theorem 10.2.2). This still rather weak condition is obviously

satisfied if 〈x, b(x)〉 ≤ 0 for large enough x, which means that b contains a component that pulls X

back to the origin.

(ii) A strengthening of condition (1.6) ensuring superlinear growth will be used in subsequent sections.

In that case, the laws of (Xε) are exponentially tight, and I0T is a good rate function. Recall that

the laws of (Xε) are exponentially tight if there exist some R0 > 0 and a positive function ϕ

satisfying limx→∞ ϕ(x) = +∞ such that

lim sup
ε→0

ε log IP(σεR ≤ T ) ≤ −ϕ(R) for all R ≥ R0. (1.7)

Here σεR denotes the first time that Xε exits from BR(0).

1.2 General results on weakly time inhomogeneous diffusions

Let us now come to inhomogeneous diffusions with slowly time dependent drift coefficients. For our

understanding of stochastic resonance effects of dynamical systems with slow time dependence, we have to

adopt the large deviations results of the previous subsection to diffusions moving in potential landscapes

with different valleys slowly and periodically changing their depths and positions. In this subsection

we shall extend the large deviations results of Freidlin and Wentzell to time inhomogeneous diffusions

which are almost homogeneous in the small noise limit, so that in fact we are able to compare to the

large deviation principle for time homogeneous diffusions. The result we present in this subsection is

not strong enough for the treatment of stochastic resonance (one needs uniformity in some of the system

parameters), but it most clearly exhibits the idea of the approach, which is why we state it here.

Consider the family Xε, ε > 0, of solutions of the SDE

dXε
t = bε(t,Xε

t ) dt+
√
ε dWt, t ≥ 0, Xε

0 = x0 ∈ IRd . (1.8)

We assume that (1.8) has a global strong solution for all ε > 0. Our main large deviations result for

diffusions for which time inhomogeneity fades out in the small noise limit is summarized in the following

Proposition. The ε-dependence of the drift term was assumed in the same way in Azencott [1], Chapter

III, Theorem 2.13 and Baldi [2], Theorem 2.1. See also Priouret[14].

Proposition 1.3 (Large deviations principle). Assume that the drift of the SDE (1.8) satisfies

lim
ε→0

bε(t, x) = b(x) (1.9)

for all t ≥ 0, uniformly w.r.t. x on compact subsets of IRd, for some locally Lipschitz function b : IRd →
IRd. Assume that the time homogeneous diffusion Y ε associated to the limiting drift b (i.e. the solution

of (1.1) with the same initial condition x0) does not explode.

Then (Xε) satisfies a large deviations principle on any finite time interval [0, T ] with good rate function

I0T given by (1.2).

Proof. For notational convenience, we drop the ε-dependence of X and Y . We shall prove that X and

Y are exponentially equivalent, i.e. for any δ > 0 we have

lim sup
ε→0

ε log IP
(

ρ0T (X,Y ) > δ
)

= −∞. (1.10)

In order to verify this, fix some δ > 0, and observe that

‖Xt − Yt‖ ≤
∫ t

0

‖bε(u,Xu) − b(Xu)‖ du+

∫ t

0

‖b(Xu) − b(Yu)‖ du.
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For R > 0 let τR := inf{t ≥ 0 : Xt /∈ BR(x0)}, let τ̃R be defined similarly with X replaced by Y , and

σR := τR ∧ τ̃R. The local Lipschitz continuity of b implies the existence of some constant KR(x0) such

that ‖b(x) − b(y)‖ ≤ KR(x0)‖x− y‖ for x, y ∈ BR(x0). An application of Gronwall’s Lemma yields

ρ0T (X,Y ) ≤ eKR(x0)T

∫ T

0

‖bε(u,Xu) − b(Xu)‖ du on {σR > T}.

Due to uniform convergence, for any η > 0 we can find some ε0 > 0 s.t.

sup
x∈BR(x0)

‖bε(t, x) − b(x)‖ ≤ η for t ∈ [0, T ], ε < ε0.

This implies

ρ0T (X,Y ) ≤ ηTeKR(x0)T for ε < ε0 on {σR > T}. (1.11)

By choosing η small enough s.t. ρ0T (X,Y ) ≤ δ/2 on {σR > T} (i.e. X and Y are very close before they

exit from BR(x0)), we see that for ε < ε0

IP
(

ρ0T (X,Y ) > δ
)

≤ IP(τR ≤ T ) + IP(τ̃R ≤ T ).

Since X and Y are close within the ball BR(x0), we deduce that if X escapes from BR(x0) before time

T , then Y must at least escape from BR/2(x0) before time T (if R > δ). So we have

IP
(

ρ0T (X,Y ) > δ
)

≤ IP(τ̃R/2 ≤ T )

for ε < ε0. Hence the LDP for Y gives

lim sup
ε→0

ε log IP
(

ρ0T (X,Y ) > δ
)

≤ − inf
{

V (x0, y, t) : 0 ≤ t ≤ T, ‖y − x0‖ ≥ R/2
}

.

Sending R→ ∞ yields the desired result (see Theorem 4.2.13 in [4]).

It is easy to see that the uniformity w.r.t. the diffusion’s initial condition also holds for the weakly

inhomogeneous process Xε of this proposition. One only has to carry over Proposition 5.6.14 in [4],

which is easily done using some Gronwall argument. Then the proof of the uniformity is the same as in

the homogeneous case (see [4], Corollary 5.6.15). We omit the details.

1.3 Weak inhomogeneity through slow periodic variation

In this subsection we shall deal with some particular diffusions for which the drift term is subject to

a very slow periodic time inhomogeneity. More precisely, we shall be concerned with solutions of the

following stochastic differential equation taking their values in d−dimensional Euclidean space, driven

by a d−dimensional Brownian motion W of intensity ε:

dXε
t = b

( t

T ε
, Xε

t

)

dt+
√
ε dWt, t ≥ 0, X0 = x0 ∈ IRd . (1.12)

Here T ε is a time scale parameter which tends to infinity as ε→ 0. In the subsequent sections, we shall

assume that T ε is exponentially large, in fact

T ε = exp
µ

ε
with µ > 0. (1.13)

The drift b(t, x) of (1.12) is a time-periodic function of period one. Concerning its regularity properties,

we suppose it to be locally Lipschitz in both variables, i.e. for R > 0, x ∈ IRd there are constants KR(x)

and κR(x) such that

‖b(t, y1) − b(t, y2)‖ ≤ KR(x) ‖y1 − y2‖ , (1.14)

‖b(t, y) − b(s, y)‖ ≤ κR(x) |t− s| (1.15)

for all y, y1, y2 ∈ BR(x) and s, t ≥ 0. Furthermore, we shall assume that the drift term forces the diffusion

to stay in compact sets for long times in order to get sufficiently “small” level sets. We suppose that

there are constants η, R0 > 0 such that

〈x, b(t, x)〉 < −η ‖x‖ (1.16)

for t ≥ 0 and ‖x‖ ≥ R0. This condition is stronger than (1.6), so the existence of a unique strong and

non-exploding solution is again guaranteed. Moreover, this growth condition implies the exponential

tightness of the diffusion (see Proposition 1.4 for the precise asymptotics).

6



1.3.1 Boundedness of the diffusion

The aim of this subsection is to exploit the consequences of the growth condition (1.16). In fact it implies

that the diffusion (1.12) cannot leave compact sets in the small noise limit. For positive ε, it stays for

a long time in bounded domains. In the following Proposition we shall make precise how the law of

the exit time from bounded domains depends on ε. The arguments are borrowed from the framework of

self-attracting diffusions, see [15] or [10].

For R > 0 let σεR := inf{t ≥ 0 : ‖Xε
t ‖ ≥ R} denote the first exit time from the ball BR(0).

Proposition 1.4. Let δ > 0, and let r : (0, δ) → (0,∞) be a function satisfying limε→0
ε
r(ε) = 0. There

exist R1, ε1 > 0 and C > 0 such that for R ≥ R1, ε < ε1

IPx
(

σεR ≤ r(ε)
)

≤ Cη2 r(ε)

ε
e−

ηR
ε for ‖x‖ ≤ R

2
. (1.17)

Proof. For convenience of notation, we suppress the superscript ε in Xε, σεR etc. Choose a C2-function

h : IRd → IR s.t. h(x) = ‖x‖ for ‖x‖ ≥ R0 and h(x) ≤ R0 for ‖x‖ ≤ R0, where R0 is the constant given

in the growth condition (1.16). By Itô’s formula we have

h(Xt) = h(x) +
√
ε

∫ t

0

∇h(Xs) dWs +

∫ t

0

〈

∇h, b
(

s
T ε , ·

)〉

(Xs) ds+
ε

2

∫ t

0

4h(Xs) ds.

Let ξt :=
∫ t

0 ‖∇h(Xs)‖2
ds, i.e. ξt is the quadratic variation of the continuous local martingale Mt :=

∫ t

0 ∇h(Xs) dWs, t ≥ 0. Since ∇h(x) = x
‖x‖ for ‖x‖ ≥ R0, we have dξt = dt on {‖Xt‖ ≥ R0}. Now we

introduce an auxiliary process Z which shall serve to control ‖X‖.
Let 0 < η̃ < η. According to Skorokhod’s lemma (see Revuz, Yor [16]) there is a unique pair of continuous

adapted processes (Z,L) such that L is an increasing process (of finite variation) which increases only

at times t for which Zt = R0, and Z ≥ R0, which satisfies the equation

Z := R0 ∨ ‖x‖ +
√
εM − η̃ξ + L.

We will prove that

‖Xt‖ ≤ Zt a.s. for all t ≥ 0. (1.18)

For that purpose, choose f ∈ C2(IR) such that

{

f(x) > 0 and f ′(x) > 0 for all x > 0,

f(x) = 0 for all x ≤ 0.

According to Itô’s formula, for t ≥ 0

f(h(Xt) − Zt) = f(h(x) − ‖x‖ ∨R0) +

∫ t

0

f ′(h(Xs) − Zs) d(h(X) − Z))s

+
1

2

∫ t

0

f ′′(h(Xs) − Zs) d〈h(X) − Z〉s.

By definition of h and Z we have h(Xt) ≤ Zt on {‖Xt‖ ≤ R0}, so {h(Xt) > Zt} = {‖Xt‖ > Zt}.
Moreover by definition, h(X) − Z is a finite variation process. Hence the expression

∫ t

0

f ′
(

‖Xs‖ − Zs
)

{

1

‖Xs‖
〈

Xs, b
( s

T ε
, Xs

)〉

+
ε

2
4h(Xs) + η̃

}

ds

−
∫ t

0

f ′(‖Xs‖ − Zs) dLs

is an upper bound of f(h(Xt) − Zt). Furthermore, 4h(x) = d−1
‖x‖ for ‖x‖ ≥ R0, which by (1.16) implies

1

‖Xs‖
〈

Xs, b
( s

T ε
, Xs

)〉

+
ε

2
4h(Xs) + η̃ <

ε(d− 1)

2 ‖Xs‖
+ η̃ − η on {‖Xs‖ > Zs}.

The latter expression is negative if ε is small enough, so we can find some ε0 > 0 such that f(‖Xt‖−Zt) ≤
0 for ε < ε0. This implies ‖Xt‖ ≤ Zt a.s. by the definition of f , and (1.18) is established.
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We therefore can bound the exit probability of X by that of Z. If Q denotes the law of the process Z,

we see that for any α > 0

IPx(σR ≤ r(ε)) ≤ Q(σR ≤ r(ε)) ≤ eαr(ε) IEQ[e−ασR ]. (1.19)

In order to find a bound on the right hand side of (1.19), let K := sup‖x‖≤R0
‖∇h(x)‖2

. Then we have

ξt ≤ Kt for all t ≥ 0. Note that w.l.o.g. h can be chosen so that K ≤ 2R0. Now observe that, by Itô’s

formula, for any ϕ ∈ C2(IR)

d
(

ϕ(Zt) e
− α

K
ξt
)

=
√
ε ϕ′(Zt)e

− α
K
ξt dMt + ϕ′(Zt) e

− α
K
ξt dLt

+ e−
α
K
ξt

{ε

2
ϕ′′(Zt) − η̃ϕ′(Zt) −

α

K
ϕ(Zt)

}

dξt.

Now let R ≥ R0. If we choose ϕ such that

{

ε
2ϕ

′′(y) − η̃ϕ′(y) − α
Kϕ(y) = 0 for y ∈ [R0, R],

ϕ′(R0) = 0, ϕ(R) = 1,

then ϕ(Zt)e
− α

K
ξt is a local martingale which is bounded up to time σR. Hence we are allowed to apply

the stopping theorem to obtain

ϕ(R0 ∨ ‖x‖) = IEQ[ϕ(ZσR
)e−

α
K
ξσR ] = IEQ[e−

α
K
ξσR ]. (1.20)

Hence ξσR
≤ KσR, which implies IEQ[e−

α
K
ξσR ] ≥ IEQ[e−ασR ], and we deduce from (1.19) that

IPx(σR ≤ r(ε)) ≤ eαr(ε) IEQ[e−
α
K
ξσR ] ≤ eαr(ε)ϕ(R0 ∨ ‖x‖). (1.21)

Solving the differential equation for ϕ yields

ϕ(x) =
−λ−eλ+(x−R0) + λ+eλ

−(x−R0)

−λ−eλ+(R−R0) + λ+eλ−(R−R0)

with λ± =
η̃±

√
η̃2+2 α

K
ε

ε . Hence

ϕ(x) ≤ (λ+ − λ−) eλ
+(x−R0)

(−λ−) eλ+(R−R0)
.

Taking α = r(ε)−1 in (1.21) we obtain

IPx(σR ≤ r(ε)) ≤ exp(1)ϕ(R0 ∨ ‖x‖) ≤ λ+ − λ−

−λ− exp
{

1 + λ+(R0 ∨ ‖x‖ −R)
}

.

It is obvious that exp
{

λ+(R0 ∨‖x‖−R)
}

≤ exp
{

− η̃R
ε

}

for R ≥ 2(‖x‖∨R0), so it remains to comment

on the prefactor. We have

λ+ − λ−

−λ− =
2
√

η̃2 + 2 αK ε
√

η̃2 + 2 αK ε− η̃
≤

4
(

η̃2 + 2ε
Kr(ε)

)

2ε
Kr(ε)

.

Since limε→0
ε
r(ε) = 0 the latter expression behaves like 2η̃2K r(ε)

ε as ε → 0. Putting these estimates

together yields the claimed asymptotic bound with η̃ instead of η. Letting η̃ → η finishes the proof.

Remark 1.5. The proof of Proposition 1.4 shows a lot more. The crucial inequality (1.21) contains a

bound which is independent of Xε, since ϕ is defined by means of h, ε, η̃ and R0 only. Thus we have

shown that the bound (1.17) holds for all diffusions satisfying the growth condition (1.16), i.e. ε1 and

R1 are independent of Xε. In particular, (1.17) holds uniformly w.r.t. µ.
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1.3.2 Properties of the quasi-potential

Taking large period limits in the subsequently derived large deviations results for our diffusions with

slow periodic variation will require to freeze the time parameter in the drift term. The corresponding

rate functions are given a separate treatment in this subsection. We shall briefly discuss their regularity

properties. This will be of central importance for the estimation of exit rates in section 2. For s ≥ 0, T > 0

we consider

Is0T (ϕ) =

{

1
2

∫ T

0 ‖ϕ̇t − b(s, ϕt)‖2
dt, if ϕ is absolutely continuous,

+∞, otherwise.
(1.22)

As in the first section, we need associated cost functions. For s ≥ 0, x, y ∈ IRd they are given by

V s(x, y, t) = inf{Is0t(ϕ) : ϕ ∈ C0t, ϕ0 = x, ϕt = y}. (1.23)

V s(x, y, t) is the cost of forcing the frozen system

dY εt = b(s, Y εt ) dt+
√
ε dWt, t ≥ 0,

to be at the point y at time t when starting at x. The corresponding quasi-potential

V s(x, y) = inf
t>0

V s(x, y, t) (1.24)

describes the cost for the frozen system to go from x to y eventually. Let us note that since the drift

b is locally Lipschitz in the time variable, the family of action functionals Is0T is continuous w.r.t. the

parameter s, and the corresponding cost functions and pseudo-potentials inherit this continuity property.

Let us recall some further useful properties of the quasi-potentials and their underlying cost and rate

functions. The following properties are immediate.

Lemma 1.6. For any x, y, z ∈ IRd and s, t, u ≥ 0 we have

a) V s(x, y, t+ u) ≤ V s(x, z, t) + V s(z, y, u),

b) (s, y) 7→ V s(x, y, t) is continuous on IR+ × IRd,

c) inf‖y‖≥R V
s(x, y, t) −−−−→

R→∞
∞ uniformly w.r.t. s ≥ 0.

The following Lemma establishes the local Lipschitz continuity of the quasi-potential w.r.t. the state

variables, uniformly w.r.t. the parameter s.

Lemma 1.7. For any compact subset K of IRd there exists ΓK ≥ 0 such that

sup
s≥0

V s(x, y) ≤ ΓKdist(x, y)

for all x, y ∈ K.

Proof. Let x and y belong to K. There exists some radius R > 0 such that K ⊂ BR(0). Set T =

dist(x, y). We construct a path ϕ ∈ C0T by setting ϕt = x+ y−x
dist(x,y) t for t ∈ [0, T ]. Since b(s, ·) is locally

Lipschitz uniformly w.r.t. s ≥ 0, we obtain an upper bound for the energy of ϕ:

Is0T (ϕ) ≤ 1

2
sup
u≥0

∫ T

0

‖ϕ̇t − b(u, ϕt)‖2dt ≤ 1

2

∫ T

0

( ‖y − x‖
dist(x, y)

+ sup
0≤u≤1

‖b(u, ϕt)‖
)2

dt

≤ 1

2

∫ T

0

(

1 + κR(0) + ‖b(0, ϕt)‖
)2
dt ≤ 1

2

∫ T

0

(

1 + κR(0) +KR(0) ‖ϕt‖ + ‖b(0, 0)‖
)2
dt

≤ T

2

(

1 + κR(0) +RKR(0) + ‖b(0, 0)‖
)2
.

For ΓK := 1
2

(

1 + κR(0) +RKR(0) + ‖b(0, 0)‖
)2

and by the definition of T , we obtain

sup
s≥0

V s(x, y) ≤ sup
s≥0

Is0T (ϕ) ≤ ΓKdist(x, y).
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1.3.3 Large deviations

We shall now specialize the general large deviations results of the previous subsection to the family X ε,

ε > 0, of solutions of (1.12). At the same time they will be strengthened, to obtain uniformity w.r.t. to

some of the system’s parameters: the scale parameter µ, the starting time, and the initial condition.

It is an immediate consequence of Proposition 1.3 that the solution of (1.12) satisfies a large deviations

principle with rate function I0
0T , i.e. the rate function is the same as that of a homogeneous diffusion

governed by the frozen drift b(0, ·). In order to see this, one only has to mention that limε→0 b
(

t
T ε , x

)

=

b(0, x) locally uniformly w.r.t. x due to the Lipschitz assumptions on b.

But this result is not strong enough. We also need some uniformity w.r.t. the starting times of the

diffusions we consider. Our large deviations statements derived so far rely on comparison arguments

which yield exponential equivalence with time homogeneous diffusions for which an LDP is well known

from the classical theory of Freidlin and Wentzell. In order to achive uniform large deviations estimates

we have to refine this technique, to derive a large deviations principle for our family of diffusions (1.12),

which is uniform with respect to both the starting time and the scale parameter. This will be our main

tool for estimating the asymptotics of exit time laws in the subsequent section.

The diffusion (1.12) is a time inhomogeneous Markov process. The solution starting at time r ≥ 0 with

initial condition x ∈ IRd has the same law as the solution Xr,x of the SDE

dXr,x
t = b

(r + t

T ε
, Xr,x

t

)

dt+
√
ε dWt, t ≥ 0, Xr,x

0 = x ∈ IRd . (1.25)

We denote its law by IPx,r(·), assume from now on that T ε = exp µ
ε for some µ > 0, and fix T ≥ 0.

Proposition 1.8. Let K ⊂ IRd be a compact set and V ⊂ (0,∞). For µ ∈ V, r ∈ [0, 1] and β ≥ 0 let

Sr,β(ε, µ) be a neighborhood of rT ε such that

lim sup
ε→0

sup
µ∈V,r∈[0,1]

diam(Sr,β(ε, µ))

T ε
≤ β.

Then for any closed F ⊂ C0T , there exists δ = δ(F ) such that

lim sup
ε→0

ε log sup
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(X
ε ∈ F ) ≤ − inf

y∈K
inf

ϕ∈Fγ0 ,ϕ0=y
Ir0T (ϕ)

where γ0 = γ0(F ) = βδ(F ) and F γ0 is the closed γ0-neighborhood of F .

For any open G ⊂ C0T , there exists δ = δ(G) and β0 = β0(G) such that, if β ≤ β0,

lim inf
ε→0

ε log inf
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(X
ε ∈ G) ≥ − sup

y∈K
inf

ϕ∈Gγ0 ,ϕ0=y
Ir0T (ϕ),

where γ0 = γ0(G) = βδ(G) and Gγ0 is the complement of (Gc)γ0 .

These bounds hold uniformly w.r.t. r.

Remark 1.9. The upper bound means that for any ϑ > 0 we can find ε0 > 0 s.t. for ε ≤ ε0 we have

ε log sup
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(X
ε ∈ F ) ≤ − inf

y∈K
inf

ϕ∈Fγ0 ,ϕ0=y
Ir0T (ϕ) + ϑ.

The uniformity in the statement means that ε0 can be chosen independently of r. A similar statement

holds for the lower bound.

Observe that the expression for the blowup-factor γ0(F ) depends on the set F only through δ(F ) which is

independent of β, and that γ0(F ) → 0 as β → 0 for all F . In particular, if β is equal to zero, we recover

the classical bound of the uniform LDP.

Proof of Proposition 1.8. For y ∈ IRd and r ∈ [0, 1] let Y r,y be the solution of the homogeneous SDE

dY r,yt = b(r, Y r,yt ) dt+
√
ε dWt, t ≥ 0, Y r,y0 = y.

Let W ⊂ [0, 1] and r0 ∈ W . For r ∈ W , u ∈ Sr,β(ε, µ), µ ∈ V and R > 0 let τu,yR := inf{t ≥ 0 : Xu,y
t /∈

BR(0)}, and let τ̃ r0,yR be defined similarly with Xu,y replaced by Y r0,y, and σu,y,r0R := τu,yR ∧ τ̃r0,yR .
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As a consequence of Gronwall’s lemma we see just as in the proof of Proposition 1.3 that for r, r0 ∈
[0, 1], u ∈ Sr,β(ε, µ)

ρ0T (Xu,y, Y r0,y) ≤ eKR(0)T

∫ T

0

∥

∥

∥

∥

b
(u+ t

T ε
, Xu,y

t

)

− b(r0, X
u,y
t )

∥

∥

∥

∥

dt on {σu,y,r0R > T}.

This implies

ρ0T (Xu,y, Y r0,y) ≤ κR(0)TeKR(0)T

(

diam(Sr,β(ε, µ)) + T

T ε
+ |r − r0|

)

on {σu,y,r0R > T}.

Due to our assumption the last expression is bounded by

β1 = β1(W) = β0(W)M(R) as ε→ 0, (1.26)

where

β0(W) := β + sup
r∈W

|r − r0| and M(R) := TκR(0)eKR(0)T . (1.27)

Upper bound: Fix some closed set F ⊂ C0T . For all γ > 0 we have

IP(Xu,y ∈ F ) ≤ IP(Y r0,y ∈ F γ) + IP(ρ0T (Xu,y, Y r0,y) > γ).

This yields

lim sup
ε→0

ε log sup
y∈K,µ∈V,r∈W,u∈Sr,β(ε,µ)

IPy,u(X
ε ∈ F )

≤ lim sup
ε→0

ε log max
{

sup
y∈K

IP(Y r0,y ∈ F γ), sup
y∈K,µ∈V,r∈W,u∈Sr,β(ε,µ)

IP(ρ0T (Xu,y, Y r0,y) > γ)
}

.

Now we wish to find some γ such that the asymptotics of the maximum is determined by the left term

supy∈K IP(Y r0,y ∈ F γ). In that case the uniform LDP for Y will give us the bound

lim sup
ε→0

ε log sup
y∈K,µ∈V,r∈W,u∈Sr,β(ε,µ)

IPy,u(X
ε ∈ F ) ≤ − inf

y∈K
inf

ϕ∈Fγ , ϕ0=y
Ir00T (ϕ). (1.28)

Unfortunately, such a γ will depend on F . In order to see that it exists and can be chosen as claimed in

the statement, we define

Θ(R, ε) := sup
r∈[0,1],y∈K,µ∈V,u∈Sr,β(ε,µ)

IP(τu,yR ≤ T ) + sup
r∈[0,1],y∈K

IP(τ̃r,yR ≤ T ).

By Proposition 1.4 and Remark 1.5 we have

lim sup
ε→0

ε logΘ(R, ε) ≤ −ηR

for all R ≥ R1. Hence we may fix R ≥ R1 such that

lim sup
ε→0

ε log Θ(R, ε) ≤ − sup
r∈[0,1]

inf
y∈K

inf
ϕ∈F,ϕ0=y

Ir0T (ϕ).

Let δ(F ) = M(R), and note that δ(F ) is independent of β and W . By (1.26), for any γ > β1(W) =

β0(W)δ(F ) we can find ε0 > 0 such that for ε ≤ ε0

sup
r∈W,y∈K,µ∈V,u∈Sr,β(ε,µ)

IP(ρ0T (Xu,y, Y r0,y) > γ) ≤ Θ(R, ε). (1.29)

Hence, for γ > β1(W), the definition of δ(F ) implies

lim sup
ε→0

ε log sup
r∈W,y∈K,µ∈V,u∈Sr,β(ε,µ)

IP(ρ0T (Xu,y, Y r0,y) > γ) ≤ lim sup
ε→0

ε log Θ(R, ε)

≤ − sup
r∈[0,1]

inf
y∈K

inf
ϕ∈F,ϕ0=y

Ir0T (ϕ) ≤ − inf
y∈K

inf
ϕ∈Fγ ,ϕ0=y

Ir00T (ϕ),
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which implies (1.28). The particular choice W = {r0} yields this bound for all γ > γ0(F ) = βδ(F ) given

in the statement and proves the claimed bound. By taking the limit γ → γ0(F ) we get the asserted

upper bound since I is a good rate function (see [4], Lemma 4.1.6).

It remains to prove the uniformity w.r.t. r. For that purpose fix ϑ > 0, and for r0 ∈ [0, 1] let Wr0 be

a neighborhood of r0. By the continuity of r 7→ Ir0T and Lemma 4.1.6 in [4] we can assume Wr0 to be

small enough such that for r ∈ Wr0 , denoting γ∗ = β0(Wr0)δ(F ) and γ0 = βδ(F ),

inf
y∈K

inf
ϕ∈Fγ∗ ,ϕ0=y

Ir00T (ϕ) ≥ inf
y∈K

inf
ϕ∈Fγ0 ,ϕ0=y

Ir00T (ϕ) − ϑ/4 ≥ inf
y∈K

inf
ϕ∈Fγ0 ,ϕ0=y

Ir0T (ϕ) − ϑ/2.

Due to compactness we can choose finitely many points r1, ..., rN such that their corresponding neigh-

borhoods cover [0, 1]. Denote γ∗n := β0(Wrn
)δ(F ). For each 1 ≤ n ≤ N there exists some εn > 0 such

that for ε ≤ εn and r ∈ Wrn
,

ε log sup
y∈K,µ∈V,u∈Sr(ε,µ)

IPy,u(X
ε ∈ F ) ≤ − inf

y∈K
inf

ϕ∈Fγ∗

n ,ϕ0=y
Irn

0T (ϕ) +
ϑ

2

≤ − inf
y∈K

inf
ϕ∈Fγ0 ,ϕ0=y

Ir0T (ϕ) + ϑ.

Hence for ε ≤ min1≤n≤N εn, the preceding inequality holds for all r ∈ [0, 1].

Lower bound: Let G ⊂ C0T be an open set. Consider the increasing function

f(l) :=
1

η
sup
y∈K

inf
φ∈Gl: φ0=y

Ir00T (φ),

let l0 = inf{l ≥ 0 : f(l) = +∞}, and recall that η is the constant introduced in the growth condi-

tion (1.16) for the drift.

Assume first that l0 <∞ (this is guaranteed if G is bounded), and set

R := f
(

(l0 − β0(W)) ∨ l0
2

)

∨R1 and γ := β0(W)M(R),

where R1 is given by Proposition 1.4. Then

IP(Y r0,y ∈ Gγ) ≤ IP(Xu,y ∈ G) + IP(ρ0T (Y r0,y, Xu,y) > γ).

By the uniform LDP for Y r0,y and (1.29) we conclude that

−ηf(γ) = − sup
y∈K

inf
ϕ∈Gγ , ϕ0=y

Ir00T (ϕ) ≤ lim inf
ε→0

ε log inf
y∈K

IP(Y r0,y ∈ Gγ)

≤ max
{

lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G),

lim sup
ε→0

ε log sup
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(ρ0T (Y r0,y, Xu,y) > γ)
}

≤ max
{

lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G),

lim sup
ε→0

ε logΘ(R, ε)
}

.

Since f is increasing and R ≥ R1, we obtain by Proposition 1.4

−ηf(γ + β0(W)) ≤ −ηf(γ) ≤ max
{

lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G), −ηR
}

.

Now we have to compare f(γ) and R in order to see when the maximum is given by the left term.

If f(γ) > R, then γ > (l0−β0(W))∨ l0
2 ≥ l0−β0(W) by monotonicity of f , hence f(γ+β0(W)) = +∞ by

definition of l0. Otherwise we have f(γ) ≤ R, which means that the left term dominates the maximum.

In both cases we get

−ηf(γ + β0(W)) ≤ lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G).
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Now consider the unbounded case l0 = +∞. Recall M defined by (1.27), and let β0(G) := supl≥0
l

M(f(l)) ,

the existence of which was claimed in the statement. If β0(W) < β0(G), we can choose l1 such that
l1

M(f(l1)) ≥ β0(W) and set γ := β0(W)M(f(l1)). Using the same arguments as in the bounded case, we

deduce that

−ηf(γ) ≤ max
{

lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G),−ηf(l1)
}

.

Since f is increasing and l1 ≥ γ, we obtain

−ηf(γ) ≤ lim inf
ε→0

ε log inf
r∈W,y∈K,µ∈V,u∈Sr(ε,µ)

IP(Xu,y ∈ G).

In both the bounded and the unbounded case we have found γ = β0(W)δ(G) such that the desired bound

holds: we have δ(G) = M(R) + 1 in the bounded case and δ(G) = M(f(l1)) in the unbounded case.

Furthermore, the choise W = {r0} corresponds to β0(W) = β and yields γ0(G) = βδ(G), in complete

analogy to the situation of the upper bound. The uniformity is also proved in exactly the same way as

already shown for the the upper bound.

2 Exit and entrance times of domains of attraction

We continue to study asymptotic properties of diffusions with weakly periodic drifts given by the SDE

dXε
t = b

( t

T ε
, Xε

t

)

dt+
√
ε dWt, t ≥ 0, Xε

0 = x0 ∈ IRd . (2.1)

In this section we shall work out the effects of weak periodicity of the drift on the asymptotic behavior of

the exit times of its domains of attraction. This will be done under simple assumptions on the geometry

associated with it. So we will have to specify some assumptions on the attraction and conservation

properties of b. Essentially, we shall assume that IRd is split into two domains of attraction, separated

by a simple geometric boundary which is invariant in time. Apart from that, we shall assume that the

drift is pointing inward sufficiently strongly so that the diffusions will not be able to leave compact sets

in the small noise limit. Let us make these assumptions more precise. We recall that, according to

the Kramers-Eyring law (see for example [9]), the mean time a homogeneous diffusion of noise intensity

ε needs to leave a potential well of depth v
2 is of the order exp v

ε . Nature therefore imposes the time

scales T ε with which we have to work. For simplicity we measure these scales in energy units: with

µ > 0 we associate the time scale T ε = exp µ
ε . We assume as before that b satisfies the local Lipschitz

conditions (1.14) and (1.15), and that the growth of the inward drift is sufficiently strong near infinity

which is expressed by (1.16).

The additional conditions concerning the geometry of b are specified in the following.

Assumption 2.1. The two-dimensional ordinary differential equation

ϕ̇s(t) = b(s, ϕs(t)), t ≥ 0, (2.2)

admits two stable equilibria x− and x+ in IRd which do not depend on s ≥ 0. Moreover, the domains of

attraction defined by

A±(s) = {y ∈ IRd : ϕ̇s(t) = b(s, ϕs(t)) and ϕs(0) = y implies lim
t→∞

ϕs(t) = x±} (2.3)

are also independent of s ≥ 0 and denoted by A±. They are supposed to satisfy A− ∪ A+ = IRd, and

∂A− = ∂A+. We denote by χ the common boundary.

This assumption could be weakened. We could let the stable equilibrium points and the domains of

attraction depend on s ≥ 0. The asymptotic results concerning the exit and entrance time remain true

in this more general setting. We stick to Assumption 2.1 for reasons of notational simplicity.

The main subject of investigation in this section is given by the exit times of the domains of attraction

A±, provided that the weakly time inhomogeneous diffusion starts near the equilibrium points x±. By

obvious symmetry reasons, we may restrict our attention to the case of an exit from A−. As we shall

13
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x+
ϕs(t)

ϕs(t)

χ

Figure 1: Domains of attraction

show, this exit time depends on the quasi-potential, that is on the cost function taken on the set of all

functions starting in the neighborhood of x− and exiting the domain of attraction through χ. For this

reason we introduce the one-periodic energy function

e(s) := inf
y∈χ

V s(x−, y) <∞ for s ≥ 0, (2.4)

which is continuous on IR+. In the gradient case b(t, x) = −∇xU(t, x), this function coincides with

twice the depth of the potential barrier to be overcome in order to exit from A−, i.e. the energy the

diffusion needs to leave A−. Therefore scales µ – corresponding to the Kramers-Eyring times T ε =

exp(µε ) according to the chosen parametrization – at which we expect transitions between the domains

of attraction must be comprised between

µ∗ := inf
t≥0

e(t) and µ∗ := sup
t≥0

e(t).

These two constants are finite and are reached at least once per period since e(t) is continuous and

periodic. Now fix a time scale parameter µ. This parameter serves as a threshold for the energy, and

we expect to observe an exit from A− at the first time t at which e(t) falls below µ. For µ ∈]µ∗, µ
∗[ we

therefore define

PSfrag replacements

aµ αµ s

e(s)

µ

Figure 2: Definition of aµ and αµ

aµ = inf{t ≥ 0 : e(t) ≤ µ}, αµ = inf{t ≥ 0 : e(t) < µ}. (2.5)

The subtle difference between aµ and αµ may be important, but we shall rule it out for our considerations

by making the following assumption.

Assumption 2.2. The energy function e(t) is strictly monotonous between its (discrete) extremes, and

every local extremum is global.
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Under this assumption we have aµ = αµ. We are now in a position to state the main result of this

section. Let % > 0 be small enough such that the Euclidean ball B%(x+) ⊂ A+, and let us define the

first entrance time into this ball by

τ% = inf{t ≥ 0 : Xε
t ∈ B%(x+)}. (2.6)

This stopping time depends of course on ε, but for notational simplicity we suppress this dependence.

Theorem 2.3. Let µ < e(0). There exist η > 0 and h0 > 0 such that for h ≤ h0

lim
ε→0

ε log sup
y∈Bη(x−)

IPy(τ% /∈ [(aµ − h)T ε, (αµ + h)T ε]) = µ− e(aµ − h).

Moreover, under Assumption 2.2 this convergence is uniform w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Note that Assumption 2.2 implies the continuity of µ 7→ µ−e(aµ−h). The statement of the theorem may

be paraphrased in the following way. It specifies time windows in which transitions between the domains

of attraction will be observed with very high probability. In particular, if e(t) is strictly monotonous

between its extremes, we prove that the entrance time into a neighborhood of x+ will be located near

aµT
ε in the small noise limit. The assumption µ < e(0) is only a technical assumption in order to

avoid instantaneous jumping of the diffusion to the other valley. It can always be achieved by simply

starting the diffusion a little later. We could even assume that e(0) = µ∗ which then would yield uniform

convergence on compact subsets of ]µ∗, µ
∗[.

The rest of this section is devoted to the proof of this main result and is subdivided into separate

subsections in which lower and upper bounds are established.

2.1 Lower bound for the exponential exit rate: diffusion exit

We have to establish upper and lower bounds on the transition time τ% which both should be exceeded

with an exponentially small probability that has to be determined exactly. It turns out that the proba-

bility of exceeding the upper bound (αµ −h)T ε vanishes asymptotically to all exponential orders, so the

exact large deviations rate is determined only by the probability IPx
(

τ% ≤ (aµ − h)T ε
)

of exceeding the

lower bound.

For a lower bound of the latter probability as well as for an upper bound on IPx
(

τ% ≥ (αµ − h)T ε
)

,

one has to prove large deviations type upper bounds of the asymptotic distribution IPx
(

τ% ≥ s(ε)) for

suitably chosen s(ε). This can be expressed in terms of the problem of diffusion exit from a carefully

chosen bounded domain.

Recall that τ% is the first entrance time of a small neighborhood B%(x+) of the equilibrium point x+.

Consider for R, % > 0 the bounded domain

D = D(R, %) := BR(0) \B%(x+),

and let

τD := inf{t ≥ 0 : Xt /∈ D}
be the first exit time of X from D. An exit from D means that either X enters B%(x+), i.e. we

have a transition to the other equilibrium, or X leaves BR(0). But, as a consequence of our growth

condition (1.16), the probability of the latter event does not contribute on the large deviations scale due

to Proposition 1.4, as the following simple argument shows.

Let s(ε, µ) = sT ε for some s > 0. Since τD = τ% ∧ σR where σR is the time of the diffusion’s first exit

from BR(0), Proposition 1.4 provides constants R1, ε1 > 0 s.t. for R ≥ R1, ε ≤ ε1

IPx(τ% ≥ s(ε, µ)) ≤ IPx({τ% ≥ s(ε, µ)} ∩ {σR ≥ s(ε, µ)}) + IPx(σR < s(ε, µ))

≤ IPx(τD ≥ s(ε, µ)) + Cη2 s(ε, µ)

ε
e−

ηR
ε for ‖x‖ ≤ R

2
.

By the choice of s(ε, µ) and T ε = exp
(

µ
ε

)

, the right term in the last sum is of the order 1
ε exp µ−ηR

ε , i.e.

it can be assumed to be exponentially small of any exponential order required by choosing R suitably
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large. Obviously, this holds uniformly with respect to µ on compact sets. This argument shows that the

investigation of asymptotic properties of the laws of τ% may be replaced by a study of similar properties

of τD, with an error that may be chosen arbitrarily small by increasing R.

Similarly to the time homogeneous exit problem, we need a lemma which shows how to approximate the

energy of a transition by the cost along particular trajectories which exit some neighborhood of D. This

is of central importance to the estimation of the asymptotic law of τD.

Lemma 2.4. Let ϑ > 0 and M a compact interval of IR+. Then there exist T0 > 0 and δ > 0 with the

following property:

For all x ∈ D and s ∈ M , we can find a continuous path ζx,s ∈ C0T0 starting in ζx,s0 = x and ending at

some point of distance d(ζx,sT0
, D) ≥ δ away from D such that

Is0T0
(ζx,s) ≤ e(s) + ϑ for all s ∈ M.

Proof. This proof extends arguments presented in Lemma 5.7.18 and 5.7.19 in [4].

Fix ϑ > 0, and let us decompose the domain D into three different ones. Fixing l > 0, define a domain

βl by

βl = {x ∈ D : dist(x, χ) < l}.
We recall that χ is the separation between A− and A+. Then we define two closed setsD− = (D\βl)∩A−

and D+ = (D \ βl) ∩ A+. We shall construct appropriate paths from points y ∈ D to points a positive

distance away from D not exceeding the energy e(s) by more than ϑ uniformly in s ∈ M in four steps.

Step 1. Assume first that y ∈ D−. For l > 0 small enough we construct δl1 > 0, Sl1 > 0 and a path

ψs,y,l1 defined on a time interval [0, τ s,y,l1 ] with τs,y,l1 ≤ Sl1 for all y ∈ D−, s ∈M and along which we exit

a δl1–neighborhood of D− at cost at most e(s) + 2
3ϑ.

Step 1.1 In a first step we go from y to a small neighborhood Bl(x−) of x−, in time at most T l1 < ∞,

without cost.

We denote by ϕs,y,l1 the trajectory starting at ϕs,y,l1 (0) = y ∈ D− of

ϕ̇1(t) = b(s, ϕ1(t)),

and reaching Bl(x−) at time σy,s,l1 . Since D− ⊂ A− and due to Assumption 2.1, σy,s,l1 is finite.

Moreover, since b is locally Lipschitz, stability of solutions with respect to initial conditions and

smooth changes of vector fields implies that there exist open neighborhoods Wy of y and Ws of

s and T s,y,l1 > 0 such that, for all z ∈ Wy, u ∈ Ws, σ
u,z,l
1 ≤ T s,y,l1 . Recall that D− is compact.

Therefore we may find a finite cover of D− ×M by such sets, and consequently T l1 <∞ such that

for all y ∈ D− and s ∈M , σs,y,l1 ≤ T l1. Denote zs,y,l = ϕs,y,l1 (σs,y,l1 ).

Step 1.2 In a second step, we go from a small neighborhood Bl(x−) of x− to the equilibrium point x−,

in time at most 1, at cost at most ϑ
3 .

In fact, by the continuity of the cost function, for l small enough, s ∈ M , there exists a con-

tinuous path ϕs,y,l2 of time length σs,y,l2 ≤ 1 such that ϕs,y,l2 (0) = zs,y,l, ϕs,y,l2 (σs,y,l2 ) = x− and

I0σs,y,l
2

(ϕs,y,l2 ) ≤ ϑ/3.

Step 1.3 In a third step, we exit some δ–neighborhood of D−, starting from the equilibrium point x−,

in time at most T3 <∞, at cost at most e(s) + ϑ
3 for s ∈ M.

By (2.4) and the continuity of the cost function for any s ∈ M there exists zs /∈ A− ⊃ D−, T s3 <∞,

some neighborhood Ws of s and for u ∈ Ws we have ϕu3 ∈ C0σu
3

such that ϕu3 (0) = x−, ϕu3 (σu3 ) = zs,

σu3 ≤ T s3 and

sup
u∈Ws

Iu0σu
3
(ϕu3 ) ≤ e(s) + ϑ/3.

Use the compactness of M to find a finite cover of M by such neighborhoods, and thus some

T3 <∞ such that all the statements hold with σs3 ≤ T3 for all s ∈M. Finally remark that the exit

point is at least a distance δ = inf i∈J |zi| away from the boundary of D−, if zi, i ∈ J, are the exit

points corresponding to the finite cover.
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In order to complete step 1, we now define a path ψs,y,l1 ∈ C0τs,y,l
1

by concatenating ϕs,y,l1 , ϕs,y,l2 and

ϕs3. This way, for small l > 0 we find Sl1 > 0 such that for all s ∈ M, y ∈ D− we have τ s,y,l1 ≤ Sl1,

ψs,y,l1 (τs,y,l1 ) = y, ψs,y,l1 (τs,y,l1 ) 6∈ A− and

Is
0τs,y,l

1

(ψs,y,l1 ) ≤ e(s) + 2
3ϑ for all s ∈M, y ∈ D−.

At this point, we can encounter two cases. In the first case ψs,y,l1 exits a δl–neighborhood of BR(0). In

this case we continue with step 4. In the second case, ψs,y,l1 exits D− into βl, and we continue with Step 2.

Step 2. For l small enough, we start in y ∈ βl, to construct Sl2 > 0 and a path ψs,y,l2 defined on a time

interval [0, τ s,y,l2 ] with τs,y,l2 ≤ Sl2 for all y ∈ D−, s ∈ M and along which we exit βl into the interior of

D+ at cost at most ϑ
3 .

In fact, due to the continuity of the cost function (see Lemma 1.6), there exists l > 0 small enough

such that for any s ∈ M, y ∈ βl there exists zs,y,l in the interior of D+, such that ψs,y,l2 (0) = y,

ψs,y,l2 (τs,y,l2 ) = zs,y,l and Iu
0τs,y,l

2

(ψs,y,l2 ) ≤ ϑ/3. We may take Sl2 = 1.

Step 3. We start in y ∈ D+, to construct δl3 > 0, Sl3 > 0 and a path ψs,y,l3 defined on a time interval

[0, τs,y,l3 ] with τs,y,l3 ≤ Sl3 for all y ∈ D−, s ∈ M and along which we exit D+ into B%−δl
3
(x+) at no cost.

Let δl3 = %/2. Since D+ is compact and contained in the domain of attraction of x+, stability of the

solutions of the differential equation ϕ̇(t) = b(s, ϕ(t)) with respect to the initial condition y ∈ D+ and

the parameter s guarantees the existence of some time S l3 > 0 such that the entrance time τ s,y,l3 of

B%/2(x+) by the solution starting in y is bounded by Sl3. Therefore we may take ψs,y,l3 to be defined by

this solution restricted to the time interval before its entrance into B%/2(x+).

Step 4. For l > 0 small enough we start in x ∈ D− and construct T0 > 0, δ > 0 and a path ζs,x defined

on the time interval [0, T0], exiting a δ–neighborhood of D at cost at most e(s) + ϑ for all s ∈M.

For l small enough, take T0 = Sl1 + Sl2 + Sl3. We just have to concatenate paths constructed in the first

three steps. Recall that ψs,x,l1 passes through the equilibrium x− due to Step 1. In case ψs,x,l1 exits a

δl1–neighborhood of BR(0), just let the path spend enough time in x− without cost to obtain a path

ζs,x,l defined on [0, T0], and take δ = δl1. In the other case, we concatenate three paths constructed in

Steps 1 - 3, to obtain a path defined on a subinterval of [0, T0] depending on s, x, l and which exits a

δl3–neighborhood of D. Recall from step 1 that this path also passes through x−. It remains to redefine

the path by spending extra time at no cost in this equilibrium point, to complete the proof.

We now proceed to the estimation of uniform lower bounds for the asymptotic law of τD. The uniformity

has to be understood in the sense of Remark 1.9.

Proposition 2.5. Let K be a compact subset of D.

a) If e(s) > µ, then

lim inf
ε→0

ε log inf
x∈K

IPx(τD < sT ε) ≥ µ− e(s),

locally uniformly on {(s, µ) : µ∗ < µ < min(e(0), e(s)), 0 ≤ s ≤ 1}.

b) If e(s) < µ, then

lim
ε→0

ε log sup
x∈K

IPx(τD ≥ sT ε) = −∞,

locally uniformly on {(s, µ) : e(s) < µ < e(0), 0 ≤ s ≤ 1}.

Proof. We choose a compact subset L of [0, 1] and a compact subset M of ]µ∗, e(0)[ as well as some

ϑ > 0 such that

|e(s) − µ| ≥ ϑ ∀(s, µ) ∈ L×M.

Later on we shall assume that e(s)− µ is uniformly positive resp. negative in order to prove a) resp. b).

In a first step, we apply Lemma 2.4 to approximate the energy function e(s) by the rate function along

a particular path, uniformly w.r.t. s. For the chosen ϑ it yields T0 > 0 and δ > 0 as well as continuous
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paths ζx,s indexed by x ∈ D and s ∈ [0, 1] ending a distance at least δ away from D such that for all

x ∈ D and s ∈ [0, 1]

Is0T0
(ζx,s) ≤ e(s) +

ϑ

4
.

In a second step, we use the Markov property to estimate the probability of exiting D after time sT ε by

a large product of exit probabilities after time intervals of length independent of ε and µ. Since for ε > 0,

µ ∈ M the interval [0, sT ε] becomes arbitrarily large as ε→ 0, we introduce a splitting into intervals of

length ν ≥ T0 independent of ε and µ. For k ∈ IN0 let tk = tk(s, ε, µ) := sT ε − kν. Then we have for

k ∈ IN0 and x ∈ D

IPx(τD ≥ tk) = IEx

(

1{τD≥tk}1{τD≥tk+1}

)

= IEx

(

1{τD≥tk+1} IE
[

1{τD≥tk} Ftk+1

]

)

≤ IPx
(

τD ≥ tk+1

)

sup
y∈D

IPy,tk+1
(τD ≥ ν)

Here IPy,s denotes the law of Xs,y, defined by the SDE

dXs,y
t = b

(s+ t

T ε
, Xs,y

t

)

dt+
√
ε dWt, t ≥ 0, Xs,y

0 = y ∈ IRd .

On intervals [0, ν] it coincides with the law of the original process X on [s, s + ν], but of course paths

may differ. Denoting qk(s, ε, µ) := supy∈D IPy,tk(τD ≥ ν), an iteration of the latter argument yields

sup
x∈K

IPx
(

τD ≥ sT ε
)

≤
N(ε,µ)
∏

k=1

qk(s, ε, µ) (2.7)

whenever N(ε, µ) ν < sT ε. For the further estimation of the qk we apply some LDP to the product (2.7).

This relies on the following idea. We choose N(ε, µ) of the order εT ε. Then the starting times tk
appearing in the product belong to some neighborhood of sT ε that, compared to T ε, shrinks to a point

asymptotically. Consequently, the family of diffusions underlying the product is uniformly exponentially

equivalent to the homogeneous diffusion governed by the drift b(s, ·).
This will be done in the following third step. For x ∈ D, s ∈ [0, 1] let

Ψ(x, s) :=
{

ψ ∈ C0T0 : ρ0T0(ψ, ζ
x,s) < δ

2

}

be the open δ/2-neighborhood of the path chosen in the first step, and let

Ψ(x) :=
⋃

s∈[0,1]

Ψ(x, s).

To apply our large deviations estimates in this situation, note first that conditions concerning τD translate

into constraints for the trajectories of Xε as figuring in the preceding section: due to the definition of

Ψ(x, s), the choice ν ≥ T0 and Lemma 2.4 we know that for y ∈ D, k ≤ N(ε, µ), if X tk,y belongs to

Ψ(x), then for sure X tk,y exits D before time ν. Keeping this in mind, we may apply Proposition 1.8 to

the neighborhoods

Ss,0(ε, µ) =
[

sT ε − νN(ε, µ), sT ε + ν
]

of sT ε. Each of the intervals [tk, tk+ν] is contained in Ss,0(ε, µ). As mentioned before, N(ε, µ) is chosen

of the order εT ε, and this can be done uniformly w.r.t. µ ∈ M . More precisely, we assume to have

constants 0 < c1 < c2 such that c1εT
ε ≤ N(ε, µ) ≤ c2εT

ε. Then

lim
ε→0

sup
s∈[0,1], µ∈M

diamSs,0(ε, µ)

T ε
= 0,

and by the large deviations principle of Proposition 1.8 we obtain the lower bound

lim inf
ε→0

ε log inf
y∈K, µ∈M, k≤N(ε,µ)

IPy,tk(τD < ν) ≥ − sup
y∈K

inf
ψ∈Ψ(y)

Is0T0
(ψ)

≥ − sup
y∈K

Is0T0
(ζy,s) ≥ −e(s) − ϑ

4
.
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We stress that this bound is uniform w.r.t. s in the sense of Remark 1.9, so we can find ε0 > 0 independent

of s such that for ε ≤ ε0, µ ∈M and k ≤ N(ε, µ)

1 − qk(s, ε, µ) = inf
y∈D

IPy,tk(τD < ν)

≥ inf
y∈D, µ∈M, j≤N(ε,µ)

IPy,tj (τD < ν) ≥ exp
{

− 1

ε

(

e(s) +
ϑ

2

)}

.

From this we obtain

sup
x∈K

IPx
(

τD ≥ sT ε
)

≤
N(ε,µ)
∏

k=1

qk(s, ε, µ) ≤
(

1 − exp
{

− 1

ε

(

e(s) +
ϑ

2

)})N(ε,µ)

= exp
{

N(ε, µ) log
(

1 − exp
{

− 1

ε

(

e(s) +
ϑ

2

)})}

=: m(ε, µ).

Since log(1 − x) ≤ −x for 0 ≤ x < 1 we have

m(ε, µ) ≤ exp
{

− c1ε exp
{µ

ε
− 1

ε

(

e(s) +
ϑ

2

)}}

.

In the fourth and last step, we exploit this bound of m(ε, µ) to obtain the claimed asymptotic bounds.

In order to prove a), assume that µ < e(s) for (s, µ) ∈ L×M . Then the inner exponential approaches 0

on L×M . Using the inequality 1− e−x ≥ x exp(−1) on [0, 1], we conclude that there exists ε1 ∈ (0, ε0)

such that for all ε ≤ ε1 and (s, µ) ∈ L×M

ε log inf
x∈K

IPx
(

τD < sT ε
)

≥ ε log
(

1 −m(ε, µ)
)

≥ ε log
(

εc1 exp(−1) exp
{1

ε

(

µ− e(s) − ϑ

2

)})

= −ε+ ε log c1 + ε log ε + µ− e(s) − ϑ

2

≥ µ− e(s) − ϑ.

For b) assume µ > e(s) on L×M . Then

ε log sup
x∈K

IPx
(

τD ≥ sT ε
)

≤ ε logm(ε, µ)

≤ −c1ε exp
{

− 1

ε

(

µ− e(s) − ϑ

2

)}

−−−→
ε→0

−∞.

As a consequence of these large deviations type results on the asymptotic distribution of τD and the

remarks preceding the statement of Lemma 2.4 and Proposition 2.5, we get the following asymptotics

for the transition time of the diffusion.

Proposition 2.6. Let x ∈ A−. There exists h0 > 0 such that

lim inf
ε→0

ε log IPx(τ% ≤ (aµ − h)T ε) ≥ µ− e(aµ − h), (2.8)

lim
ε→0

ε log IPx(τ% ≥ (αµ + h)T ε) = −∞, (2.9)

for h ≤ h0. Moreover, these convergence statements hold uniformly w.r.t. x on compact subsets of D

and w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Proof. As the estimation based on Proposition 1.4 at the beginning of the section shows, we may derive

the required estimates for τD instead of τ%, if R is chosen large enough.

Let M be a compact subset of ]µ∗, e(0)[. Then 0 < aµ < 1 for µ ∈ M which yields the existence of

h0 > 0 such that the compact set Lh := {aµ − h : µ ∈ M} is contained in ]0, 1[ for h ≤ h0. Moreover,

we have e(s) > µ for 0 < s < aµ due to the assumptions on e, uniformly w.r.t. (s, µ) ∈ Lh ×M by the

continuity of e. Hence by Proposition 2.5 a)

lim inf
ε→0

ε log inf
x∈K

IPx(τD ≤ sT ε) ≥ µ− e(s),
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uniformly on Lh ×M for all h ≤ h0. By setting s = aµ − h we obtain the first asymptotic inequality.

The second one follows in a completely analoguous way from Proposition 2.5 b) since αµ = aµ and

e(aµ + h) < µ for small enough h.

2.2 Upper bound for the exponential exit rate

Let us next derive upper bounds for the exponential exit rate which resemble the lower bounds just

obtained. We need an extension of a result obtained by Freidlin and Wentzell (Lemma 5.4 in [18]).

Lemma 2.7. Let K be a compact subset of A− \ {x−}. There exist T0 > 0 and c > 0 such that for all

T ≥ T0, s ∈ [0, 1] and for each ϕ ∈ C0T taking its values in K we have

Is0T (ϕ) ≥ c(T − T0).

Proof. Let φs,x be the solution of the differential equation

φ̇s,x(t) = b(s, φs,x(t)), φs,x(0) = x ∈ K.

Let τ(s, x) be the first exit time of the path φs,x from the domainK. Since A− is the domain of attraction

of x− and since K is a compact subset of A− \ {x−}, we obtain τ(s, x) <∞ for all x ∈ K.

The function τ(s, x) is upper semi-continuous with respect to the variables s and x (due to the continuous

dependence of φs,x on s and x). Hence the maximal value T1 := sups∈[0,1], x∈K τ(a, x) is attained.

Let T0 = T1 + 1, and consider all functions ϕ ∈ C0T0 with values in K. This set of functions is closed

with respect to the maximum norm. Since there is no solution of the ordinary differential equation in

this set of functions, the functional Is0T0
reaches a strictly positive minimum on this set which is uniform

in s. Let us denote it by m. By the additivity of the functional Is0T , we obtain, for T ≥ T0 and ϕ ∈ C0T

with values in K

Is0T (ϕ) ≥ m

⌊

T

T0

⌋

≥ m

(

T

T0
− 1

)

= c(T − T0),

with c = m
T0
.

Let us recall the subject of interest of this subsection:

τ% = inf
{

t ≥ 0 : Xε
t ∈ B%(x+)

}

,

the hitting time of a small neighborhood of the equilibrium point x+. First we shall consider upper

bounds for the law of this time in some window of length βT ε where β is sufficiently small. The

important feature of the following statement is that β is independent of s while the uniformity of the

bound again has to be understood in the sense of Remark 1.9.

Proposition 2.8. For all ϑ > 0, there exist β > 0, η > 0 such that for all s ∈ [0, 1]

lim sup
ε→0

ε log sup
x∈Bη(x−)

IPx
(

sT ε ≤ τ% ≤ (s+ β)T ε
)

≤ µ− e(s) + ϑ.

This bound holds locally uniformly w.r.t. µ ∈]µ∗, e(0)[ and uniformly w.r.t. s ∈ [0, 1].

Proof. Let M be a compact subset of ]µ∗, e(0)[, and fix ϑ > 0. We first introduce some parameter

dependent domains the exit times of which will prove to be suitable for estimating the probability that

τ% is in a certain time window.

For this purpose, we define for δ > 0 and s ∈ [0, 1] an open domain

D(δ, s) :=
{

y ∈ IRd : V s(x−, y) < µ∗ +
1

1 + δ
, dist(y,A+) > δ

}

,

and we let D = D(δ) = ∪s∈[0,1]D(δ, s). Then D is relatively compact in A−, dist(y,A+) > δ for all

y ∈ D(δ), and a transition to a %-neighborhood of x+ certainly requires an exit from D(δ). The boundary

of D(δ) consists of two hyper surfaces one of which carries an energy strictly greater than µ∗ and thus

greater than e(s) for all s ∈ [0, 1]. The minimal energy is therefore attained on the other component
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of distance δ from A+ which approaches χ = ∂A− as δ → 0. Thus, by the joint continuity of the

quasi-potential, we can choose δ0 > 0 and η > 0 such that for δ ≤ δ0 and s ∈ [0, 1]

e(s) = inf
z∈χ

V s(x−, z) ≥ inf
z∈∂D(δ)

V s(x−, z) ≥ inf
y∈Bη(x−)

inf
z∈∂D(δ)

V s(y, z) ≥ e(s) − ϑ

4
. (2.10)

Let τD be the first exit time of Xε from D. For s ∈ [0, 1] and β > 0 we introduce a covering of the

interval of interest [sT ε, (s+ β)T ε] into N = N(β, ε, µ) intervals of fixed length ν, i.e. ν is independent

of ε, µ, s and β. We will have to assume that ν is sufficiently large which will be made precise later on.

Thus we have Nν ≥ βT ε, and we can and do assume that N ≤ βT ε. For k ∈ Z, k ≥ −1, let

tk = tk(s, ε, µ) := sT ε + kν

be the starting points of these intervals. We consider t−1 since we need some information about the past

in order to ensure the diffusion to start in a neighborhood of the equilibrium x−. Then for x ∈ Bη(x−)

we get the desired estimation of probabilities of exit windows for τ% by those with respect to τD:

IPx
(

sT ε ≤ τ% ≤ (s+ β)T ε
)

≤
N
∑

k=0

IPx(tk ≤ τD ≤ tk+1).

In a second step we will fix k ≥ 0 and estimate the probability of a first exit from D during each of the

intervals [tk, tk+1] separately. Here the difficulty is that we don’t have any information on the location

at time tk. We therefore condition on whether or not Xε has entered the neighborhood Bη(x−) in the

previous time interval. For that purpose, let

σk := inf
{

t ≥ tk ∨ 0 : Xε
t ∈ Bη(x−)

}

, k ≥ −1.

Then for k ≥ 0

IPx(tk ≤ τD ≤ tk+1) ≤ IPx(tk ≤ τD ≤ tk+1|σk−1 ≤ tk) + IPx(τD ∧ σk−1 ≥ tk). (2.11)

In the next step we shall estimate the second term on the right hand side of (2.11). Let K = K(δ, η) =

D(δ) \Bη(x−). Then K is compact, and by the Markov property we have

IPx(τD ∧ σk−1 ≥ tk) ≤ sup
y∈K

IPy,tk−1
(τD ∧ σ1 ≥ ν),

where IPy,t is as defined in the previous section. Now we wish to further estimate this exit probability

using large deviations methods. The neighborhoods

Ss,β(ε, µ) = [sT ε − ν, (s+ νN(β, ε, µ))T ε]

of sT ε contain each interval [tk, tk+1], −1 ≤ k ≤ N(β, ε, µ), and they satisfy

lim sup
ε→0

sup
µ∈M, s∈[0,1]

diam(Ss,β(ε, µ))

T ε
≤ β.

Hence by the uniform LDP of Proposition 1.8, applied to the closed set

ΦK(δ, η) =
{

ϕ ∈ C0,ν : ϕt ∈ K(δ, η) for all t ∈ [0, ν]
}

,

we obtain the upper bound

lim sup
ε→0

ε log sup
y∈K, µ∈M, k≤N

IPy,tk−1
(τD ∧ σ1 ≥ ν)

≤ lim sup
ε→0

ε log sup
y∈K, µ∈M, t∈Ss,β(ε,µ)

IPy,t(X
ε ∈ ΦK(δ, η)) (2.12)

≤ − inf
y∈K

inf
ϕ∈ΦK(δ,η)γ0(β)

Is0,ν(ϕ),

where γ0(β) = βδ(ΦK(δ, η)) is the “blowup-factor” induced by the diameter β. Since γ0(β) → 0 as

β → 0, we can find β0 > 0 such that for β ≤ β0

ΦK(δ, η)γ0(β) ⊂ ΦK
(

δ
2 ,

η
2

)
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which amounts to saying that, instead of blowing up the set of paths, we consider the slightly enlarged

domain K( δ2 ,
η
2 ). Thus

− inf
y∈K

inf
ϕ∈ΦK(δ,η)γ0(β)

Is0,ν(ϕ) ≤ − inf
y∈K

inf
ϕ∈ΦK( δ

2 ,
η
2 )
Is0,ν(ϕ).

By Lemma 2.7 the latter expression, and therefore the r.h.s. of (2.12), approaches −∞ as ν → ∞,

uniformly w.r.t. s ∈ [0, 1]. So the second term in the decomposition of IPx(tk ≤ τD ≤ tk+1) can be

neglected since it becomes exponentially small of any desired order by choosing ν suitably large.

In the next and most difficult step, we treat the first term on the r.h.s. of (2.11). It is given by

the probability that, while Xε is in Bη(x−) at time σk−1, it exits within a time interval of length

tk+1 − σk−1 ≤ 2ν. Hence by the strong Markov property

IPx(tk ≤ τD ≤ tk+1|σk−1 ≤ tk) ≤ sup
tk−1≤t≤tk, y∈Bη(x−)

IPy,t(τD ≤ 2ν).

Applying the uniform LDP to the closed set

FD(δ) := {ϕ ∈ C0,2ν : ϕ0 ∈ D(δ), ϕt0 /∈ D(δ) for some t0 ≤ 2ν},

yields the upper bound

lim sup
ε→0

ε log sup
y∈Bη(x−), µ∈M, t∈Ss,β(ε,µ)

IPy,t(τD ≤ 2ν) ≤ − inf
y∈Bη(x−)

inf
ϕ∈FD(δ)γ0(β)

Is0,2ν(ϕ), (2.13)

where γ0(β) = 2βδ(FD(δ)). By the same reasoning as before we can replace the blow-up of the path sets

FD(δ) by an enlargement of the domain D(δ). We find β1 > 0 such that for β ≤ β1

− inf
y∈Bη(x−)

inf
ϕ∈FD(δ)γ0(β)

Is0,2ν(ϕ) ≤ − inf
y∈Bη(x−)

inf
ϕ∈FD( δ

2 )
Is0,2ν(ϕ) ≤ − inf

y∈Bη(x−)
inf

z∈∂D( δ
2 )
V s(y, z).

Now we apply (2.10) and recall the uniformity of the LDP w.r.t. s. We find ε0 > 0 such that we have

for ε ≤ ε0, s ∈ [0, 1], µ ∈ M and β ≤ β1

ε log sup
y∈Bη(x−), t∈Ss,β(ε,µ)

IPy,t(τD ≤ 2ν) ≤ − inf
y∈Bη(x−)

inf
z∈∂D( δ

2 )
V s(y, z) +

ϑ

4

≤ −e(s) +
ϑ

2
. (2.14)

We finally summarize our findings. We conclude that there exists ε1 > 0 such that for ε ≤ ε1, µ ∈ M

and s ∈ [0, 1] we have

ε log sup
x∈Bη(x−)

IPx(sT
ε ≤ τ% ≤ (s+ β)T ε)

≤ ε log
{

N(β,ε,µ)
∑

k=0

sup
x∈Bη(x−)

IPx
(

tk ≤ τD ≤ tk+1

∣

∣σk−1 ≤ tk
)

}

+
ϑ

4

≤ ε log
{

βT ε exp
(

− 1

ε

[

e(s) − ϑ

2

]

)}

+
ϑ

4
= ε logβ + µ− e(s) +

3

4
ϑ

≤ µ− e(s) + ϑ.

This completes the proof.

Remark 2.9. If we stay away from s = 0, in the statement of Proposition 2.8 the radius of the starting

domain Bη(x−) can be chosen independently of the parameter ϑ. It may then be brought into the following

somewhat different form.

Proposition 2.10. Let L and M be compact subsets of ]0, 1] resp. ]µ∗, e(0)[. Let η > 0 be small enough

such that Bη(x−) belongs to the domain

{y ∈ IRd : V s(x−, y) < µ∗ for all s ∈ L}.
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Then, for all ϑ > 0, there exists some β > 0 such that we have

lim sup
ε→0

ε log sup
x∈Bη(x−)

IP(sT ε ≤ τ% ≤ (s+ β)T ε) ≤ µ− e(s) + ϑ.

uniformly w.r.t s ∈ L and µ ∈M .

Proof. To prove Proposition 2.10, one has to modify slightly the preceding proof. Instead of just η one

has to choose two different parameters: η0 for the definition of the starting domain D and some η1 for

the description of the location of the diffusion at time tk, i.e. for the definition of the stopping times

σk.

In the following Proposition, we derive the upper bound for the asymptotic law of transition times,

corresponding to the lower bound obtained in Proposition 2.6.

Proposition 2.11. Let µ < e(0), and recall from (2.5) the definition aµ = inf{t ≥ 0 : e(t) ≤ µ}. There

exist γ > 0 and h0 > 0 such that for all h ≤ h0

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε) ≤ µ− e(aµ − h). (2.15)

This bound is uniform w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Proof. Let M be a compact subset of ]µ∗, e(0)[. To choose h0, we use our assumptions on the geometry

of the energy function e. Recall Assumption 2.2 according to which e is strictly monotonous in the

open intervals between the extrema ]µ∗, µ
∗[. It implies that e is monotonically decreasing on the interval

[ae(0), aµ] for any µ ∈M. By choice of M , we further have ae(0) < infµ∈M aµ. Now choose h0 such that

inf
µ∈M

aµ − h0 > ae(0).

Then we have for h ≤ h0

inf
µ∈M

aµ − h > 0, (2.16)

e(0) > sup
µ∈M,h≤h0

e(aµ − h), (2.17)

e(s) ≥ e(aµ − h) for all s ≤ aµ − h. (2.18)

To see (2.18), note that for 0 ≤ s ≤ ae(0), by definition of ae(0), the inequality e(s) ≥ e(0) > e(aµ − h)

holds, while for ae(0) ≤ s ≤ aµ − h by monotonicity e(s) ≥ e(aµ − h).

Next fix h ≤ h0. For µ ∈ M , let Λ0 = Λ0(µ) = 0, and Λ1(µ) ≤ infµ∈M (aµ − h)T ε. For N ∈ IN∗ we set

Λi(µ) = Λ1 + i−1
N−1 ((aµ − h)T ε −Λ1), 2 ≤ i ≤ N, thus splitting the time interval [0, (aµ − h)T ε] into the

N intervals [Λi(µ),Λi+1(µ)], 0 ≤ i ≤ N − 1. Then for γ > 0, x ∈ Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε) ≤
N−1
∑

i=0

IPx(τ% ∈ [Λi(µ),Λi+1(µ)]),

which implies

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε)

≤ max
0≤i≤N−1

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ),Λi+1(µ)]).

Fix ϑ > 0 such that for h ≤ h0, µ ∈ M we have e(0) ≥ e(aµ − h) + ϑ. This is guaranteed by (2.17). We

shall show that

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ),Λi+1(µ)]) ≤ µ− e(aµ − h) + ϑ

uniformly in 0 ≤ i ≤ N − 1 and µ ∈M.
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Let us treat the estimation of the first term separately from the others. In fact, by Proposition 2.8, setting

s = 0, β = Λ1/T
ε, we may choose Λ, ε0 > 0 and γ0 > 0 such that for Λ1 ≤ ΛT ε, ε ≤ ε0, γ ≤ γ0, µ ∈ M

the inequality

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λ0(µ),Λ1(µ)]) ≤ µ− e(0) + ϑ

holds. Now we use the inequality e(0) ≥ e(aµ − h) + ϑ, valid for all µ ∈ M. Hence there exists Λ > 0,

ε0 > 0 and γ0 > 0 such that for Λ1 ≤ ΛT ε, ε ≤ ε0, γ ≤ γ0, µ ∈M

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λ0(µ),Λ1(µ)]) ≤ µ− e(aµ − h).

Let us next estimate the contributions for the intervals [Λi(µ),Λi+1(µ)] with i ≥ 1. We use Proposition

2.8, this time with s = Λi(µ)/T ε, β = 1
N−1 supµ∈M aµ. By the definition of aµ, we get e(s) > e(aµ) for

all s < aµ. By (2.18), we have e(s) = e(Λi(µ)/T ε) ≥ e(aµ − h). By Remark 2.9,

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ),Λi+1(µ)]) ≤ µ− e(aµ − h) + ϑ

uniformly w.r.t 1 ≤ i ≤ N and µ ∈ M . Letting ϑ tend to 0, which implies that N tends to infinity and

Λ1 tends to zero, we obtain the desired upper bound for the exponential exit rate.

3 Stochastic resonance

Given the results of the previous section on the asymptotics of exit times which are uniform in the scale

parameter µ, we are now in a position to reconsider the problem of finding a satisfactory probabilistic

notion of stochastic resonance that does not suffer from the lack of robustness defect of physical notions

such as spectral power amplification. We continue to study the SDE

dXε
t = b

( t

T ε
, Xε

t

)

dt+
√
ε dWt, t ≥ 0, Xε

0 = x0 ∈ IRd

introduced before, thereby recalling that the drift term b satisfies the local Lipschitz conditions (1.15)

and (1.14) in space and time, as well as the growth condition (1.16). Moreover, b is assumed to be

one-periodic in time such that T ε is the period of the deterministic input of the randomly perturbed

dynamical system described by Xε.

In typical applications, b = −∇xU is given by the (spatial) gradient of some time periodic double-well

potential U (see Pavlyukevich [13]). The potential possesses at all times two local minima well separated

by a barrier. The depth of the wells and the roles of being the deep and shallow one change periodically.

The diffusion Xε then roughly describes the motion of a Brownian particle of intensity ε in a double-well

landscape. Its attempts to get close to the energetically most favorable deep position in the landscape

makes it move along random trajectories which exhibit randomly periodic hopping between the wells.

The average time the trajectories need to leave a potential well of depth v
2 being given by the Kramers-

Eyring law T ε = exp( vε ) motivates our choice of time scales T ε = exp(µε ) and also our convention to

measure time scales in energy units µ.

The problem of stochastic resonance consists of characterizing the optimal tuning of the noise, i.e. the

best relation between the noise amplitude ε and the input period T ε – or, in our units the energy

parameter µ – of the deterministic system which makes the diffusion trajectories look as periodic as

possible. Of course, the optimality criterion must be based upon a quality measure for periodicity in

random trajectories.

In this section we shall develop a measure of quality based on the transition probabilities investigated

in section 2 and with respect to this measure for fixed small ε (in the small noise limit ε → 0) exhibit

a resonance energy µ0(ε) for which the diffusion trajectories follow the periodic forcing of the system

at intensity ε in an optimal way. We shall in fact study the problem in a more general situation which

includes the double-well potential gradient case as an important example, and draws its intuition from

it. The deterministic system

ϕ̇s(t) = b(s, ϕs(t)), t ≥ 0,

has to satisfy Assumption 2.1, i.e. it possesses two well separated domains of attraction the common

boundary of which is time invariant. In the first subsection we shall describe the resonance interval i.e.
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the set of all parameter values µ for which in the small noise limit trivial behavior, i.e. either constant

or continuously jumping trajectories, are excluded. The second subsection shows that a quality measure

of periodic tuning is given by the exponential rate at which the first transition from one domain of

attraction to the other one happens within a fixed time window around aµT
ε. This quality measure is

robust, as demonstrated in the last subsection: in the small noise limit the diffusion and its reduced

model, a Markov chain jumping between the domains of attraction reduced to the equilibrium points,

have the same resonance pattern.

3.1 Resonance interval

According to Freidlin [5], quasi-periodic hopping behavior of the trajectories of our diffusion in the small

noise limit of course requires that the energies required to leave the domains of attraction of the two

equilibria switch their order periodically: if e± denotes the energy needed to leave A±, then e+ needs to

be bigger than e− during part of one period, and vice versa for the rest. We assume that e± both satisfy

Assumption 2.2 and associate to each of these functions the transition time

a±µ (s) = inf{t ≥ s : e±(t) ≤ µ}.

The time scales µ for which relevant behavior of the system is expected, clearly belong to the intervals

Ii =] inf
t≥0

ei(t), sup
t≥0

ei(t)[, i ∈ {−,+}.

Our aim being the observation of periodicity, we have to make sure that the process can travel back

and forth between the domains of attraction on the time scales considered, but not instantaneously. So,

on the one hand, in these scales it should not get stuck in one of the domains. On the other hand,

they should not allow for chaotic behavior, i.e. immediate re-bouncing after leaving a domain has to be

avoided.

To make these conditions mathematically precise, recall that transitions from Ai to A−i become possible

as soon as the energy ei needed to exit from domain i falls below µ which represents the available energy.

Not to get stuck in one of A±, we therefore have to guarantee

µ > max
i=±

inf
t≥0

ei(t).

To avoid immediate re-bouncing, we have to assure that the diffusion cannot leave A−i at the moment

it reaches it, coming from Ai. Suppose we consider the dynamics after time s ≥ 0, and the diffusion is

near i at that time. Its first transition to A−i occurs at time aiµ(s)T
ε where aiµ(s) is the first time in

the original scale at which ei falls below µ after s. Provided e−i(a
i
µ(s)) is bigger than µ, it stays there

for at least a little while. This is equivalent to saying that for all s ≥ 0 there exists δ > 0 such that on

[aiµ(s), a
i
µ(s)+ δ] we have µ < e−i. Since by definition for t shortly after aiµ(s), we always have ei(t) ≤ µ,

our condition may be paraphrased by: for all s ≥ 0 there exists δ > 0 such that on [aiµ(s), a
i
µ(s) + δ] we

have µ < maxi=± ei. This in turn is more elegantly expressed by

µ < inf
t≥0

max
i=±

ei(t).

Our search for a set of scales µ for which the diffusion exhibits non-trivial transition behavior may be

summarized in the following definition. The interval

IR =] max
i=±

inf
t≥0

ei(t), inf
t≥0

max
i=±

ei(t)[

is called resonance interval (see Figure 3).

In this interval, for small ε, we have to look for an optimal energy scale µ(ε) in the following subsection.

See [9] and [8] for the definition of the corresponding interval in the one-dimension case and in the case of

two state Markov chains. In Freidlin’s [5] terms, stochastic resonance in the sense of quasi-deterministic

periodic motion is given if the parameter µ exceeds the lower boundary of our resonance interval.

Let us briefly consider the potential gradient case. Assume that b(t, x) = −∇xU(t, x), t ≥ 0, x ∈ IRd,

where U is some time periodic double-well potential with time invariant local minima x± and separatrix.
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Figure 3: Resonance interval

Then A− and A+ represent the two wells of the potential, χ the separatrix. The energy e± is, in fact,

the energy some Brownian particle needs to cross χ. Freidlin and Wentzell [6] give the link between this

energy and the depth of the well.

Lemma 3.1. If D±(t) = infy∈χ U(t, y) − U(t, x±) denote the depths of the wells, then e±(t) = 2D±(t)

for all t ≥ 0.

This link is the origin of the name “quasipotential”. The minimal energy e is reached by some path

which intersects the level sets of the potential with orthogonal tangents. This path satisfies an equation

of the form

ϕ̇s = ∇xU(t, ϕs), s ∈ (−∞, T ), ϕT ∈ χ.

The resonance interval is given by

IR =] max
i=±1

inf
t≥0

2Di(t), inf
t≥0

max
i=±1

2Di(t)[.

3.2 Transition rates as quality measure

Let us now explain in detail our measure of quality designed to give a concept of optimal tuning which,

as opposed to physical measures (see Pavlyukevich [13]), is robust for model reduction to Markov chains

just retaining the jump dynamics between the equilibria of the diffusion. We shall use a notion that is

based just on this rough transition mechanism. In fact, generalizing an approach for two state Markov

chain models (see [8]), we measure the quality of tuning by computing for varying energy parameters

µ the probability that, starting in xi, the diffusion is transferred to x−i within the time window [(aiµ −
h)T ε, (aiµ + h)T ε] of width 2hT ε. To find the stochastic resonance point for large T ε (small ε) we have

to maximize this measure of quality in µ ∈ IR. The probability for transition within this window will be

approximated by the estimates of the preceding section. Uniformity of convergence to the exponential

rates will enable us to maximize in µ for fixed small ε.

Let us now make these ideas precise. To make sure that the transition window makes sense at least for

small h, we have to suppose that aiµ > 0, i = ±1 for µ ∈ IR. This is guaranteed if

ei(0) > inf
t≥0

max
i=±

ei(t), i = ±.

If this is not granted from the beginning, it suffices to start the diffusion a little later. For % small enough

so that B%(x±) ⊂ A± we call

M(ε, µ, %) = min
i=±

sup
x∈B%(xi)

IPx(τ
−i
% ∈ [(aiµ − h)T ε, (aiµ + h)T ε]), ε > 0, µ ∈ IR, (3.1)

transition probability for a time window of width h. Here

τ i% = inf{t ≥ 0 : Xε
t ∈ B%(xi)}.

We are ready to state our main result on the asymptotic law of transition time windows.

Theorem 3.2. Let M be a compact subset of IR, h0 > 0 and % be given according to Theorem 2.3. Then

for all h ≤ h0

lim
ε→0

ε log(1 −M(ε, µ, %)) = max
i=±

{

µ− ei(a
i
µ − h)

}

(3.2)

uniformly for µ ∈ M.
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Proof. This is an obvious consequence of Theorem 2.3.

It is clear that for h small the eventually existing global minimizer µR(h) of

IR 3 µ 7→ max
i=±1

{

µ− ei(a
i
µ − h)

}

is a good candidate for our resonance point. But it still depends on h. To get rid of this dependence, we

shall consider the limit of µR(h) as h→ 0.

Definition 3.3. Suppose that

IR 3 µ 7→ max
i=±

{

µ− ei(a
i
µ − h)

}

possesses a global minimum µR(h). Suppose further that

µR = lim
h→0

µR(h)

exists in IR. We call µR the stochastic resonance point of the diffusion (Xε) with time periodic drift b.

Let us now illustrate this resonance notion in a situation in which the energy functions are related by a

phase lag φ ∈]0, 1[, i.e. e−(t) = e+(t + ϕ) for all t ≥ 0. We shall show that in this case the stochastic

resonance point exists if one of the energy functions, and thus both, has a unique point of maximal

decrease on the interval where it is strictly decreasing.

PSfrag replacements

µR

e−(t)

Figure 4: Point of maximal decrease

Theorem 3.4. Suppose that e− is twice continuously differentiable and has its global maximum at t1,

and its global minimum at t2, where t1 < t2. Suppose further that there is a unique point t1 < s < t2
such that e−|]t1,s[ is strictly concave, and e−|]s,t2[ is strictly convex. Then µR = e−(s) is the stochastic

resonance point.

Proof. As a consequence of the phase lag of the energy functions,

max
i=±

{

µ− ei(a
i
µ − h)

}

=
{

µ− e−(a−µ − h)
}

.

Write aµ = a−µ and recall that on the interval of decrease of e−, aµ = e−1
− (µ). Therefore, the differentia-

bility assumption yields

1 = e′−(aµ − h) · a′µ = e′−(aµ − h) · 1

e′−(aµ)
.

Our hypotheses concerning convexity and concavity of e− essentially means that e′′−(s) = 0, and e′′−|]t1,s[ <
0, e′′−|]s,t2[ > 0, which may be stated alternatively by saying that µ 7→ e′−(aµ) has a local maximum at

aµ = s. Hence for h small there exists a unique point aµ(h) such that

e′−(aµ(h) − h) = e′−(aµ(h))

and

lim
h→0

aµ(h) = s.

To show that aµ(h) corresponds to a minimum of the function

µ 7→ [µ− e−(aµ − h)],
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we take the second derivative of this function at aµ(h), which is given by

e′−(aµ(h) − h)e′′−(aµ(h)) − e′′−(aµ(h) − h)e′−(aµ(h))

e′−(aµ(h))
.

But e′−(aµ(h)), e
′
−(aµ(h) − h) < 0, whereas e′′−(aµ(h) − h) > 0, e′′−(aµ(h)) < 0. This clearly implies that

aµ(h) corresponds to a minimum of the function. But by definition, as h → 0, aµ(h) → s. Therefore,

finally, e−(s) is the stochastic resonance point.

3.3 The robustness of stochastic resonance

In the small noise limit ε → 0, it seems reasonable to assume that the periodicity properties of the

diffusion trajectories caused by the periodic forcing the drift term exhibits, are essentially captured

by a simpler, reduced stochastic process: a continuous time Markov chain which just jumps between

two states representing the equilibria in the two domains of attraction. Jump rates correspond to the

transition mechanism of the diffusion. This is just the reduction idea ubiquitous in the physics literature,

and explained for example in McNamara, Wiesenfeld [11]. We shall now show that in the small noise

limit both models, diffusion and Markov chain, produce the same resonance picture, if quality of periodic

tuning is measured by transition rates.

To describe the reduced model, let e± be the energy functions corresponding to transitions from A∓ to

A± as before. Assume a phase locking of the two functions according to the previous subsection, i.e.

assume that e−(t) = e+(t + φ), t ≥ 0, with phase shift φ ∈]0, 1[. So, let us consider a time-continuous

Markov chain {Y εt , t ≥ 0} taking values in the state space S = {−,+} with initial data Y ε
0 = −. Suppose

the infinitesimal generator is given by

G =

(

−ϕ( t
T ε ) ϕ( t

T ε )

ψ( t
T ε ) −ψ( t

T ε )

)

,

where ψ(t) = ϕ(t + φ), t ≥ 0, and ϕ is a 1-periodic function describing a rate which just produces the

transition dynamics of the diffusion between the equilibria ±, i.e.

ϕ(t) = exp
{

− e+(t)

ε

}

, t ≥ 0. (3.3)

Note that by choice of ϕ,

ψ(t) = exp
{

− e−(t)

ε

}

, t ≥ 0. (3.4)

Transition probabilities for the Markov chain thus defined are easily computed (see [8], section 2). For

example, the probability density of the first transition time σi is given by

p(t) = ϕ(t) exp
{

−
∫ t

0

ϕ(s)ds
}

, if i = −, (3.5)

q(t) = ϕ(t+ φ) exp
{

−
∫ t

0

ϕ(s+ φ)ds
}

, if i = +,

t ≥ 0. Equation (3.5) can be used to obtain results on exponential rates of the transition times σi if

starting from −i, i = ±. We summarize them and apply them to the following measure of quality of

periodic tuning

N (ε, µ) = min
i=±

IPi(σ−i ∈ [(aiµ − h)T ε, (aiµ + h)T ε]), ε > 0, µ ∈ IR, (3.6)

which is called transition probability for a time window of width h for the Markov chain.

Here is the asymptotic result obtained from a slight modification of Theorems 3 and 4 of [8] which

consists of allowing more general energy functions than the sinusoidal ones used there and requires just

the same proof.

Theorem 3.5. Let M be a compact subset of IR, h0 < sup(a−1
µ , T/2− a−1

µ ). Then for 0 < h ≤ h0

lim
ε→0

ε ln(1 −N (ε, µ)) = max
i=±1

{

µ− e−(aiµ − h)
}

(3.7)

uniformly for µ ∈ M.
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It is clear from Theorem 3.5 that the reduced Markov chain Y ε and the diffusion process Xε have exactly

the same resonance behavior. Of course, we may define the stochastic resonance point for Y ε just as we

did for Xε. So the following final robustness result holds true.

Theorem 3.6. The resonance points of (Xε) with time periodic drift b and of (Y ε) with exponential

transition rate functions e± coincide.
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