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In this paper we introduce a model which provides a new approach to the
phenomenon of stochastic resonance. It is based on the study of the properties
of the stationary distribution of the underlying stochastic process. We derive
the formula for the spectral power aplification coefficient, study its asymptotic
properties and dependence on parameters.

Introduction

The notion of Stochastic Resonance appeared about twenty years ago in the
works of Benzi et al. [1] and Nicolis [2] in the context of an attempt to explain
the phenomenon of ice ages. The modern methods of acquiring and interpreting
climate records indicate at least seven major climate changes in the last 700,000
years. These changes occured with the periodicity of about 100,000 years and
are characterized by a substantial variation of the average Earth’s temperature
of about 10K.

The effect can be explained with the help of a simple energy balance model
(for an extended review on the subject see [3]). The Earth is considered as
a point in space, and its temporally and spatially averaged temperature X (t)
satysfies the equation

(1) = ~U'(X () - Qsin (210), 1)

where U(X) is a double-well potential with minima at 278.6K and 288.6K
and saddle point at 283.3K and wells of equal depth. The second term in (1)
corresponds to a small variation of the solar constant of about 0.1% with a
period of T' = 100,000 years due to the periodic change of the eccentricity of



the Earth’s orbit caused by Jupiter. The influence of this term reflects itself in
small periodic changes of the depths of the potential wells. In this setting, the
left well is deeper during the time intervals (KT, (k + 3)T'), whereas the right
one is deeper during the intervals ((k + )T, (k+ 1)T), k =0,1,2,...

The trajectories of the deterministic equation (1) have two metastable states
given by the minima of the wells. Due to the smallness of the solar constant @
no transition between these states is possible. In order to obtain such transitions
Benzi et al. [1] and Nicolis [2] suggested to add noise to the system which results
in considering the stochastic differential equation

XOT () = U/ (X7 (1) ~ @sin (25) + Ve, @)

e > 0, W a white noise.

Now one can observe the following effect. Fix all parameters of the system
except € and consider the typical behaviour of the solutions of (2) for different
values of e. If the noise intensity is very small, the trajectory only occasionally
can escape from the minimum of the well in which it is staying, and one can
hardly detect any periodicity in this motion. If the intensity is very large, the
trajectory jumps rapidly but randomly between the two wells and therefore also
lacks periodicity properties. An interesting effect appears when the noise level
takes a certain value €y: the trajectory always tends to be near the minimum
of the deepest well and consequently follows the deterministic periodic jump
function which describes the location of the deepest well’s minimum. It is
very important to note that to produce this effect one needs all three of the
following components to be present in the system (2): the double-well potential
for bi-stability, the noise to pass the potential barriers, and a small periodic
perturbation to change the wells’ depths.

The following are natural questions arising in the context of these qualita-
tive considerations: how can one measure periodicity of the trajectories and,
consequently, how does the quality of tuning of the noisy output to the periodic
input be improved by adjusting the noise intensity €?

The formulation of the latter question suggests to consider the system (2) as
a random amplifier. The random system receives the harmonic signal of small
amplitude @ and usually large period T as input. The stochastic process X7 (¢)
is observed as the output. The input signal carries power Q2 at frequency 1/7.
The random output has continuous spectrum and thus carries power at all
frequencies. Benzi et al. [1] considered the power spectrum of the output for
different values of € and discovered a sharp peak at the input frequency for a
certain optimal value of €y. This means that the random process X (t) has
a big component of frequency 1/T. The effect of amplification of the power
carried by the harmonic considered as a response of the nonlinear system (2) to
optimally chosen noise was called stochastic resonance.

In the past twenty years more than three hundred papers on this subject
were published. An extensive description of the phenomenon from the physical
point of view can be found in [4] and [5]. The notion stochastic resonance is
now used in a much broader sense. It describes a wide class of effects with the



common underlying property: the presence of noise induces a qualitatively new
behaviour of the system and improves some of its characteristics.

Although stochastic resonance was observed and studied in many physical
systems, only few mathematically rigorous results are known. The approach of
M. Freidlin is briefly outlined in the next section of this paper. In sections 2,
3 and 4 we introduce discrete-time Markov chains with transition probabilities
chosen in such a way, that on a large temporal scale the attractor hopping
behaviour of the underlying diffusion process is imitated in the limit e — 0.
We investigate stochastic resonance for the Markov chains. The last section is
devoted to generalizations and discussion.

1 Large deviations approach

In this section we briefly survey rigorous mathematical results obtained by
M. Freidlin in [6] using the theory of large deviations for randomly perturbed
dynamical systems, developped in Freidlin and Wentzell (see [7]). Though the
results of [6] are valid in a quite general framework, we confine our attention to
a simple example of a diffusion with weak noise.

Consider the SDE in R

X(t) = U/ (X (1), 72) + VeW (1) 3)

where W is a white noise and U'(z,t) = 2 U(,t), with a time dependent
potential just periodically switching between two symmetric double well states,
ie.

Ulz,t) = Z U(w)l[k,H%)(t) + U(—m)l[H%,kH) (1),

k>0

where U () has local minima in = 1 and a saddle point in z = 0, lim ;o U(z) =
00. We also fix the depths of the wells by two numbers 0 < v < V, assuming
that U(=1) = =V/2, U(1) = —v/2, and U(0) = 0. Note, that X¢T is a Markov
process which is not time homogeneous. In the following Theorem time scales
are determined in which some form of periodicity is observed.

Theorem 1 Suppose T = T'(¢) is given such that

limelnT(e) =X > 0.

e—0

a) If A < v, then the Lebesgue measure of the set
{t €[0,1] : | XTO(T(e)t) — sgnXo| > 6}

converges to 0 in Px, probability as e — 0, for any § > 0.
b) If A > v, then the Lebesque measure of the set

{te[0,1] : [XTT(e)t) - (t)| > 6}



converges to 0 in Px, probability as e — 0, for any § > 0, where

o(t) = Z _1[k,k+§)(t) + l[k-',—%,k-',-l)(t)
k>0

and Px, denotes the law of the diffusion starting in Xo. °

It is nessesary to explain why A = v is critical for the long time behaviour of the
diffusion. At least intuitevely, the answer follows from the asymptotics of the
mean exit time from a potential well for the time-homogeneous diffusion. If the
diffusion starts in the potential well with the depth v/2, its mean time E(7(¢))
needed to leave the well satisfies

elnE(7(e)) > v, €—0.

according to Freidlin and Wentzell [7]. This means, X 7€) can leave neither the
deep well with the depth V/2 nor the shallow one with the depth v/2 in time
T(€) of order eM¢ if A < v. Therefore, X7(¢) stays in the d-neighbourhood
of the minimum of the initial well. On the other hand, if A > v, X©T(9) has
always enough time to reach the deepest well. In both cases, the Lebesgue
measure of excursions leaving the §-tube of the deterministic periodic function
¢ is exponentially negligible on the time scale T'(€) as € — 0.

The Theorem suggests the time scale which induces periodic and determin-
istic behaviour of the system (3), and the Lebesgue measure as a measure of
quality. In fact, it only gives a lower bound for the scale. In the next sec-
tion, in the framework of discrete Markov chains approximating the diffusion
processes just considered, we investigate different measures of quality which
provide unique optimal tuning.

2 Markov chains with time-periodic transition
probabilities

For m € N, consider a Markov chain X,, = (X,(k))r>0 on the state space
S = {-1,1}. Let P, (k) be the matrix of one-step transition probabilities at
time k. If we denote 7, (k) = P(X,,(k) = —1), m} (k) = P(Xn(k) = 1), and
write P* for the transposed matrix, we have

Tk +1) 1\ _ o T (K)
(76D )=mo ()
In order to model the periodic switching of the double-well potential in our

Markov chains, we define the transition matrix P,, to be periodic in time with
half-period m. More precisely,

P (k) = P, 0 < k(mod 2m) <m —1,
mT ] Pa, m < k(mod 2m) < 2m — 1,



with
p_(1-¢ ¢ _( 1-pz¥ pa¥
1= v 1-v9 ) gz¥ 1l—gqz¥ )’ 4)

S 1=9 (] [ 1—gz” qz’
2_( 1) 1—¢>_( pxV 1—va>'
where ¢ = ¢(e,p, V) = pe™V/¢, = ¢(e,q,v) = ge¥/, x = e/, 0 < p,g <1,
0<v <V <+4+00,0< e < +00. Sometimes, it will be convenient to consider
z € [0,1]. In these cases the ends of the interval will correspond to the limits
€ — 0 and € = oo.

In this setting, the numbers V/2 and v/2 clearly have to be associated with
the depths of the potential wells, ¢ with the level of noise. According to the
Freidlin-Wentzel theory, the exponential factors in the one-step transition prob-
abilities just correspond to the inverses of the expected transition times between
the respective wells for the diffusion considered in the preceding section. This
is what should be expected for a Markov chain in equilibrium, modulo the phe-
nomenological prefactors p and q. They model the prefactors appearing in large
deviation statements, and add assymetry to the picture.

It is well known that for a time-homogeneuos Markov chain on S with tran-
sition matrix P one can talk about equilibrium, given by the stationary distribu-
tion, to which the law of the chain converges exponentially fast. The stationary
distribution can be found by solving the matrix equation 7 = P*7 with norming
condition 7~ + 7T = 1.

For non time homogeneous Markov chains with time periodic transition
matrix, the situation is quite similar. Enlarging the state space S to S, =
{-1,1} x {0,1,...,2m — 1}, we recover a time homogeneous chain by setting

Y (k) = (Xpn(K), k(mod 2m)), k >0,

to which the previous remarks apply. For convenience of notation, we assume
Sm to be ordered in the following way:

Sm = [(—1,0),(1,0),(-1,1),(1,1),...,(=1,2m—1), (1, 2m—1)]. Writing A,, for
the matrix of one-step transition probabilities of Y,, the stationary distribution
Q = (q(4,7))* is obtained as a normalized solution of the matrix equation (A}, —
E)@Q = 0, E being the unit matrix. We shall be dealing with the following variant
of stationary measure, which is not normalized in time.

Definition 1 Let (k) = (m,,,(k), 7} (k))* = 2m(q(-1,k),q(1,k))*, 0 < k <
2m — 1. We call the set my, = (7 (k))o<k<am-—1 the stationary distribution of

the Markov chain X,,.

The matrix A,, of one-step transition probabilities of Y, is explicitly given by

O A O O ---0 0 O
o 0 A O ---0 0 O
A, =
0 0 0 O 0 P~ 0
0O 0 0 O 0 0 P
B 0 0 0 0 0 O



A, has block structure. In this notation 0 means a 2 x 2-matrix with all entries
equal to zero, P, and P, are the 2-dimensional matrices defined in (4).

Applying some algebra we see that (A} —E)@Q = 0is equivalent to A}, Q =0,
where

P-E 0 00 -- 0 0 0
Pf -E 00 --- 0 0 0

Al = :
" 0 0O 00 --- —E 0 0
0 O 00 --- PP —E 0
0 O 00 --- 0 Pf -E

and P = PyP;--- Py = (P5)™(P;)™. But Al is a block-wise lower diagonal
matrix, and so A}, @ = 0 can be solved in the usual way to give

Theorem 2 For every m > 1, the stationary distribution w,, of X, with ma-
trices of one-step probabilities defined in (1) is:

_ b L é-v (1-g-y)

A e

+(1) = _r— v . 5
)= S T ST T A= g )
{ T (L +m) = mh (1),

mt(l+m) ==, (), 0<I<m-1.

Proof. my,(0) satisfies the matrix equation ((Py)™(Pf)™ — E)mpn(0) = 0 with
additional condition m,(0) + 7} (0) = 1. To calculate (Py)™(Pf)™, we use a
formula for the m-th power of 2 x 2-matrices, which results in

m
P-1,—1 P-11 _ 1 1—-p1n 1-p1, 1
( Pl,—1 P11 ) C2-py 1-pi1 ( l-p1qp 1—-p_1,1 )
n (P-1,—-1+p1 — 1™ < 1—-p1,1 —(1—p_1,-1)
2—p_1,_1—p1,1 -(1 —Pl,l) 1-p1a

Using some more elementary algebra we find

(PP =<(P)m<P2)m)*=(1;¢ 1f¢)m(1;¢ 1f¢)m=

_ 1 ¢ ¢ o=t (-1 -1
v (0 p)rame-wrsg (7 7)
oo vpm (e )
o+ - ¢ )’
from which a straightforward calculation yields
i ot —¢—y)™
O G D (=6~ gy

(@+) A+ 1 —p—y¢)m)



To compute the remaining entries, we use m,, (1) = (P;)!7,(0) for 0 <1 < m—1,
and 7, (1) = (P3)Y(Py)™mm (0) for m <1< 2m — 1 to obtain (5). Note also the
symmetry 7, (Il +m) =7} () and 7t ({+m) == (1),0<I<m-—1. .

3 Spectral power amplification

The chain X,,, can be interpreted as amplifier of a signal. Our stochastic system
may be seen to receive a deterministic periodic input signal which switches the
double depths of the potential wells in (4), i.e.

v,

0 <l(mod 2m) <m —1,
v, m

I(mod 2m) < 2m — 1.

In(l) = {

<
<

The output is a random process X, (k).
The input signal I,,, admits a spectral representation

where ¢, (a) = (1/2m) fﬂfl Ly (1)e =" is the Fourier coefficient of frequency
a/2m. The quantity |ca.,(a)|?> measures the power carried by this Fourier com-
ponent. We are only interested in the component of the input frequency 1/2m.
Its power is given by

»_ (V- v)? ,,m
lem (1)]7 = TmQCSC (%)- (6)
In the stationary regime, i.e. if the law of X, is given by the measure 7,
the power carried by the output at frequency a/2m is a random variable

2m—1
1 2ria
6nl0) = 57 3 Xm0

We define the spectral power amplification as the relative expected power carried
by the component of the output with frequency ﬁ

Definition 2 The spectral power amplification (SPA) coefficient of the Markov
chain X,, with half period m > 1 is given by

B (Em(D)?
= e P

Here E,, denotes expectation w.r.t. the stationary distribution my,.

The explicit description of the invariant measure now readily yields the fol-
lowing formula for the spectral power amplification.



Theorem 3 Let m > 1. The spectral power amplification coefficient of the
Markov chain X,, with one-step transition probabilities (4) equals

” :<(¢—¢)sin(ﬁ)>2 (2— ¢ — )+ 2c0t? (55) (¢ + )2
Vo (@—¢—)? —4cos® )1 -d =)

Proof: Using (5) one immediately gets

; m—1

37 (wh (k) — m (k))e ik

k=0

2m—1 P
21\'1.k 1—e

E. tm(l) = ZEMX )ezm

2m

- 290-v (1 1
T omé+Y \l—en 1-(1—¢—y)men |

Some algebra and an appeal to (6) finish the proof. .
Recall now that the one-step probabilities P, and P» depend on the param-
eters 0 < p,q < 1 and, what is especially important, on 0 < € < oo which is
interpreted as noise level. Our next goal is to tune the parameter € to a value
which maximizes the amplification coefficient 7, = N, (€) as a function of e.

4 Extrema and zeros of 7,,(¢).

In this section we study some features of the function 7,,(¢) and its dependence
onm € N,0<v <V < oo and the prefactors 0 < p<1,0<¢g< 1.

After substituting e~'/¢ =  and writing 7,5, (€) = 7, (), this function takes
the form

_ (sin(F) > (pz” —qz”)
w@ = (T2) G e (TP

x<(2—pwv—qw) +2c0t2(2 )(pzV +qx))

—~~

7)

In what follows, we assume z € [0,1]. The boundaries z = 0 and =z
correspond to the limiting cases ¢ = 0 and € = co. Denote a,, = csc (2L)
m > 1.

Our main result on optimal tuning is contained in the following theorem.

Z

Theorem 4 a) We have 1,,(x) > 0, 1,,(0) = 0.
b) Let 0 < B =v/V <1 and m > 1 be fized. There ezists a continuous
function

b(g;m, B) — /blg;m, B)? — 4a(g;m, B)(2 — q)q
2a(q; m, B) ’

where a(g;m, f) = 1 — amg(1 = ), blg;m, B) = 2= 3(1 = f)g + am(1 - B)¢*,
with following properties:

p—(q) =p_(g;8,m) =



i)p-(q) 20,¢€[0,1] and p_(9) =0&¢=0;
i) p_(q) <q,q€[0,1] and p_(g)=q&q=0o0rq=1, m=1;
iii) dp_(g;m, ) _5
dq 4=0
Moreover for m > 2

1) If (p,q) € Uo = {(p,q) : 0 < ¢ < 1,0 < p < p(q)}, nm(z) is strictly
increasing on [0,1].

2) If (p,q) € U1 = {(p,q) : 0 < ¢ < 1,p_(q) <p < q}, nm(x) has a unique
local mazimum on [0, 1].

3) If (p,q) € U2 ={(p,q) : 0< q<1,g<p<1}, nu(x) has a unique local
mazimum on [0,1] and a unique oot on (0,1]. (See Fig. )

c)For any & > 0 there exists Mo = My(p,q,3,0) such that for m > My the
coordinate of the local mazimum Ty, € [ (1 — 8), 2], where

Ty = ————
(2m2pq V- v)
Proof:

Differentiate the explicit formula (7) with respect to z to determine the
critical points and sets Uy, U, Us. The calculation of the resonance point in
Ui, U, requires to find two points in some neighborhood such that the derivative
is strictly monotone on the interval between them, and has different signs at the
extremities. o

AD

1 TIm TIm
U2 € €
a) b) c)
Ul TIm
d)
U 0 g €
0 1

Fig. 1: a) Typical form of the domains Uy, U; and Us. Typical form of n,,(€)
when (p, q) belongs Us (b), U (c) and Uy (d).

Remarks:
1. The optimal tuning rule can be rewritten in the form

! V—w V4o
m(e) & —/2pg\| —— exp (—5—)-



The maximal value of amplification is found as

li (€) = 4
S m(e)\€) = 2V —0)2

2. We also see that the spectral power amplification as a measure of quality of
stochastic resonance allows to distinguish a unique time scale, find its exponen-

tial rate (A = (V + v)/2) together with the pre-exponential factor.

vl L0,
g0 A
nnoe o 1o,
0

b d)

o
e

Fig. 2: a) ny(€) for p = ¢ = 0.5, m = 500, v = 2, V = 4. Numerical simulations
of X,,,(k) for b) e =0.65,c) e=0.9 and d) e = 0.4.
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