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Abstract

We solve the Skorokhod embedding problem for a class of Gaussian processes including
Brownian motion with non-linear drift. Our approach relies on solving an associated
strongly coupled system of Forward Backward Stochastic Differential Equation (FBSDE),
and investigating the regularity of the obtained solution. For this purpose we extend the
existence, uniqueness and regularity theory of so called decoupling fields for Markovian
FBSDE to a setting in which the coefficients are only locally Lipschitz continuous.
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1 Introduction

The Skorokhod embedding problem (SEP) stimulates research in probability theory now for
over 50 years. The classical goal of the SEP consists in finding, for a given Brownian motion W
and a probability measure v, a stopping time 7 such that W, possesses the law v. It was first
formulated and solved by Skorokhod [Sko61, Sko65] in 1961. Since then there appeared many
different constructions for the stopping time 7 and generalizations of the original problem
in the literature. Just to name some of the most famous solutions to the SEP we refer to
Root [Roo69], Rost [Ros71] and Azéma-Yor [AY79]. A comprehensive survey can be found in
[Ob104].

Recently, the Skorokhod embedding raised additional interest because of some applications
in financial mathematics, as for instance to obtain model-independent bounds on lookback
options [Hob98] or on options on variance [CL10, CW13, OdR13]. An introduction to this
close connection of the Skorokhod embedding problem and robust financial mathematics can
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be found in [Hob11].
In this paper we construct a solution to the Skorokhod embedding problem for Gaussian
process G of the form

t t
Gy = Go—i—/ oasds—i—/ Bs AW,
0 0

where Gy € R is a constant and «,: [0,00) — R are suitable functions. Especially, this
class of processes includes Brownian motions with non-linear drift. The SEP for Brownian
motion with linear drift was first solved in the technical report [Hal68] and 30 years later
again in [GF00] and [Pes00]. Techniques developed in these works can be extended to time-
homogeneous diffusions, as done in [PP01], and can be seen as generalization of the Azéma-Yor
solution. However, to the best of our knowledge there exists no solution so far for the case of
a Brownian motion with non-linear drift.

The spirit of our approach is related to the one by Bass [Bas83], who employed martingale
representation to find an alternative solution of the SEP for the Brownian motion. This
approach was further developed for the Brownian motion with linear drift in [AHIO8] and for
time-homogeneous diffusion in [AHS13]. It rests upon the observation that the SEP may be
viewed as the weak version of a stochastic control problem: the goal is to steer G in such a
way that it takes the distribution of a prescribed law, which in case of zero drift is closely
related to the martingale representation of a random variable with this law. We therefore
propose in this paper to formulate and solve the SEP for G in terms of a fully coupled Forward
Backward Stochastic Differential Equation (FBSDE).

In general terms, the dynamics of a system of FBSDE is expressed by the equations

S S
XS—X0+/ u(r,Xr,Yr,Zr)dH/ o(r, X, Yy, Z,) AW,
0 0

T T
Ytzg(XT)—/ f(r,XT,n,Zmdr—/ Z,dW,, tel0,T).
t t

with coefficient functions pu, o of the forward part, terminal condition £ and driver f of the
backward component. In recent decades the theory of FBSDE with its close connection to
quasi-linear partial differential equations and their viscosity solutions has been propagated
extensively, in particular in its numerous areas of applications as stochastic control and math-
ematical finance (see [EPQ97] or [PW99]).

There are mainly three methods to show the existence of a solution for a system of FBSDE:
the contraction method [Ant93, PT99], the four step scheme [MPY94] and the method of
continuation [HP95, Yon97, PW99]. As a unified approach, [MWZZ11] (see also [Del02]) de-
signed the theory of decoupling fields for FBSDE, which was significantly refined in [FI13]. It
can primarily be seen as an extension of the contraction method. In our approach of the SEP
via FBSDE, we shall focus on the subclass of Markovian ones for which all involved coefficient
functions (&, (1, 0, f)) are deterministic. We, however, have to allow for not globally, but only
locally Lipschitz continuous coefficients (u, o, f) in the control variable z, and therefore to
develop an existence, uniqueness and regularity theory for FBSDE in this framework.
Equipped with these tools we solve the FBSDE system resulting from the SEP. We first con-
struct a weak solution, i.e. we obtain a Gaussian process of the above form and an integrable
random time such that, stopped at this time, the process possesses the given distribution v.
Under suitable regularity on the given measure v and the process, this construction will be
carried over to the originally given Gaussian process GG. This solves the SEP for G.



The paper is organized as follows: in Section 2 we relate the SEP to a fully coupled system
of FBSDE, and in Section 3 we establish general results for decoupling fields of FBSDE. The
Skorokhod embedding problem is solved in Section 4, in its weak and in its strong version.
Section A recalls some auxiliary results for BMO processes.

2 An FBSDE approach to the Skorokhod embedding problem

We consider a filtered probability space (€2, F, (Ft)ic[,), P) large enough to carry a one-
dimensional Brownian motion W. The filtration (F¢).c(0,00) is assumed to be generated by
the Brownian motion and is assumed to be augmented by P-null sets. We also assume that
F=o0(UZo )

We start by formulating the Skorokhod embedding problem in the modified version (SEP):
For given probability measure v on R and a Gaussian process X on [0, 00) of the form

¢ ¢
X =X +/ s ds +/ Bs AWy, (1)
0 0

where Xy € R is some predetermined constant and «a, 3: [0,00) — R are deterministic mea-
surable processes such that fot las| ds + fg B2ds < oo for all t > 0, find

e a (F;)-stopping time 7 s.t. E[7] < co together with
e a starting point c € R

such that ¢ + X, has the law v.

In order to have a truly stochastic problem 5 should not vanish and v should not be a Dirac
measure. In fact we will assume that g is bounded away from zero later on.

Our method of solving this problem is based on the observation that it may be viewed as the
weak version of a stochastic control problem: We want to steer X in such a way that it takes
the distribution of a prescribed law. The spirit of our approach is related to an approach to
the original Skorokhod embedding problem by Bass [Bas83] that was later extended to the
Brownian motion with linear drift in [AHIO8]. The procedure of both papers can be briefly
summarized and divided into the following four steps.

1. Construct a function g: R — R such that g(W7) has the given law v.

2. Use the martingale representation property of the Brownian motion fora =0and =1
or BSDE techniques for « = k # 0 and 8 = 1 to solve

1 1
Yt:g(Wl)—n/ ngs—/ ZsdWs, te0,1]. (2)
t t

3. Apply the random time-change of Dambis, Dubins and Schwarz in the quadratic vari-
ation scale [; Z7ds to transform the martingale [; Z;dW; into a Brownian motion B.
This also provides a random time 7 := fol 72 ds fulfilling Bz + k7 + Yo = g(W7), which
is why Bz 4+ k7 + Y{ has the law v.



4. Show that 7 is a stopping time with respect to the filtration generated by B through an
explicit characterization using the unique solution of an ordinary differential equation.
With this description transform the embedding with respect to B into one with respect
to the original Brownian motion W to obtain the stopping time 7 as the analogue to 7.

The first step of the algorithm just sketched is fairly easy. Let F: R — [0,1] such
that F'(z) := v((—o0, z]) is the cumulative distribution function associated with v and define
F71:(0,1) = R via

F~Hy) :=inf{z € R : F(z) > y}.
Denoting by ® the distribution function of the standard normal distribution, we define g: R —
R as g(x) := F~1(®(z)). It is straightforward to prove that g has the following properties.

Lemma 1. The function g is measurable and non-decreasing. Moreover, if v is not a Dirac
measure, then g is not identically constant and g(Wi) has the law v.

Proof. Since ® and F~! are measurable and non-decreasing, their composition g is also mea-
surable and non-decreasing.

Clearly, g can only be constant if F'~! is constant, which can only happen if F' assumes values
in {0,1}. This only happens in case v is a Dirac measure. In order to see that g(W7) has the
law v, note that

P(g(W1) < z) = P(F~H(®(W1)) < z) = P(W) < &7 (F(2))) = (2 (F(x))) = F(x)
for all z € R. ]

Now define a measurable function é: [0,00) — R via
. t
o(t) :== Xo —i—/ o ds
0

such that X; = 6 (t) + f(f Bs dWs. Obviously, §is weakly differentiable. Conversely, for every
weakly differentiable function §: [0, 00) — R we can set X := 6(0) and o, := &'(s).

Furthermore, define H: [0,00) — [0, 00) via

H(t):= /Otﬁgds.

Note that H is weakly differentiable, monotonically increasing and starts at 0. If we assume
that § is bounded away from 0, H becomes strictly increasing and invertible such that the
inverse function H~! is monotonically increasing and Lipschitz continuous. In this case we
can define

§:=00H .
If 3=1, then H = Id and thus § = 4.

For the second step we assume that § is bounded away from 0 and observe that the ran-
dom time change, which turns the martingale fo ZsdWy into a Gaussian process of the form
Jy Bs dBg simultaneously turns the scale process [; Z2ds into [ 2ds = H. This means we
have to modify the classical martingale representation of g(W7) to

g(W1)+5<H_1(/OlZ§ds)> —E[g(W1)+5<H_1</OlZs2ds>)] :/Olzsdws,
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which amounts to finding a solution (Y, Z) to the equation

Ezg(Wﬂ—é(/olZfds) —/tlstWS, t €10,1]. (3)

For 6(t) = 0 this would be just the usual martingale representation with respect to the
Brownian motion. Also for a linear drift §(¢) = st and 5 = 1 equation (3) can be rewritten
as

t 1 1
Yt::Yt+m/ Z§dg=g(wl)—n/ ngs—/ ZsdWs, te|0,1],
0 t t

which is exactly the BSDE (2) related to the SEP as stated in [AHIO8]. In the case of
a Brownian motion with general drift equation (3) would be a BSDE with time-delayed
terminal condition. Unfortunately, the theory of BSDE with time-delay as introduced by
Delong and Imkeller in [DI10] and extended by Delong [Dell2] for time-delayed terminal
conditions reaches its limits in our situation. Alternatively, we will understand equation (3)
as an FBSDE and develop new techniques to solve it. This will be done in Sections 3 and 4.
Before we tackle the solvability of equation (3), we show that it really leads to the desired
result in the third step of our algorithm. To be mathematically rigorous we introduce

e S?(R) as the space of all progressively measurable processes Y : 2 x [0, 1] — R satisfying
SUPyeo,1] E[|Y:|?] < oo,

e H?(R) as the space of all progressively measurable processes Z: Q x [0, 1] — R satisfying
1
Elfy |Z]* dt] < oo,

where | - | denotes the Euclidean norm on R.

For the rest of the paper we assume that 3 is bounded away from 0, i.e. inf c(g o) |Bs| > 0.

Lemma 2. Suppose (Y, Z) € S?’(R) x H?(R) is a solution of (3). Then there exist a Brownian
motion B and a random time T with E[T] < oo such that

7

1/()+X0+/ asds—i-/ Bs dBs = g(W7).
0 0

Proof. Note that Y is a martingale with quadratic variation process fg Z2ds for t € [0,1]
since Z € H?(R). Now choose another Brownian motion B which is independent of Y. If
necessary we extend our probability space such that it accommodates the Brownian motion
B. Set 7:= H! (fol 7?2 ds), and define the time-change of the type of Dambis, Dubins and
Schwarz by

inf {¢>0: [§Z2ds > [; B2ds} if0<r<7
oy =
1 if 7 > 7.

Observe that the condition r < 7 is equivalent to for B2ds < fol Z2ds. Since Yy, is a contin-
uous martingale with quadratic variation H(r) = fOT 32 ds, we can define a Brownian motion
B by

TAT
Br::BT—BT/\;—I—/ —dY,,, 0<r<oo.
0 /Bs



We find 5 .
/ 5sst+5(%>+Yo=Y1—Yo+5(/ Zfds) + Yo = g(W1),
0 0

E[7] :E[Hl </OlZ§ds>] < o0,

where we used that Z € H?(R) and H ! is Lipschitz continuous. O

and further

As an immediate consequence of the previous lemma we observe the following fact. If we
have a solution (Y, Z) € S?(R) x H?(R) of equation (3), we obtain a weak solution to the
Skorokhod embedding problem, i.e. a Gaussian process of the form (1), a starting point c,
and an integrable random time such that our process stopped at this time possesses a given
distribution.

At a first glance equation (3) might look easy. We, however, have to deal with a fully coupled
FBSDE which in addition possesses a not globally Lipschitz continuous coefficient in the
forward component.

3 Decoupling fields for fully coupled FBSDESs

The theory of FBSDE, closely connected to the theory of quasi-linear partial differential
equations and their viscosity solutions, receives its general interest from numerous areas of
application among which stochastic control and mathematical finance are the most vivid ones
in recent decades (see [EPQ97] or [PW99]). Owing to their general significance, we treat the
theory of FBSDEs and their decoupling fields in a more general framework than might be
needed to obtain a solution to our equation (3).

Although in Section 3.2 we will focus on the Markovian case, which means that all involved
coefficients are purely deterministic, let us dwell in a more general setting first.

3.1 General decoupling fields
For a fixed time horizon T' > 0, we consider a complete filtered probability space
(Q, F, (‘Ft)tE[D,T]vIP):

where Fy contains all null sets, (W¢);e[o,7] is a d-dimensional Brownian motion independent
of Fo, and Fy := o(Fo, (Ws)seppy) With F := Fr. The dynamics of an FBSDE is classically
given by

XS :X0+/ M(TaXT7Y;'7ZT) dr+/ O-(T7X7‘a)/7‘727‘) dWT’?
0 0
T T
Yi—er) - [ 1Y z)ar— [ zeaw,
t t

for s,t € [0,T] and Xy € R™, where (&, (4, 0, f)) are measurable functions. More precisely,

£: QxR 5 R™, p:[0,T] x Q x R x R™ x R™*? - R™,
0:[0,T] x Q x R® x R™ x R™*4 5 R™4 £:]0,T] x Q x R" x R™ x R™*¢ 5 R™,



for n,m,d € N. Throughout the whole section u, o and f are assumed to be progressively
measurable with respect to (Fi).ejo,r), i-e- pljog, 01j0.4, f1l0,4 are B([0,T]) ® F; @ B(R") @
B(R™) @ B(R™*9)-measurable for all ¢ € [0, 7.

A decoupling field comes with an even richer structure than just a classical solution.

Definition 3. Let ¢ € [0,7]. A function w: [t,T] x Q@ x R® — R™ with u(T,-) = § a.e. is
called decoupling field for (&, (p,o, f)) on [t,T)] if for all ¢1,te € [t,T] with t; < t3 and any
Fi,-measurable Xy, : © — R” there exist progressive processes (X, Y, Z) on [t1,t2] such that

S S
Xo=Xo+ [ ur X Yo Z)dr+ [ ol XY, Z) i,
t t
tlz 1152
YSZYEQ_ f(T',XT,K-,ZT)dT‘—/ ZTdWT‘7
S

S

Yy = u(s, Xy), (4)

for all s € [t1,t2]. In particular, we want all integrals to be well-defined and (X, Y, Z) to have
values in R™, R™ and R™*%, respectively.

Some remarks about this definition are in place.

e The first equation in (4) is called the forward equation, the second the backward equation
and the third will be referred to as the decoupling condition.

e The requirement that X should start at X, is referred to as the initial condition. By
a slight abuse of notation we will sometimes refer to X, itself as the initial condition.

e Note that, if to = T, we get Y = £(Xr) a.s. as a consequence of the decoupling
condition together with u(7,-) = & At the same time Y7y = &(Xr) together with
decoupling condition implies u(7,-) = £ a.e.

e If to = T we can say that a triplet (X, Y, Z) solves the FBSDE, meaning that it satisfies
the forward and the backward equation, together with Y7 = £(X7). This relationship
Yr = &£(X7) is referred to as the terminal condition.

By an abuse of notation the function £ itself is also sometimes referred to as the terminal
condition. Sometimes we will describe the relationship u(7,-) = £ a.e. with this term.

In contrast to classical solutions of FBSDE, decoupling fields on different intervals can be
pasted together.

Lemma 4 (Lemma 1 in [FI13]). Let u be a decoupling field for (&, (p, o, f)) on [t,T] and @
be a decoupling field for (u(t,-), (u, 0, f)) on [s,t], for 0 < s <t <T. Then, the map G given
by i := Ul +ule) is a decoupling field for (€, (u, 0, f)) on [s,T7.

We want to remark that, if u is a decoupling field and @ is a modification of u, i.e. for each
s € [t, T] the functions u(s,w,-) and @(s,w,-) coincide for almost all w € Q, then @ is also a
decoupling field to the same problem. So u could also be referred to as a class of modifications.
Some of the representatives of the class might be progressively measurable, others not. As
we see below a progressively measurable representative does exist if the decoupling field is
Lipschitz continuous in z:



Lemma 5 (Lemma 2 in [FI13]). Let u: [t,T] x @ x R" — R™ be a decoupling field to
(&, (1, 0, f)) which is Lipschitz continuous in x € R™ in the sense that there exists a constant
L >0 s.t. for every s € [t,T):

lu(s,w, ) —u(s,w,2’)| < Llz — 2| Ve, € R",  for a.a. w € Q.

Then u has a modification 4 which is progressively measurable and Lipschitz continuous in x
in the strong sense

la(s,w,z) — u(s,w,2')| < Lz — 2| Vs € [t,T], we Q, z,2" € R™.

Let I C [0,7] be an interval and w : I x Q2 xR™ — R™ a map such that u(s, -) is measurable
for every s € I. We define

Ly :=supinf{L > 0|for a.a. w € Q: |u(s,w,z) — u(s,w,z’)| < L|lz — 2| for all z,z" € R"},
sel

where inf () := co. We also set L, , := oo if u(s,-) is not measurable for every s € I. One
can show that L, , < oo is equivalent to v having a modification which is truly Lipschitz
continuous in z € R".

We denote by L, . the Lipschitz constant of o w.r.t. the dependence on the last component
z and w.r.t. the Frobenius norms on R”*¢ and R"*%. We set Ly, = oo if o is not Lipschitz
continuous in z.
By L;i = i we mean i if Ly, > 0 and oo otherwise.

Definition 6. Let u: [t,T] x © x R" — R™ be a decoupling field to (£, (u, 0, f)). We say u
to be weakly regular if Ly, < L} and supgepe, 7y llu(s, -, 0)][oo < 00.

This is a natural definition due to Lemma 5. In practice, however, it is important to
have explicit knowledge about the regularity of (X,Y, 7). For instance, it is important to
know in which spaces the processes live, and how they react to changes in the initial value.
Specifically, it can be very useful to have differentiability of (X,Y, Z) w.r.t. the initial value.
In the following we need further notation. For an integrable real valued random variable F' the
expression E¢[F] refers to E[F| 7], while E; | [F] refers to esssup E[F'|.F¢], which might be oo,
but is always well defined as the infimum of all constants ¢ € [—00, 00| such that E[F|F;] < ¢
a.s. Additionally, we write || F||« for the essential supremum of |F|.

Definition 7. Let u: [t, T]xQxR™ — R™ be a weakly regular decoupling field to (&, (i, o, f)).
We call u strongly regular if for all fixed t1,ts € [t,T], t1 < to, the processes (X,Y, Z) arising
in (4) are a.e unique and satisfy

t2
sup Etl,OOHXS|2] + sup Etl,OOHY;F] + Etl,oo |:/ ’Zs|2 d3:| < 00, (5)
SE[t1,t2] sE[t1,t2] t1

for each constant initial value X;, = z € R". In addition they must be measurable as functions
of (z,s,w) and even weakly differentiable w.r.t. = € R™ such that for every s € [t,t2] the
mappings X and Y; are measurable functions of (z,w) and even weakly differentiable w.r.t.
x such that

esssup,ecgrn SUp  sup K o
veSn—1 sefty,tg]

’ d




2
d
esssup,ecgre SUp  sup K oo ’dYS < 00,
veSn—1 selty,tg] £ v
to d 2
essSup,cpn  SUP Ky oo / (TZS ds| < oo. (6)
vesn—1 t1 x v

We say that a decoupling field on [¢,T] is strongly regular on a subinterval [t1,t2] C [¢,T] if u
restricted to [¢1, t2] is a strongly regular decoupling field for (u(ts, ), (i, o, f)).

Under certain conditions a rich existence, uniqueness and regularity theory for decoupling
fields can be developed. We will summarize the main results, which are proven in [FI13]:

Assumption (SLC): (&, (u, 0, f)) satisfies standard Lipschitz conditions (SLC) if
1. (w, 0, f) are Lipschitz continuous in (z,y, z) with Lipschitz constant L,
2. [(lpl + ST+ 1o ) (-,+,0,0,0)[| o < 00,
3. & Q x R" — R™ is measurable such that [|£(-,0)[/cc < 00 and L¢ , < L;i

Theorem 8 (Theorem 1 in [FI13]). Suppose (&, (i, 0, f)) satisfies (SLC). Then there exists
a time t € [0,T) such that (&, (p, 0, f)) has a unique (up to modification) decoupling field u
on [t,T] with Ly, < L;. and supgepe, 7y llu(s; 5 0)|[oo < 0.

0,2

A brief discussion of existence and uniqueness of classical solutions can be found in Remark
3 in [FI13]. For later reference we give the following remarks (cf. Remark 1 and 2 in [FI13]).

Remark 9. It can be observed from the proof that the supremum of all h = T — ¢, with ¢
satisfying the properties required in Theorem 8 can be bounded away from 0 by a bound,
which only depends on

e the Lipschitz constant of (u,o, f) w.r.t. the last 3 components, T’
o Lgand L¢ - Ly, < 1,

and which is monotonically decreasing in these values.

Remark 10. It can be observed from the proof that our decoupling field u on [t,T] satisfies
Ly ye < Lea + (T - s)%, where C' is some constant which does not depend on s € [t,T].
More precisely, C' depends only on T', L, L¢;, L¢ Lo . and is monotonically increasing in
these values.

We can systematically extend this local theory to obtain global results. This is based on
a simple argument which we will refer to as small interval induction.

Lemma 11 (Lemma 11 and 12 in [FI13]). Let T} < 1% be real numbers and let S C [T1,T5].

1. Forward: If Ty € S and there exists an h > 0 s.t. [s,s +h]N[T1,T2] C S foralls € S,
then S = [T1,Ts] and in particular Ty € S.

2. Backward: If Ty € S and there exists an h > 0 s.t. [s—h,s|N[T1,T2] C S for all s € S,
then S = [T1,T»] and in particular Th € S.

Using these simple results we obtain global uniqueness and global reqularity of a decoupling
field.



Theorem 12 (Corollary 1 and 2 in [FI13]). Suppose that (&, (i, 0, f)) satisfies (SLC).

1. Global uniqueness: If there are two weakly regular decoupling fields vV, u) to the cor-
responding problem on some interval [t,T], then we have uD =u® up to modifications.

2. Global regularity: If there exists a weakly reqular decoupling field u to this problem on
some interval [t,T], then u is strongly regular.

Notice that Theorem 12 only provides uniqueness of weakly regular decoupling fields, not
uniqueness of processes (X,Y, Z) solving the FBSDE in the classical sense. However, using
global regularity in Theorem 12 one can show:

Corollary 13 (Corollary 3 in [FI13]). Let (&, (u, 0, f)) fulfill (SLC). If there exists a weakly
regqular decoupling field u of the corresponding FBSDE on some interval [t,T], then for any
initial condition Xy = x € R™ there is a unique solution (X,Y,Z) of the FBSDE on [t, T
satisfying

T
sup E[| X%+ sup E[|Y:]*]+E [/ |Zs|2ds] < 0.
s€ft,T) s€[t,T) t

3.2 Markovian decoupling fields

A system of FBSDE given by (&, (u, 0, f)) is said to be Markovian if these four coefficient
functions are deterministic, that is, if they depend only on (¢,z,y,z). In the Markovian
situation we can somewhat relax the Lipschitz continuity assumption and still obtain local
existence together with uniqueness. What makes the Markovian case so special is the property

”Zs — ux(S,Xs) : O‘(S,XS, YS, Zs)”a

which comes from the fact that u will also be deterministic. This property allows us to bound
Z by a constant if we assume that o is bounded.

Lemma 14 (Lemma 14 in [FI13)). Let p, o, f,¢ satisfy (SLC) and assume in addition that
they are deterministic. Assume that we have a weakly reqular decoupling field uw on an interval

[t,T]. Then u is deterministic in the sense that it has a modification which is a function of
(r,x) € [t,T] x R™ only.

An application of Lemma 14 is the following very fundamental result.

Lemma 15 (Lemma 15 in [FI13]). Let (&, (i, 0, f)) satisfy (SLC) and suppose that these
coefficient functions are deterministic. Let u be a weakly regular decoupling field on an interval
[t,T]. Choose t1 < ty from [t,T] and an initial condition X;,. Then the corresponding Z
satisfies || Z||ooc < Ly - ||0]|oo-

If | Z]|co < 00, we also have || Z||co < Luzllo(y 5 0)]loo(1 — LuzLsz) "t

Next we investigate the continuity of u as a function of time and space.

Lemma 16 (Lemma 16 in [FI13]). Assume that (p, 0, f) have linear growth in (x,y) in the
sense

(Il + lo] + 1) (tw,2,y,2) S C L+ J2[ +[y)  V(ta,y,2) € [0,T] x R* x R™ x R™4,

10



for a.a. w € Q, where C € [0,00) is some constant.

If u is a strongly reqular and deterministic decoupling field to (§, (1, o, f)) on an interval [t, T,
then u is continuous in the sense that it has a modification which is a continuous function on
[t, T] x R™.

This boundedness of Z in the Markovian case motivates the following definition. It will
allow us to develop a theory for non-Lipschitz problems via truncation.

Definition 17. Let ¢ € [0,7]. We call a function u: [t,T] x Q x R" = R™ with u(T,w,-) =
¢(w,-) for a.a. w € Q a Markovian decoupling field for (¢, (u, 0, f)) on [t,T] if for all t1,ts €
[t,T] with t; < t3 and any Fy -measurable Xy, : Q — R”™ there exist progressive processes
(X,Y, Z) on [t1, 9] such that the equations in (4) hold a.s. for all s € [t1, t2], and additionally
12]]o0 < oo

We remark that a Markovian decoupling field is always a decoupling field in the standard
sense as well. The only difference is that we are only interested in triplets (X, Y, Z), where Z
is a.e. bounded.

Regularity for Markovian decoupling fields is defined very similarly to standard regularity.

Definition 18. Let u: [t,T] x Q x R™ — R™ be a Markovian decoupling field to (§, (u, o, f)).
o We call u weakly regular if Ly, < L, and SuPsepe, 77 [u(s; -, 0)[loc < 0.

o We call a weakly regular u strongly regular if for all fixed t1,ta € [t,T], t1 < to, the
processes (X, Y, Z) arising in the defining property of a Markovian decoupling field are
a.e. unique for each constant initial value X;, = = € R" and satisfy (5). In addition
they must be measurable as functions of (z,s,w) and even weakly differentiable w.r.t.
x € R™ such that for every s € [t1,t2] the mappings X and Y are measurable functions
of (z,w), and even weakly differentiable w.r.t. x such that (6) holds.

e We say that a Markovian decoupling field on [t,T] is strongly regular on a subinterval
[t1,t2] C [t,T] if u restricted to [t1,t2] is a strongly regular Markovian decoupling field

for (u(tz,-), (1, 0, f))-

Now we define a class of problems for which an existence and uniqueness theory will be
developed.

Assumption (MLLC): (&, (i, 0, f)) fulfills a modified local Lipschitz condition (MLLC) if
1. the functions (u, o, f) are

(a) deterministic,

(b) Lipschitz continuous in (z,y, z) on sets of the form [0,7] x R™ x R™ x B, where
B C R™*? is an arbitrary bounded set,

(C) and fulfill ||:u('7070a 0)”003 Hf('?oa Oa 0)”003 ||U('v K '70)“00’ LU,Z < 00,
2. £: R" — R™ satisfies L¢ , < L;i

We start a providing a local existence result.
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Theorem 19. Let (&, (i, 0, f)) satisfy (MLLC). Then there exists a time t € [0,T) such that
(&, (p, 0, f)) has a unique weakly regular Markovian decoupling field uw on [t,T]|. This u is also
strongly regular, deterministic, continuous and satisfies supy, 1, x, | Z]|co < 00, where t1 < to
are from [t,T| and Xy, is an initial value (see the definition of a Markovian decoupling field
for the meaning of these variables).

Proof. For any constant H > 0 let xz: R™*? — R™*4 be defined as

H

XH(2) == L{z<myz + ml{\z|2H}Z-
It is easy to check that xpy is Lipschitz continuous with Lipschitz constant L,, = 1 and
bounded by H. Furthermore, we have xp(z) = z if |z] < H. We implement an ”inner cutoft”
by defining (1, om, fu) via pu(t,z,y, 2) :== p(t, z,y, XH(Z))7 etc.
The boundedness of xp together with its Lipschitz continuity makes (ug, o, fi) Lipschitz
continuous with some Lipschitz constant Ly. Furthermore, Ly, » < Ly .. Also (g, 0w, fu)
have linear growth in (y,z) as required by Lemma 16. According to Theorem 8 we know
that the problem given by (&, (um,om, fir)) has a unique weakly regular decoupling field u
on some small interval [t', T| where t' € [0,T). We also know that this u is strongly regular,
u is deterministic (by Lemma 14), and continuous (by Lemma 16).
We will show that for sufficiently large H and ¢ € [/, T') it will also be a Markovian decoupling
field to the problem (&, (i, 0, f)). Using Remark 10

1 /
Lytye < Lea+ Cu(T —t)1 Ve[, T],

where Cy < 00 is a constant which does not depend on t € [/, T|. For any t; € [t/,T] and F,-
measurable initial value X, consider the corresponding unique X,Y, Z on [t1,T] satisfying
the forward equation, the backward equation and the decoupling condition for wg, o, fio
and u. Using Lemma 15 we have || Z||ooc < Lyz|0|lco < Luz (lo(, -5+, 0)|loc + Lo H) < 00
and, therefore,

1
SWsefey,1) Lugs) o 19Cs 55 0)loo (Lg,x +Cn(T - t1)4) o0l
11— SUPse(ty,T] Lu(s,~),:vLU,Z B 1-— Lg,xLUVz — LmzCH(T — tl)%
1
LQZEHU('?‘?WO)HOO + CH(T_t1)4 ) ”a('7'7'70)H00
1
1- L{,zLa,z - LO’,ZCH(T - tl) 1-— Lf,rLa,z - LmzCH(T - tl)z

12]]o0

N

for T' — t1 small enough.
Now we only need to

Le ollo(-,0
LealloCr Ol 100omes smaller than 2

e choose H large enough such that 1 Lcolo- 4>

e and then in the second step choose t close enough to T, such that

— Ly .Cu(T — t)% becomes smaller than % (1 — L¢ , Lo,

1
_ CulloC: 0l (T=t)4

- g,acLo,z

becomes smaller than %.
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Considering (7) this implies that if ¢; € [t,T] the process Z a.e. does not leave the region in
which the cutoff is ”passive”, i.e. the ball of radius H. Therefore, u restricted to the interval
[t,T] is a decoupling field to (&, (i, o, f)), not just to (&, (uer, om, fu)). It is even a Markovian
decoupling field due to the boundedness of Z. As a Markovian decoupling field it is weakly
regular, because it is weakly regular as a decoupling field to (&, (um,om, fi)).

Uniqueness: Assume than there is another weakly regular Markovian decoupling field @
to (&, (u, 0, f))on [t,T]. Choose a t; € [t,T] and an = € R™ as initial condition Xy, = =z,
and consider the corresponding processes (X' Y., Z ) that satisfy the corresponding FBSDE
on [t1,T], together with the decoupling condition via @. At the same time consider (X,Y, 7)
solving the same FBSDE on [t1,T], but associated with the Markovian decoupling field wu.
Since Z,Z are bounded, the two triplets (X' Y, Z) and (X,Y, Z) also solve the Lipschitz
FBSDE given by (&, (um,om, fr)) on [t1,T] for H large enough. The two conditions Y, =
(s, X) and Y, = u(s, X,) imply by Remark 3 in [FI13] that both triplets are progressively
measurable processes on [t1, 7] X € s.t.

T
sup Eooo [|Xs|?] + sup Egoo [|Ys]?]] + Eo,c [/ |Zs\2ds] < 0o
s€[t1,T) s€[t1,T) t1

and coincide. In particular, @(ty,z) = Yy, = Y;, = u(ty, z).

Strong regularity of u as a Markovian decoupling field to (§, (i, o, f)) follows directly from
the above argument about uniqueness of (X, Y, Z) for deterministic initial values and bounded
Z, and the strong regularity of u as decoupling field to (&, (um,om, fi))- O

Remark 20. We observe from the proof that the supremum of all h =T — ¢ with ¢ satisfying
the hypotheses of Theorem 19 can be bounded away from 0 by a bound, which only depends
on

b L£7x7 L{vx ' La’7z,
b ||U('7 B )O)Hoo; T7 LU,Z7

e the values (Ly)pe[,c) Where Ly is the Lipschitz constant of (u, 0, f) on [0, T] x R™ x
R™ x By w.r.t. to the last 3 components, where By C R™*? denotes the ball of radius
H with center 0,

and which is monotonically decreasing in these values.

The following natural concept introduces a type of Markovian decoupling fields for non-
Lipschitz problems (non-Lipschitz in z), to which nevertheless standard Lipschitz results can
be applied.

Definition 21. Let u be a Markovian decoupling field for (&, (u, o, f)).

e We call u controlled in z if there exists a constant C' > 0 such that for all ¢1,ts €
[t,T], t; < t9, and all initial values X}, , the corresponding processes (X,Y, Z) from the
definition of a Markovian decoupling field satisfy |Zs(w)| < C, for almost all (s,w) €
[t,T] x Q. If for a fixed triplet (t1,t2, X¢,) there are different choices for (X,Y, Z), then
all of them are supposed to satisfy the above control.

e We say that a Markovian decoupling field on [t,T] is controlled in z on a subin-
terval [ti,to] C [t,T] if uw restricted to [t1,t2] is a Markovian decoupling field for
(u(te,-), (1,0, f)) that is controlled in z.

13



e A Markovian decoupling field u on an interval (s, 7] is said to be controlled in z if it is
controlled in z on every compact subinterval [¢,T] C (s,T] with C possibly depending
on t.

Remark 22. Our Markovian decoupling field from Theorem 19 is obviously controlled in z:
consider (7) together with the choice of ¢ < ¢; made in the proof.

Remark 23. Let (&, (1,0, f)) satisfy (MLLC), and assume that we have a Markovian decou-
pling field v on some interval [¢t,T], which is weakly regular and controlled in z. Then w is
also a solution to a Lipschitz problem obtained through a cutoff as in Theorem 19. As such it
is strongly regular (Theorem 12) and deterministic (Lemma 14). But now Lemma 16 is also
applicable, since due to the use of a cutoff we can assume the type of linear growth required
there. So u is also continuous.

Lemma 24. Let (§,(u,0, f)) satisfy (MLLC). For 0 < s <t < T let u be a weakly regular
Markovian decoupling field for (&, (u, 0, f)) on [s,T]. If u is controlled in z on [s,t] and T —t

is small enough as required in Theorem 19 resp. Remark 20, then u is controlled in z on
[s,T1.

Proof. Clearly, u is not just controlled in z on [s, t], but also on [t, T] (with a possibly different
constant), according to Remark 22. Define C' as the maximum of these two constants.

We only need to control Z by C for the case s <t <t <ty <T, the other two cases being
trivial. For this purpose consider the processes (X,Y, Z) on the interval [t1, t2] corresponding
to some initial value X;, and fulfilling the forward equation, the backward equation and the
decoupling condition. Since the restrictions of these processes to [¢1,t] still fulfill these three
properties we obtain |Z,(w)| < C for almost all r € [t1,t], w € €.

At the same time, if we restrict (X,Y, Z) to [t, t2], we observe that these restrictions satisfy
the forward equation, the backward equation and the decoupling condition for the interval
[t,t2] with X, as initial value. Therefore |Z,(w)| < C holds for a.a. r € [t,t2], w € Q as
well. O

The following important result allows us to connect the (MLLC)-case to (SLC).

Theorem 25. Let (&, (u, 0, f)) be such that (MLLC) is satisfied and assume that there exists
a weakly regular Markovian decoupling field u to this problem on some interval [t,T]. Then u
s controlled in z.

Proof. Let S C [t,T] be the set of all times s € [¢t,T], s.t. u is controlled in z on [¢, s].

e Clearly t € S: For the interval [t,t] = {t} one can only choose t; = to = t and so
Z: [t,t] x Q — R™*? is dt ® dP-a.e. 0, independently of the initial value X;,. So we
can take for C' any positive value.

e Let s € S be arbitrary. According to Lemma 24 there exists an h > 0 s.t. wu is
controlled in z on [t, (s+h) AT] since [[u((s+h) AT, -)|lco < 00 and Ly((stnar,) < Lyt
Considering Remark 20 and the requirements [|u||oc < 00, Ly < L}, we can choose h
independently of s.

This shows S = [t,T] by small interval induction. O

14



Note that Theorem 25 implies together with Remark 23 that a weakly regular Markovian
decoupling field to an (MLLC) problem is deterministic and continuous.

Such a u will be a standard decoupling field to an (SLC) problem if we truncate u,o, f
appropriately. We can thereby extend the whole theory to (MLLC) problems:

Theorem 26. Let (&, (u, 0, f)) satisfy (MLLC).

1. Global uniqueness: If there are two weakly reqular Markovian decoupling fields vV, u(?)

to this problem on some interval [t,T), then u") = u®.

2. Global regularity: If that there exists a weakly reqular Markovian decoupling field v to
this problem on some interval [t,T], then u is strongly regular.

Proof. 1. We know that u(!) and u(?) are controlled in z. Choose a passive cutoff (see proof
of Theorem 19) and apply 1. of Theorem 12.

2. w is controlled in z. Choose a passive cutoff (see proof of Theorem 19) and apply 2. of
Theorem 12. O

Lemma 27. Let (&, p,0,f)) satisfy (MLLC) and assume that there exists a weakly regular
Markovian decoupling field u of the corresponding FBSDE on some interval [t,T].
Then for any initial condition X; = x € R"™ there is a unique solution (X,Y, Z) of the FBSDE
on [t,T] such that

sup E[|X|!] + sup E[|Y:!] + || Z]|00 < oo

s€t,T] s€t,T]
Proof. Existence follows from the fact that u is also strongly regular according to 2. of
Theorem 26 and controlled in z according to Theorem 25.
Uniqueness follows from Corollary 13: Assume there are two solutions (X, Y, Z) and (X Y. Z )
to the FBSDE on [t, T] both satisfying the aforementioned bound. But then they both solve
an (SLC)-conform FBSDE obtained through a passive cutoff. So they must coincide according
to Corollary 13. O

Definition 28. Let IM C [0,7] for (&, (i, 0, f)) be the union of all intervals [¢, 7] C [0, T]

max
such that there exists a weakly regular Markovian decoupling field w on [¢, T

Unfortunately, the maximal interval might very well be open to the left. Therefore, we
need to make our notions more precise in the following definitions.

Definition 29. Let 0 <t < T.

e We call a function u: (¢,7] x R™ — R™ a Markovian decoupling field for (£, (u, 0, f))
on (t,T) if u restricted to [, T] is a Markovian decoupling field for all ¢’ € (¢,T].

e A Markovian decoupling field u on (t,7] is said to be weakly regular if u restricted to
[t',T] is a weakly regular Markovian decoupling field for all ¢ € (¢, T].

e A Markovian decoupling field u on (¢, 7] is said to be strongly regular if u restricted to
[t',T) is strongly regular for all ¢’ € (¢, T).

Theorem 30 (Global existence in weak form). Let (&, (i, 0, f)) satisfy (MLLC). Then there
exists a unique weakly reqular Markovian decoupling field w on IM . This u is also determin-

max*
istic, controlled in z and strongly reqular.
Moreover, either IM = 10,T] or I} tM T, where 0 < tM < T.

max max ( min’ min
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Proof. Let t € IM . Obviously, there exists a Markovian decoupling field a® on [t,T]

satisfying Ly, < L} and supge(, @) (s, -,0) |00 < co. @) is controlled in z and strongly
regular due to Theorems 25 and 26. We can further assume w.l.o.g. that a® is a continuous
function on [t,T] x R" according to Remark 23. There is only one such @) according to
Theorem 26. Furthermore, for ¢,#' € IM  the functions @) and a1 coincide on [tV t,T]
because of Theorem 26.

Define u(t,-) := @®)(t,-) for all t € IM . This function v is a Markovian decoupling field on
[t,T7], since it coincides with @® on [t,T]. Therefore, u is a Markovian decoupling field on
the whole interval I} and satisfies Ly gy < L%, supsepe ) 1wl r) (s, -5 0)[lo < o0 for all
teIM .
Uniqueness of u follows directly from Theorem 26 applied to every interval [t,T] C IM .
Addressing the form of I we see that IM = [t,T] with t € (0,7] is not possible: Assume
otherwise. According to the above there exists a Markovian decoupling field u on [t,T] s.t.
Ly, < L,L and supgepe,r) llu(s, -, 0)|[oo < 00. But then u can be extended a little bit to the

0,z
M 0O

max*

left using Theorem 19 and Lemma 4, thereby contradicting the definition of

The following result basically states that for a singularity t%n to occur u,; has to ”explode”
at tM .
Lemma 31. Let (&, (u, 0, f)) satisfy (MLLC). If IM = (M T], then

where u is the Markovian decoupling field according to Theorem 30.

M

Proof. We argue indirectly. Assume otherwise. Then we can select times t,, | ¢,

such that

n — oo

-1
Sup Ly(t,,) 2 < Loz
neN

But then we may choose an A > 0 according to Remark 20 which does not depend on n and
then choose n large enough to have t,, —t™ < h. So u can be extended to the left to a larger

interval [(t,, — h) v 0, T] contradicting the definition of I} O

max-*

4 Solution to the Skorokhod embedding problem

In this section we present a solution to the Skorokhod embedding problem as stated in (SEP)
at the beginning of Section 2 based on solutions of the associated system of FBSDE.

4.1 Weak solution

Let us therefore return to our FBSDE (3) that can be rewritten slightly more generally as

X0 a0 [Craw, X =2+ [ 22ar
t t
T
Y, = g(X) — 5(xP) - / Z, dW,, u(s, XV, x@) = v,, (8)
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for s € [t,T] and = = (x(l),x(z))T € R2. So using the notations of Section 3 we have

pt,w,z,y,z) = (0,227, o(t,w,z,y,z) = (1,0)7,

ftw,z,y,2) =0, E(w,z) = g(aW) = 5(2®),
for all (t,w,z,y,2) € [0,T] x A xR2xRxRand d =1, n =2 and m = 1. In particular, the
problem satisfies (MLLC).
Notice that by choosing  := (z(M,2®)T := (0,0)T and T = 1 we will have X{l) = W; and
sz) = fol 72 ds, which makes the FBSDE equivalent to (3).

With the general results of Section 3.2 at hand we are capable to solve this system of equations.
In other words, we are able to perform the second step of our algorithm to solve the SEP.

Lemma 32. Assume 0 and g are Lipschitz continuous. Then for the FBSDE (8) there exists
a unique weakly regular Markovian decoupling field uw on [0,T]. This u is strongly regular,
controlled in z, deterministic and continuous.

In particular, equation (3) has a unique solution (Y, Z) such that || Z]|c < 0.

Proof. Using Theorem 30 we know that there exists a unique weakly regular Markovian de-

coupling field v on I} . This u is furthermore strongly regular, controlled in z, deterministic
and continuous. It remains to prove I, = [0,7]. Due to Lemma 31 it is sufficient to show

the existence of a constant C' € [t, 0] such that Ly, < C < L, for all t € I} . In our
case L;i = 00, so we have to prove that the weak partial derivatives of u with respect to z(!)

and z(?) are both uniformly bounded.
Fix t € IM  and consider the corresponding FBSDE on [t,T]: First notice that the associ-
ated triplet (X,Y,Z) depends on the initial value z = (z(),23)T € R?, even in a weakly
differentiable way with respect to the initial value x, according to the strong regularity of u.
For more on rules regarding working with weak derivatives consult Section 2.2 of [FI13].

Let us first look at the matrix %X . We have

d d s d
(1) (2) — 4
X =1 FRORS _/t 22,y 2o dr,
d d s d
(n 2 — 4
X =0, X =1 +/t 20,y Zedr,

a.s. for s € [t,T], for almost all z = (), )T € R2. In particular, the 2 x 2-matrix

d%gX s 1s invertible if and only if ﬁXs(g) ist not 0. We will see later that it remains positive
on the whole interval allowing us to apply the chain rule of Lemma 50 in order to write

Lu(s, X5) L X,. But let us first proceed by differentiating the backward equation in (8)

with respect to z(?)

d o ge@ d @ [T d

To be precise the above holds a.s. for every s € [t, T], for almost all z = (z(), ()T € R,
Now define a stopping time 7 via

T::inf{sé [t,T] : e
T

xX? < o} AT.
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For s € [t,7) we have -$u(s, X)L X, according to the chain rule of Lemma 50 and in
particular ﬁu(s,Xgl),thz)) d X§2) =4V, Let us set

dm(z) (2)
d
d > =@
Vs = d$(2)U(S,X§1),XS(2)), set,T] and Z := ?7(2) {reft,7)}-
dz(® T
-1
Then the dynamics of ( (} —@X 5(2)) can be expressed by
d @) -1 SAT 5 d -1
<dm(2) X ovx =1- t 22,2y e R dr, (9)
for an arbitrary stopping time 7 < 7 with values in [¢t, T]. We also have —oYs = Vs . d<2 X 2
and therefore
—45Y,
‘/g - d;L() S [t, 7').
dz(®@) Xs
Applying It6’s formula and using the dynamics of o (2)

equation describing the dynamics of Viaz:

Virz =V, " 27.7 _d x@ o d Y, d " d Z d x@ 71dW
SAT — t+ ] - rr d$(2) r dx (2) T+ ] d$(2) r da:(g) r r

SAT SAT
—Vi+ / (~22,V) Z, dr + / 7, aw, (10)
t t

for any stopping time 7 < 7 with values in [t, T].

Note that, since V and (—2ZV) are bounded processes, Z 1i.<7 is in BMO(P) according to
Theorem 49 with a BMO(P)-norm which does not depend on 7 < 7, and so in particular
E[f] 127, Z,|? dr] < co. From (9) we can actually deduce that 7 = 7' must hold almost surely.

Indeed, (9) implies that
d @) -1 < /s/\f' 5 >
X\ = — 27.7,.d
(dx@) SAT> P ) "

d x@. = exp (/SM 27,7 d7“>
d$(2) SAT ] reT

for all stopping times 7 < 7 with values in [¢,T]. Using continuity of s

d T
xX@ — (/ 27, 7.d ) >0
LT exp ) r

which gives us 7 = T a.s. because {7 < T} C { (Q)X( ) = } due to continuity of (Q)X@)

or equivalently

o (2)X(2) we obtain

So we have 45X (2) is positive on the whole [t, T] and therefore <L X is invertible on [t, 7).
Setting W, =W, — ft 272,V,dr, s € [t,T] we can reformulate (10) to

Vs:Vt+/ Z, dW,..
t
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This means that V, can be viewed as the conditional expectation of

d

Vr =@

u(T, X\, xPy = —5/(x?)

with respect to Fy and some probability measure, which turns W into a Brownian motion on
[t, T]. Note here that 27,V, is bounded on [t, T'] because || Z]||~ < co. Hence, we conclude that
Vi and therefore —4su(t,zM, 2(?)) is bounded by [|¢§'||o for almost all z = (z(M), 2T € R2,
This value is independent of t

Secondly, we have to bound (1) u(t,z™M, 2?)). To this end we differentiate the equations in

(8) with respect to z(1):

s d
(2) _
d:L‘(l)XS —/t 27, dx(l)Zrdr,

T
Y, = g (x{) - 8/ (X))~ xP) - / 4 _z.aw,

dzx@) dz(® dz(®)
d d d d
1 x@) (1) x(2) ()
ey (s, X", X)) dx@)u(s,Xs , X, )d (1)Xs 3 (1)YS’
and define d d d
— 1) x @ - _ 7 2)
Us = dx(l)u(s’Xs X, Zy =0 Zy — 7 =0
Note that
d s . -~ d
(2) — (2)
d$(1)XS = /t 2Z, (Zr +Z dx(l)Xr > dr,
d d
— _ (2)
which allows us to deduce the dynamics of U from the dynamics of - (1) Y, & (1) X® and V

using It6 formula:

s d s d S od
- - _ 2 _ (2)
Us Ut—l—/t 1d< (1)YT> /t Vrd< (UXT > /t a )X dv,

s d s } . d
:Ut+/ — 7, aw, - / V,Z, (Zr+ Z, X7g2)> dr
t t

—/ dder(2) (—QZTVT Zy dr + Z, dW,,>
¢ xr

where the marked terms either merge into one or cancel out and the equation simplifies to
S S
Us =U, +/ (=22, V, Z,) dr +/ Z, dW,.. (11)
t o t
=Uy Jr/ Z dW,..
t

By the same argument as for the process V' we deduce that U and therefore o (1 u(t, (M), (2))

is bounded by ||¢’||cc = L4 for almost all W 23 where L, is the Lipschitz constant of g,
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i.e. the infimum of all Lipschitz constants.
This shows that M = [0,T].

max

Finally, Lemma 27 shows that there is a unique solution (X,Y, Z) to the FBSDE on [0, T] for
any initial value (X(()l), )(0(2))T = (zM,2®)T € R? such that

sup E[|X,[’] + sup E[Ys]?] +[|Z]l00 < o0,
s€[0,T7 s€[0,T]

which is equivalent to the simpler condition || Z]|» < 0o as we claim:
If || Z]|so < 00, then according to the forward equation

IX® oo < [P+ T 23, < o0,

sup E[|X %] = |zW)? + sup E[[W,)?] = [zV]? + T < oo,
s€[0,T] s€[0,7]

and according to the backward equation together with the Minkowski inequality

(et = (m e D
< (E UQ(X%)) - 5(X§2>)‘2D% . (E Ug<X$)>\QD; . <IE [‘5()(;2))‘2})%

< [g(0)] + L, (]E UX;UVD; +16(0)] + Lg (E Uxﬁﬂ); < o0,

where Ly, Ls are Lipschitz constants of g, é. O

'E a0 - 5<X¥>>\f4

For the following result we use the notations of Section 2. As before we assume that [
is bounded away from 0. Under this condition H~! is well defined and Lipschitz continuous.
Therefore, § = SoH lis Lipschitz continuous if §is Lipschitz continuous, which is equivalent
to a being bounded.

Lemma 33. Suppose g and & are both Lipschitz continuous with Lipschitz constants L, and
Ls. Then there exist a Brownian motion B, a random time T < H_l(Lg) and a constant
c € R such that ¢ + fOT o ds + foT BsdBs has law v.

Proof. First we solve FBSDE (3) using Lemma 32 such that the corresponding Z is bounded.

According to Lemma 36, which we prove a bit later, we can even assume that Z is bounded
by Lg. Now we set ¢ := Yj and construct B and 7 as in the proof of Lemma 2.

Moreover, 7 = H~1 (fol 72 ds) is bounded by H_l(Lg) since Z is bounded by L, and H~!

is increasing. O

Remark 34. Tt is a priori not clear that the random time 7 is also a stopping time with respect
to

(FP) oy = (7 (Bror € 10,80,
as also mentioned in Remark 1.2 in [AHIO8]. However, we will prove a sufficient criterion for
this in terms of regularity properties of the Markovian decoupling field w.
Remark 35. The boundedness of the stopping time solving the Skorokhod embedding problem
has not been investigated so frequently. However, very recently it gained attention in [AS11]

and [AHS13]. Especially, its economic interest comes from its applications in the context of
game theory (see [SS09)).
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4.2 Strong solution

This subsection is devoted to the fourth step of our algorithm, i.e. to translate the results
of the preceding section into a solution of the Skorokhod embedding problem in the strong
sense. Our main goal is to show that if g, § are sufficiently smooth, then 7 and B constructed
so far will have the property that 7 is indeed a stopping time w.r.t. filtration (.FSB)S €[0,00)
generated by the Brownian motion B, and thus a functional of the trajectories of B. The same
functional applied to the trajectories of the original Brownian motion W will then provide
the required strong solution. For this purpose, we will assume that g and § are three times
weakly differentiable with bounded derivatives. We will also require that g is non-decreasing
and not constant. Our arguments shall be based on a deep analysis of regularity properties
of the associated decoupling field wu.

First let us first prove the following very useful result about the solution (Y, Z) to FBSDE
(3) constructed in Lemma 32.

Lemma 36. Assume § and g are Lipschitz continuous. Let u be the unique weakly regular
Markovian decoupling field associated to the problem (8) on [0,T] constructed in Lemma 32.
Then for any t € [0,T) and initial condition (Xt(l),Xt(Q))T = (M, 2®)T € R? the associated
process Z on [t,T| satisfies || Z|loo < Lg = |¢|oo-

Furthermore, if the weak derivative ﬁu has a version which is continuous in the first two
components (s, M) on [t,T) x R? then

Zy(w) = d(l)u (5: XM (), XP(w))

dx
for almost all (s,w) € [t,T] x Q.
Proof. We already know that Z is bounded according to Lemma 32, but not in the form of
the more explicit bound || Z|| s < Lg.
Notice that Iimhw%fsﬁh Zy(w)dr = Zg(w) for almost all (w,s) € Q x [t,T) due to the
fundamental theorem of Lebesgue integral calculus.

Now take some s € [t,T) s.t. limyg & f;+h Zydr = Z, almost surely. Almost all s € [t,T)
have this property. Choose any h > 0 s.t s + h < T and consider the expression

1
EE[YS—Fh(Ws—i-h — W) | Fs]

for small A > 0. On the one hand we can write using [t6’s formula

s+h s+h s+h
Yorn(Wasn — W) = / Y, dW, + / (W, — W) Zr AW, + / Z,dr,
which leads to
1 1 s+h
ﬁED/s—I—h(Ws—I—h - Ws)|]:s] = EE |:/ Zydr

On the other hand we can use the decoupling condition to write

]-"S]%ZS for h — 0.

Vorn(Wapn = Wo) =u (s + b X0 X3, ) (Won = W)
—u (s +h, X, X§2>) (Wasn — We)

 (u (s h X0 XE,) = u (s 2 XD, XO)) (W — W),
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After applying conditional expectations to both sides of the above equation we investigate
the two summands on the right hand side separately.

FIRST SUMMAND: Recall:

° Xs(l) and X5(2) are Fs-measurable,

. X(l)

s+h — Xgl) + (W, — W),

o Wy — Wy is independent of Fg,

e 1y is deterministic, i.e. can be assumed to be a function of (s, :Jc(l),x@)) €0, T]xRxR
only.

These properties imply

E [u (s+ 0 X5 XO) Woin - W)

|

1 1.2
— (1) (2) 5%
/u(s+h,Xs + 2vVh, X! )z\/ﬁﬁe 2% dz

d 1 1,2
_ - 1) (2) 57
—/ (l)u(s—{—h,Xs —|—,2:\/H,XS )hﬁe 2% dg,

which means

Jim %E [ (s + b XD, XP) (Wen - W)

hl0 u (37X§1)7X§2)) ;

1= o

— @ is continuous in the first two components on [0,T) x R2. Here we use that — U is

if - o o L
bounded by ||¢'||cc according to the proof of Lemma 32. But even if dx(l)u is not continuous

in the first two components, we can still at least control the value
|

HE (540 X0 X)) (We =)

by [|9'[|o-
SECOND SUMMAND: Recall:

e u is also Lipschitz continuous in the last component and ||| serves as a Lipschitz
constant,

o X?

_ v(©2 +h 2
N + [T Z2dr.

These properties allow us to estimate

(0 o)) —u (s X0 X)) (Wers - |
< %E Hu (s +h Xgh,Xﬁ)h) <s +h Xiﬁh,Xsﬂ))‘ A Wegn — ]-"s]
1

s+h 1
< B [I0 ([ 2200} 1Wsn = W] < G IhIZIEEN W~ WL

which clearly tends to 0 as h — 0.
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CONCLUSION: We have shown

— lim © — lim © M) @)
Zs = lﬁ% hE[}/s-i-h(Ws—i—h W8)|~7'—s] - I}g,% hE |:u (5 + h,Xerh,Xs ) (Ws-i-h Ws)

7.

which is identical with ﬁu (S,Xgl),X§2)> a.s. if ﬁu is continuous in the first two

components on [0,7) x R? and bounded by ||¢||sc otherwise. O

For the sequel let u be the unique weakly regular Markovian decoupling field to the problem
(8) constructed in Lemma 32. At least for the following result we assume for convenience
T = 1. We also use definitions and notations from the proof of Lemma 2.

Theorem 37. Assume that ﬁu is
e Lipschitz continuous in the first two components on compact subsets of [0,1) x R,
e R\{0} - walued on [0,1) x R2.

Then 7 is a stopping time with respect to the filtration (FP) = (Ff)se[o,oo)'

Proof. We consider the system (8) for ¢t = 0 and (") = 2(2) = 0. According to Lemma 36 we

can assume d
_ x5 @)
Z_dxu)“(’ o )

and, thereby, have

s s d 2
Xs@:/ Z,?drz/ <d (1)u(r,Xﬁ“,X£2))> dr
0 0 x

for all s € [0,7]. So, we can assume that X (1)

2
e is Lipschitz continuous and strictly increasing in s due to positivity of (ﬁu) on
[0,1) x R?,

e starts in 0.
Therefore, for every w € €2 the path
H! <X.(2)(w)> :0,1] — [0, 00)

is also Lipschitz continuous and strictly increasing in time and, therefore, has a continuous
and strictly increasing inverse function on the interval

[o, H (X@ (w))} = [0, 7(w)].

It is straightforward to see that this inverse is given by the process o from the proof of Lemma

2. We can now calculate the weak derivative of o: Firstly, note (H _1)/ (x) = ) and

1
H’(H71
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also Hil(Xg) (w)) = r or equivalently ng) (w) = H(r). So, we can calculate

a4 ! - 1
dr ' % (H_l (XS(2)>) s=o, (H_l)/ (X((TE)) Zgr
_ H'(r) _ g
(%U (Urng1)>X§E)>>2 (%u)z (UT’WUT’H(T))

(12)
on {0, < 1}. Observe at this point that
{or <1} = {r <H! (Xf))} ={r <7}
If we define o, := 1 for r > 7, then ¢ is still continuous and we have
7 =1inf{r € [0,00) |0, > 1}.

It is also straightforward to see Z,, = %u (op, Ws,, H(r)) for r € [0,7).
Now, remember B, = for é dY,, for r € [0,7] and also Yy — Yy = fOS Z,. AW, for s € [0, 1], so

" Bs " Bs 1 "1
dBs = —dY,, = —Z, AW, =W, .
0 Zas ’ 0 Zas Bs s 0 Zas s 7 o
So, if we define ¥, := W, , we have dynamics

B [ L dB.,
0 W’U«(Us;zs;H(s))

for r € [0,7). So, to sum up o, ¥ fulfill on [0,7) the dynamics

T 2
or=20 —{—/ 5 e
0 (Gdnu) (o0 3 H(s))
T T 55

E:0+/ 0d5+/ dBs,

' 0 0 Thu(os, B H(s)
where r € [0,7). Note that this dynamical system is locally Lipschitz continuous in (o, X).
Now, for any K1, K2 > 0 and K3 € (0,1) define a bounded random variable 7x, , k, via

ds —I—/ 0dBs,
0

TK, Ko K5 = K1 Anf{r € [0,00) | |X;| > K2} Anf{r € [0,00) |0, > K3}.

Note that ¢ and ¥ both remain bounded on [0, 7k, K, i;]. Therefore, on [0, Tk, K, K] the
pair (o, %) coincides with the unique solution (o%1K2:K3 ¥K1.K2.K5) 6 3 Lipschitz problem,
which is automatically progressively measurable w.r.t. the filtration (F7). Note that

sty = K At {1 € [0,00 | [SEVEIO| 5 ) nint € 0,00) | oRVRHED > 1)
which is clearly a stopping time w.r.t. (F?). Furthermore, due to continuity of ¥ and o

T= sup TK1,K2,K3»
KgE(O,l),K17Kz>O

which makes it a stopping time w.r.t. (F?) as well. O
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In order to deduce sufficient conditions for Theorem 37 to hold we need to investigate
higher order derivatives of u.

Assume that g, §, ¢’ and ¢ are Lipschitz continuous, and consider the following (MLLC)
system with d =1, n =2 and m = 3:

XM =M 4 / 1dW,, X® =22 4 / (Zf@)z dr,
t t
T
Y = g(xp)) - 6(x%)) ~ / Z© aw,, uO(s, XV, x@) =y,
Y = ¢(x{) - / 28 aw, - / Y<2>) Z0dr,  u®(s, X0, X2) =y,
v = —(5’(X;2)) _/ Z@ aw, — / y(2)> Z@dr,  u? (s, XV, x2) =y,

(13)

Theorem 38. For the above problem (13) we have I

max

= [0,T]. Furthermore,

d d
0) — n_ = 2) _
u =u, u\ = dx(l)u and uw\ = )

u, a.e.,

where u is the unique weakly reqular Markovian decoupling field to the problem (8).
In particular, u is twice weakly differentiable w.r.t. x with uniformly bounded derivatives.

Proof. The proof is in parts akin to the proof of Lemma 32 and we will seek to keep these
parts short.

Let u, i = 0,1, 2 be the unique weakly regular Markovian decoupling field on IM . We can
assume u(l) to be continuous functions on I} x R? (Theorem 30).

max
Let t € IM . For an arbitrary initial condition 2 € R? consider the corresponding processes

XU x@ yO y®) y@ z0) 7z0) 72

on [t,T]. Note that X1, X®) y(0) 70 golve FBSDE (8), which implies that they coincide
with the processes X(V, XY, Z from (8) if we assume

2 2

sup Eoool| X1+ sup Eo ool Vsl 4 [1Z]loc + Y sup Eo oYy +Z\;Zlum < 00,
i—1 SE[t.T] s€(t,T] i—0 SE[tT]

according to Lemma 27. This condition is fulfilled due to strong regularity and the fact that
we work with Markovian decoupling fields.

Now, YO =Y implies u(t, z) = w0 (t,z) for all t € IM_ z € R?, where IM is the maximal
interval for the problem given by (13). We now claim that Yy, Y(2) are bounded processes:

Using the backward equation we have

Y® = E, [—5’(}(}2))} _E, [ / ' (—2Z§“>Y;(2>) AQ dr]

and, therefore,

VAL H dr,

T

T
YOI <8 ow+ [ 212 el 2 |
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for s € [t,T], which using Gronwall’s lemma implies

Y| =E,

] <18l exp (2712 )1 2 ) -

This in turn automatically implies boundedness of Y () according to its dynamics. Further-
more, Yfl), ZW and Y@, 22 satisfy the BSDE which is also fulfilled by the processes U, Z
and V, Z from the proof of Lemma 32 (see (10) and (11)) and so in particular

N /T (ZP) — Zr> dw, — /T (—2250)) (3/7,(2)252) — WZ) dr

o [T (A -z awo— [ (-220) (v0%) 22 v (42 - 7)) ar

Using the boundedness of Z 0, Z@ and V this implies using Lemma 48 that Y@ Vs
0 almost everywhere. Therefore, after setting Wy := W, — fts 2ZT(O)VT dr, s € [t,T] we get

from the above equation fST (Zﬁz) - Zr) dW, =0 a.s. for s € [t,T]. Since W is a Brownian

motion under some probability measure equivalent to P we also have Z(2) — Z = 0 a.e.
Similarly, one shows that Y1) and U as well as Z(1) and Z coincide so

YW=y vy®=v, zZO=27 and z® =2 a.e.

Now, remember Us = d yu(s Xgl),X(Q)). Together with u(l)(s,Xgl),Xg)) = v and

Y = U this yields ul ( ) =5 (1) u(t,-) and, therefore, ull) =
d
dz(1)

d
MmUY a.e. on Imax

u. Now, note that u® = u is continuous. This makes

Similarly, we get u(?) =
Lemma 36 applicable, so

dx<2)

ZO =z=U=vW ae. (14)

Thereby YU, Y(2) satisfy the following dynamics:
v = ¢(x{) - / D aw, - / Y<2>) 70 dr, (15)
Y = —¢(x{) - / 2) AW, — / Y<2>> Z@dr, se[t,T],  (16)

which implies using the chain rule of Lemma 50:

d ey d oy [T d
da® s 9 (X7 )dx@XT s a2 W

T
_ (—2) d.Y(l)Y(Q)_Fy(l)L')/%?) Z(1)+Y(1)Y(2)L,Z(1) dr,
s dz@"" 7 "ode® T " z(®

and

d d T q
2) _ sy (2 @ _ (2)
dx(i)Ys =—0"(Xp )dx(i) X7 /s 0 Z,° dW,
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for i = 1,2. Let us recall some statements about the forward process obtained in the proof
of Lemma 32:

dxd@) @ >, %X(l)zl, dj(Q)X(l):O, a.e.,
and
(dx<2>>_1_1_ /521/(1)2(?)( d X(2)>_1 ar an
d$(2) s ] r r dz@ T )
d;(l)xg% = /t ) 2y,(M) <Z,§1) + 2z dj(l)X@) dr. (18)

Using the chain rule of Lemma 50 and the decoupling condition, we have

d;d(l) }/S(Z) = d;l) u(Z)( 7X§1)7 5(2)) + dxd(g)u(Z) (S?X§1)7X§2))daj1)X§2)7
d . d . d
(1) — (@) (1) 2= x(2) —
dx(Q)Y; - dx(z)u (87 s S )dLU(Q) s 1= 172
Now, define
d d d -t
(12) (1) (1) 2)y — (1) (2)
Y; - dZE(Z)u (S’Xs aXs )_ (d:z:@) s > (d.’E(Q)Xs ) 9 (19)
d d d -1
22) . 2 1 2)\ __ 2 2
Y = e x,xP) = (2 (L x®)
(11) d 0 xO x@ d voy_yan_9d x@
Y, = dm(l)u (S,XS , X)) = FEORD -Y, d:B(l)XS , (20)
d d d
2 . % (2 1) y@2)y - = (2 (22) _ % (2
Y, = dz(l)u (S,Xs y X )= d:L'(l)YS Y, d.'L'(l)XS

We can apply the Ité formula to deduce dynamics of Y12 and YV from dynamics of

—1
d 1 d 2 d 1 d 2).
FrORARr (dx(Q)X( )> C YW and G X

Let us define ZS(IQ) :

~1
(d;%z) Zs(1)> (dxd<2) X§2)) , S0 we can write using (19)

d d
(12) _q _ (12) _ _ Ly @ L y@) 2 ) 7z
Y, 0 /S z(12) aw, /S {( 2)<( G Y® + Y, ORE )ZT

Wy _ 4 L0 d o) d Cwvwe (4 @)
Dy (2 1 2 o 4 )y () (2 9
M dz(?) % > <dx(2) X > 2dx(2)Ys Yri <dx(2) Xr > }dr.

Using the definitions of Y1) Y(22) 7(12) we can simplify this to

T

T
v g _/ Z012) qu.
S

T
_ / (—2) ((Yr(”)lﬂ@ +y;(1>yr<22>) ZW L yWy @202 4 y12y @) Z(?)) dr.
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Let us now define Zs(ll) = ﬁZs(l) - Zng)ﬁX§2), so we can write using (20)

T
YO —g(x D) _/ 200 aw,

T d d d
_ _ 1) y(2) M_% v@ ) 7 (1)y-(2) (1)
/S {( 2)(( dx(l)lf; Y% 4+ Y] dx(l)Y; zW +y Wy d:z:(l)ZT

—(-2) (( v(12) y (@) | y(l)yr@?)) 70 L yWy @702 4 y(12y 0 Z<2>> d vo

r r r r r dzM T

v oy (70 4 79 @) Ly,
T ' T T dm(l) T

The two marked terms above can be effectively merged into one using (20):

T
YO —g(xV) _/ 200 4w,

S

T d d
_ _ (11)y(2) (1) (2) (1) Wy 9 7@
/s {( 2)(()@ Y2 Y dx(l)Yr )Z,, + Yy dx(l)ZT

—(~2) (Yu) v (22 7(1) 4 yOy@ z02) 4 y(12)y1) Z<2>) 4 v
T T ' T T T T T T de'(l) T

2 9y (704 74 @) Ly,
T ' T T d.’L‘(l) T

Similarly, the four marked terms can be merged into only two using the structure of Y (21

and Z(11) gt.

T
Ytg(ll) :g//(Xé*l)) . / Zﬁll) dWT

S

T
_ / {(_2) ((yr(my?@ +YT“>YT(21’) 70 4 yWy®@ Zygu))
_(-9) (y(12>y<1> Z(z))L X@ _y02) 9.y (700 L 7@ 4 @) Ly,
T ' T d.’E(l) ' T T T ' dx(l) T 9y

where the two marked terms effectively cancel each other out:

T
Y;(H) =g"(X:(p1)) _/ 27(11) aw,

S

T
_ / (—2) ((Yr(ll)y;(?) _,_y;(l)y;@l)) ZW L yWy @z 4 y12y @) Z<1>) dr.

s T

Analogously to Y12 we can deduce dynamics of Y(22):

T
y(22) — _ 5”(X§2)) _/ Zr(zz) aw,

S

T
_ / (—2) <(Yr(12)Yr(2) + Yr(l)Yr(22)> Z§2) + Yr(l)}/'r(?)z(’??) + Yr(m)YT(I)Z(Q)) dr.
S

T
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From here we can, analogously to YV deduce dynamics of Y 21):

S T

T
v =0 — / Z2Y aw,
T
_ / (—2) ((nuny;m +y}1>y}2l>) 7@ L yWy@ze) 4 yey O Zp)) dr

And so we have finally obtained the complete dynamics of the 4-dimensional process (Y(ij )),
1,7 = 1,2, which are clearly linear in it. Furthermore, remember:

e YU Y@ are uniformly bounded independently of (¢, x) due to the decoupling condition,

ul®) = ﬁu, 1 =1,2 and Lemma 32,
xX

e ZW 72 are BMO(P) processes with uniformly bounded BMO(P)-norms indepen-
dently of (¢,z) due to (15), (16) and Theorem 49,

o (Y() 4 j=1,2 are bounded according to their definition (with a bound which may
depend on ¢,z at this point),

o (21)) i, j=1,2 are in BMO(P) according to Theorem 49,
o (YT(ij))i,j:Lg is uniformly bounded by [|¢"||cc + [|0” s < o0.

Therefore, Lemma 48 is applicable and (Y(ij ))ij=1,2 is uniformly bounded, independently
of (t,z). In particular, Yt(”) = ﬁu(i) (t,z), i,j = 1,2 can be controlled independently of
t e Inj\gx, x € R?, while ﬁu(o) (t,z), j = 1,2 has the same property as we already know.
This shows IM = [0, 7] using Lemma 31. O

Lemma 39. Assume that g, 6, g', &' are Lipschitz continuous. Let (u(i))z‘:o 1 o be the unique
weakly reqular Markovian decoupling field to the problem (13) constructed in Theorem 38.
Assume that d;}l) uD i =0,1,2, has a version which is continuous in the first two components
(5,2) on [t,T) x R? for some t € [0,T). Then for any initial condition (Xt(l),Xt(Q))T =
(x(l),x(Q))T =z € R? the associated processes ZM, i =0,1,2, on [t,T] satisfy

_d
~ dz@

for almost all (s,w) € [t,T] x Q.
Furthermore, in this case the processes

u? (5, X0 (@), XP @), i=0,12,

d vo _d e d @)
dx(l)X s WX and WX on [t, T],

can be bounded uniformly, i.e. independently of (t,x).

Proof. The first part of the proof works analogously to the proof of Lemma 36. So we keep
our arguments short. For ¢ = 0, 1,2 we consider

1 i
SE[Y, (Wagr = W)|F]
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for small A > 0. As in the proof of Lemma 36, we use It6’s formula applied to (13) to obtain
) s+h ) s+h )
YW =W = [ vOaw, [ v - woz0aw,
s+h ) s+h ]
+ / (W, — W) (—2Z,§0)YT(2)) Z0 dr + / 29 dr,

and also

T

0 s+h s+h s+h
YO (Won —Wy) = / v aw, + / (W, — W) Z© aw, + / AR
which leads to

1 0) 1 s+h ©)
LBV, Wern —WoF) = 2B | [ 20

.7:5] — 7O for h—0,

and

1 i 1 s+h )
SEY,(Wain = W)l F] = 1B [/ 20 (14 W, = wy) (-220072) ) ar

s

]-"5] Sz

S

as h — 0 for i = 1,2. The arguments are valid for almost all s € [t, T].
On the other hand we can use the decoupling condition to rewrite

Y W = W) =u? (s 4+ b X5, X)) (W = W)

+ (“(i) (3 + thSk)thgO —u) <3 + thSr)ths(Q))) (Wsgpn — Ws).
Let us deal separately with the two summands. For the first one recall that
° Xs(l) and X5(2) are Fs-measurable,
o XU =X+ (Wapn —wy),
o Wy p — Wy is independent of Fg,
e u is deterministic, i.e. is assumed to be a function of (s,x(l),:p@)) € [0,7] x R2.

A combination of these properties leads to

Ll)u(n (5’ X, Xg)) 7

1 A
—— (i) 1) 52 _
lim - [u (s +h,xD X ) (Wasn — We) =

h10 s+h?

| =

if ﬁu(i) is continuous in the first two components on [t, T') x R?, where we use that —%u(®)
x dx(l)

is bounded.

For the second summand recall that

e 4 is also Lipschitz continuous in the last component with some Lipschitz constant L,

o X = xP 4 [ (29 ar.
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These properties allow us to estimate

% B [(u® (540, X0 X3, ) = u® (540, XD XO)) (Wepn = W)

1 s+h 9
<.E [L- (/ (Z) dr> AWeg —

which tends to 0 as h — 0.
Therefore, we can conclude

!

1
F| < G2 M2 REIW.i - WL

Z0 = lim 1E[Y< D (Wi, — W) F) =

AT FROLA (5 X0, x7)
X

if ﬁu(i) is continuous in the first two components on [t,T) x R2, for i = 0,1, 2.
Now recall (17) and (18) from the proof of Theorem 38:

d o) "oy @ (4 x® -
<dm(2)Xs> :1_/t2y’“ 4 (d:c@) ) dr,

d s
_— x@ = ONEAO) (2) (2)
(1)XS —/t 2Y, <ZT +Z, (1)Xr > dr,

a.s. for s € [t,T]. The first equation implies

d ! s
= — [ 2vWz@ar) .
<dx<2> > eXp( /t rod

Using Z(?) = ﬁu@)(',X.(l) X(2)) YW = 70 = ;}Du(o)(-,X.(l),X.(z)) (see (14) in the

proof of Theorem 38) and uniform boundedness of ﬁu(i) for i = 0,1,2 we see that this

-1
implies uniform boundedness of ( d_ X §2)> and its i d_X 5(2).

dl‘(2) dgj(2>
Furthermore,

d X

g 1) dr.

x®

< 2Ty 020+ [ 2|y 20,
t

' dz™

By Gronwall’s lemma together with uniform boundedness of Z() Y (1) and

zW = ﬁu(l)(-,X.(l), X.(z)) this implies uniform boundedness of o (1)X(2). O

For the subsequent result we employ the following notation:

e For a real number H > 0 let xg : R — R be defined via xgy(x) := (—H) V (x A H)
for x € R. In particular, xz is bounded, Lipschitz continuous and coincides with the
identity function on the interval [—H, H].

e For real numbers y(”) 1,7 =1,2 and y( ), i =1,2 we denote by y(m and y(i)/\H the
values xz(y(*)) and XH(Z/( ).

Now assume that g, 6, ¢/, &, ¢”, 8" are all Lipschitz continuous and consider for H > 0
the following (MLLC) system with d =1, n =2 and m = 6:

S

XM = @) 4 /S 1dW,,
t
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T
YO = gy - s - [ 20 aw, u® (s, X0, X)) = ¥,
T T
YO =g (xf) = [z aw,— [ (<220%) 20, (s X0, X = v,
T T
v =—o(x{) - / Z® aw, — / (—22%@) 22 ar, (s, XV, x2) = V2,
and
T
Ys(n) :g”(Xél)) _/ Z( (11) aw, — / { Y(11 AHY( YAH +YT(l)AHYT(zl)/\H) Zr(l)
+ }/r(l)/\HK,.@)/\HZ?gll) + Kﬂ(l2)/\HY;(1)/\HZ£1)} d?",
T
) o / 202 qw, — / { yIDAHY @IAH (1 )/\HYT(22)/\H) Z0
Y( )/\Hy( )/\HZ1£12) + KSlQ)AH}/;(l)/\HZ,r(.z)} dT,
T
_0— / 20 qw, — / { yIDAHY @AH (1 )/\HYT(21)/\H) 7
+ K»(l)AH)/;«(Q)/\HZT@l) + }/;,(ZQ)AH}/;U)/\HZ,,(.U} dT,
T T
}/;(22) _ 5”(X}2)) _/ Z7§22) aw, _/ (_2){ (K(12)AHK(2)AH +K(1)AHK(22)AH) Z7§2)
_|_ K,.(l)/\HY;(2)/\HZ7£22) + K,.(Qz)/\Hlfr(l)/\HZ,,(?)} d'/",

with the decoupling conditions

u (s, X
u® (s, X

b, X() = v, u12)s
D, X @) =y, u®)(s

XM, x@#) =v{"?,
XM, XP) =y, (21)

9

»w A~ .~

)

With (21) we will always refer to all the above equations belonging to the current (MLLC)
system.

Theorem 40. For sufficiently large H > 0 the above problem (21) satisfies IXM = [0,T] and

in addition
2
B O Y L S ) SV () d72u’
dz(™ dz() (dx(l))
2
u(12) — d d U/, u(Ql) — d d ’U/, ’U,(22) = d72u, a.e.,
dz(® dz() dz® dz(2) (dx@))

where u is the unique weakly reqular Markovian decoupling field to the problem (8).
In particular, u is three times weakly differentiable w.r.t. x with uniformly bounded derivatives.

Proof. The proof is in parts akin to the proof of Lemma 32, and we will again seek to keep
these parts short.
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Assume IM = (M T)andt € IM . Let u@ and wUR | i =0,1,2, j, k= 1,2 be the associ-
ated weakly regular decoupling field on IM_. We want to control d%cu(i)u(t, ), d%cu(jk) (t,-),
1=0,1,2, j,k = 1,2 independently of ¢ to create a contradiction according to Lemma 31.

For this purpose consider the first three components of the decoupling field. Since (u(i))izo 12
is clearly a weakly regular Markovian decoupling field to the problem (13) o

e the mappings (u(i))i in (13) and in (21) are identical according to Theorem 26,

=0,1,2

e the processes XM, X@ y® 7@ ;—-01,2in (13) must coincide with the identically
denoted processes in (21) according to strong regularity. This is true for every ¢t € IM
and initial condition = € R2.

So we can apply Theorem 38 and get

d d
0) 1) — (2) — M
dx(l)u’ dx(2)u on I ...

ul

= u, ul

In particular, the last two functions are uniformly bounded.
Furthermore, we saw in the proof of Theorem 38 that

e YU and Y® are uniformly bounded independently of (¢, z),

e ZW and Z® are BMO(P) processes with uniformly bounded BMO(P)-norms inde-
pendently of (t,z).

Especially, Y OM =y for i = 1,2 if we make H large enough. We will make this assump-
tion from now on.
The processes Y0¥ j k= 1,2 satisfy

T
YR =y k) _ / ZUP aw,

S

T
N }
- / So afh) L mzy ot Ly y @ 260 | dr,

5 \lnl2yls la=1,2

(Jk)

Lo ds.ds 1S always either 0 or —2. Since due to the structure of the terminal condition

where o

Y:ﬁj *) are uniformly bounded, we can apply Lemma 48 to obtain uniform boundedness of y (k)
as processes on [t, T independently of (t,x).

In particular, Y UROA — y (k) for jk = 1,2 if we make H large enough. We will make this
assumption from now on.

This implies that the processes YU* j k = 1,2 must coincide with the identically denoted
processes in the proof of Theorem 38, since

e they satisfy the same stochastic differential equations,
e they satisfy the same terminal condition and

e we can apply Lemma 48 to the difference of these four-dimensional processes obtaining
that this difference must vanish.
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This implies however that Yt(jk) = d;}k) ne (t,l'(l),(]}@)) for almost all 2,23, So we

obtain wUk) = %u(j), j,k =1,2 a.e and these functions are uniformly bounded according

to Theorem 38.
According to Remark 23, the functions %u = o, dx(%l) u® = 4§ =1,2 are continuous

on [t,T] x R? and we can apply Lemma 39 to get

d
dz™

Z70) _ 0 (-,X.(l),X.(Q)) . i=0,1,2.

Hence, Z(®, i =0,1,2 are uniformly bounded.
Let us now analyze higher order derivatives df(i)u(j k) i 4k =1,2. As usual this is done by

investigating equations characterizing the dynamics of dﬁ(i) YUK i 4.k =1,2. Using strong
regularity we obtain

d , d " T q .
S =S / _Z0M) qw,

T
- (k) Z (jk) CLORIRCRERA
/ G+ QL o035l Hy dr,
s l1,l2,l3,l4=1,2

where

d d
(I1) 7(12)y/ (I3l4) (I1) (I2)y (Isla) (1) 7(12) (Isla)
0 PARIALIS +Y, 0 Z2Y) +Y VZ, P Y, ,

GHUk) — YDy @ z0k) Ly 1) _y 2 zGk) | y(l)y(2)i'z(jk)‘
r dx(’) r r r r r r r dx(’) 7

FHEUR) 2,08l
,

This already implies that d:j@) YUk 4 j k =1,2, is uniformly bounded according to Lemma

48. The lemma is applicable since

o Yiﬁjk) is either 0 or has the structure g(3) (Xél)) d X:(Fl) or —5®) (Xé,z)) d X;Z)

dz(® dz® dz(®
which is uniformly bounded according to the Lipschitz continuity of ¢”,6” and Lemma
39,

U ﬁyr(l) = dxdmu(l)(r, Xr(l),X,@)) dg?@) Xr(l)—i— dx%)u(l)(r, Xr(l),X,@) d.j(i) XT(Q) is also uni-

formly bounded according to Theorem 38 and Lemma 39,

ik i 1 2 1 i 1 2 2) .
b d;l(i) Yr(] ) = dxdu)u(jk)(ra Xr(* );Xﬁ )) dxdu) ng ) + dﬁz) U(jk)(rv X1E )7X7§ )) d;(i) X1E ) 1S a

bounded processes on [t, T] according to Lemma 39 (but not necessarily uniformly in ¢
at this point),

o 1520 = 4l (X xP) = v foran i = 1,2,

o Yl2) y() 7O are always uniformly bounded as was already mentioned,

o 7ZWl2) are BMO(P)-processes with uniformly bounded BMO(P) - norms according to
the equations describing Y (1%2) and Theorem 49.
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Let j,k € {1,2}. As a consequence of the decoupling condition together with the chain rule
of Lemma 50 we have

d . d . . d
(k) — =, (k) (1) x(2) (7k) (1) x(2) (2)
d.I(l) Y'r - d$(1) u (’f‘, Xr ) X'r ) + d$(2) u (T? Xr ) Xr ) dI(l) Xr )
d , d » d
(Jk) — (Jk) (1) x(2) (2)
d.ZE(Q) Y’r - d.ZE(Q) u (T’ Xr ’ X’r ) dCL'(Q) X’r .

-1
Using the boundedness of (ﬁX (2)> , the second equation implies boundedness of

(7k) 1) 2
2D, 1)
for almost all z(), 22 by a uniform constant. Now the first equation together with uniform
boundedness of dﬁl)Xf«Q) and dﬁl)Yr(] k) implies uniform boundedness of drd(l)u(jk) as well.
Considering Lemma 31 we have a contradiction and the proof is complete. ]

Lemma 41. Let T =1 and assume that
©g,0,4d,08,9", 0" are all Lipschitz continuous,
e g is increasing and not constant.

Then the Markovian decoupling field w from Lemma 32 fulfills the requirements of Theorem
37.

For the proof of Lemma 41 we need the following auxiliary lemma.

Lemma 42. Let ¢: R — R be twice weakly differentiable s.t. ©(0) = 0 and ||¢" |0 < o0.
Then

1 1,2 1
oz e 27 dz| < Z02]|¢" || oo,
[ elo-—= < 507" e

for all o € [0,00).

Proof. Using weak differentiability of ¢ we can write for any = € R:

o) = [ seyeds

1 1 1,1
= a:/ (gp’(O) + / ¢ (tsz)sx dt) ds = z2¢'(0) + :cQ/ 8/ ¢" (tsz) dt ds,
0 0 o Jo

and so

1 1.2
oz e 2% dz
[ ote o=

1 1,2 1 1 1 1.2
= [ oz¢/'(0 e 2% dz—l—/a2z2 </ S/ "(tsoz dtds> e 2% dz.
[ o0 [ ([ s [ otso) —
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The first summand clearly vanishes and we can finally estimate:
1 1. 2 2 ! ! " 1 —1,2
oo+ z) e 2 dz| <o /z / s | |¢"(tsoz)|dtds e 2% dz
/R V2 R Jo Jo V2m
1 1

1
<ot [ [ sl uds e
R 0 >

1 | %"l
2 2 i z 2 oo
=0 z (%2 e 2 dz = .
/]R 2” HOO\/QT(' 2

2
2% dz

O]

Proof of Lemma 41. Let (u(o),u(l), w@) (1) 4(12) 4, (21) 4, (22) ) be the unique Markovian de-
coupling field to the problem (21) on [0,7]. We have u( ) = u, uM) = ﬁu, etc. according
to Theorem 40.

Let us show that ﬁu is Lipschitz continuous in the first component (i. e. time). For this

purpose, consider for a starting time ¢ € [0,7] and initial condition # € R? the associated
FBSDE (21) on [t,1]. Recall that

Y0 = Sruls X0, X2, seln], (22
x

satisfies s .
YO =y 4 / (—2250%2)) ZW dr + / ZWaw,, selt1], (23)

t t

where

o 70 = ﬁu(o) (-,X.(l),X.(Q)) YD ae. according to Lemma 39, which is appli-
cable since (ﬁu(i)) 1 = (ul® )iy, and ﬁu(o) = u(M are continuous on [t, 1]

according to Remark 23,

)

e 70 =y and Y@ are bounded by H H and H

am.,

dz@®
o Z() — ﬁu(l) (-,X.(l),X.(2)> a.e. according to Lemma 39, which is applicable as

already mentioned. So Z(!) is bounded by H%u(l) H

Let s € (t,1]. Using the triangular inequality we obtain
d d d d
‘Cl:L‘(DU(S,x) - mu(t,x) < ‘dx(l)u(s’m) —-E [dx(l)“(Sngl)’X§2))} ‘

+

d d
_= M x@y - =
E |:d1,‘(1)u(87Xs , X )] dx(l)u(t,x) .

Applying the triangular inequality for a second time together with (22) we get

d d
’dxm““’ ?) = gem )
d M 4@ d W @
< mu(s ) —E dx(l)u(s’XS , ')
d 1) (2 d 1 1)
* [dx(l) (S’X‘g ),3:( ))] [daj(l)u(s’X‘(g X ))} ‘ ‘E [ Y H




Let us now control the three summands on the right-hand-side separately.
FIRST SUMMAND: Define
d (

o(z) == dx(l)u(s7$

d
) .2)y_ = (1) (2)

, ) dx(l)u(s,az +z,29), z€eR,
and note:

ﬁu(s,x(l), x(z)) —E dxdmu(s,Xgl),:c(z))] ’ = ‘fR o(vVs — tz)\/%e_%z2 dz|, since

xW =20 4w, —w, NN(QL’(l),s—t),

S

e ¢ is Lipschitz continuous with Lipschitz constant L), which is the Lipschitz constant
of ﬁu = u w.r.t. the last two components,

e ' is Lipschitz continuous with Lipschitz constant L1y, which is the Lipschitz constant
of d? 11)

( da:(l))

e ©(0) =0.

And so using Lemma 42 we obtain

2u:u(

w.r.t. the last two components,

d d 1
- (CORPCHRN N (1) L2 Z(s—1)-
dm(l)u(s,x , ') E[dx(l)u(s,Xs X )H§2(s t) - L,ay).
SECOND SUMMAND: We have
d d
- M Y| _E| —— 1 x@)
‘E[dx(l)u(sa){s y L ):| E|:dx(1)u(37Xs ; X )”
d d
- (1) 2y _ 1 x(2 2) _ @
SE[ s X0 2®) - (s, x U, x| )H < LwE[|X® -],
while
s 2 2 d 2
2) _ @ = (0) —#) - |ly® )| —
’XS x ‘— /t <ZT) dr| < (s—1) HY Hoog(s t) H oY 2s
where we used Z(© = Y1) ae.
THIRD SUMMAND: We have using (23):
et o
t
d d d
(t—8) - |l—— | — . e
SR rok W Eol I ek

CONCLUSION: We have shown

d d
’dxu)“(s’x) - mu(t,x) < Cls =1,

with some constant C' € [0, 00), which does not depend on ¢,z or s. In other words ﬁu is
Lipschitz continuous in time. Since it is also Lipschitz continuous in space, it is a Lipschitz
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continuous function on its whole domain [0, 7] x R?.
It remains to show that —%u is R\{0}-valued on [0,1) x R?:
);

dz(1)
Clearly ¢’ is non-negative and does not vanish. Let ¢t € [0,1), € R%. Consider the associated

FBSDE on [t,1]. Using (23) we can write

d _ (xM oW ' 1)y©)
—yuls ) = ¢ (X} )—/1t ASK! WT+/t (—2YK Y )d/i .

So there is a probability measure Q ~ P such that

d
dz (M)

u(s,z) = Eq {g/ (X:(Fl))] > 0.

Now note that X;l) =z + Wy — W, has a non-degenerate normal distribution w.r.t. P.
Therefore its distribution is equivalent to the Lebesgue measure. But since Q ~ P the

distribution of X:(Fl) w.r.t. Q must also be equivalent to the Lebesgue measure. This shows

d 1
d$(1)u(s,x) =Eog [g’ (X;)H >0
since otherwise ¢’ = 0 a.e. would hold. O

A BMO - Processes and their Properties

In the following, let (€2, Fr, (Ft)ic[o,1], P) be a complete filtered probability space such that the
filtration satisfies the usual hypotheses. Assume furthermore that there exists a d-dimensional
Brownian motion W on [0, 7], which is progressive w.r.t. (F)e[o,7), independent of Fy and
such that F; = o(Fo, F}V), where FW is the natural filtration generated by W and Fg contains
all null sets. For a probability measure Q and any ¢ > 0 and m € N define H4(R™, Q) as the
space of all progressive processes (Z;);c[o, 7] with values in R™ normed by

T K
(/ |ZS\2d3)] < 00.
0

Definition 43. Let Q ~ [P be an equivalent probability measure and define

121l = Eq

BMO(Q) := {Z :[0,T] x Q : Z is progressively measurable and vector-valued s.t.

ft] <C a.s.}.

By vector-valued we mean that Z assumes values in some normed vector space.

The smallest constant C' such that the above bound holds is denoted by C =: || Z||% MO@©)*
For processes Z ¢ BMO(Q) we define [|Z| grro(q) = oo-

Furthermore, we call a martingale M a BMO-martingale if

T
3C >0Vt € [0,7) : Eg [/ |Z,|* ds
t

t
Mt:M0+/ ZsdWs ::MQ+(Z.W)t
0
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with some R'*?-valued Z € BMO(P).

Also, if a progressive process Z is only defined on a subinterval of [0,77], the statement
Z € BMO(Q) means that its natural extension to [0,7], obtained by setting it equal to 0
everywhere outside its initial domain, is in BMO(Q).

Theorem 44 (Theorem 2.3. in [Kaz94]). Let u € BMO(P) be R'-valued, then
Q' =&peW)r-P
s a probability measure.

Lemma 45. For a probability measure Q ~ P let Z € BMO(Q) be R™-valued. Then Z €
H>(R™, Q) for alln € N and

1Zll2nmm g) < V! Z) Baro)-

Proof. Define A; := f(f |Zs|?>ds for all t € [0,T]. A is progressive, non-decreasing, starts
at 0 and satisfies Eg[Ar — 4| F] < [|Z]1% mo(g) for all t € [0,T]. Therefore, using energy
inequalities we have

Eol(Ar)"] < n! (1213m00))

which implies the assertion. ]

Lemma 46. For all K > 0 there exists a constant C' > 0, which is increasing in K, such

that
T
Eq [exp </ | Zs| ds)
t

all probability measures Q ~ P and all Z € BMO(Q) such that || Z||prro(q) < K.

.7-}} <C as. foraltel0,T],

Proof. We apply Lemma 45 to estimate

T < 4 T k
EQ[exp (/t \Zs\ds> ‘J—}] =Eq Zk! (/t |Zs|ds> Fi
k=0
o 1 T k & 1 T ) g
gZEEQ (/ \sts> Fi SZHE@ <(T—t)/ A ds> ‘]—}
k=0 t k=0 t
1
o0 k 2 00 k 1
1 T T2 k\ 2
< ZH (E@ (T/t |Z, |2 ds> ftD < Z—, (k! (HszBMO(Q)> )
k=0 k=0
00 E
T2
< KF = C < .
=L Vm
We use )
E+1 k - 1
T2 T2 T2
- KM .| ==K* = K—0, k— oo,
( (k4 1)! ) (ﬁ VE+1
to see that the series converges absolutely and is monotonically increasing in K. O
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Theorem 47 (Theorem 3.6. in [Kaz94]). Let p € BMO(P) be R*?-valued. Define the
probability measure QF := E(u o W)p - P. Then for all progressively measurable processes Z :

1ZllBro@ey < KillZllrowy  and (| Z| prory < K2 Zl Bror)

with some real constants K1, Ko > 0 only depending on ||11| paror) and montonically increas-
ing in this value.

As an application let us prove the following statement:

Lemma 48. For some N € N let Y be an RN -valued progressively measurable bounded
process on [0,T], the dynamical behavior of which is described by

T T d
Y, = YT—/ dW,,TZT—/ (aT + Y, (6:In + Br) + Y Zini + ;JZT> dr, s€0,T], (24)
s s i=1

where

o Yr is RN yalued, Fr-measurable and bounded,

o 7 is some RN _yalued progressively measurable process s.t. fOT |Z|2 dr < co a.s., which

can also be interpreted as a vector (Zi)izl’m,d of RN _yalued progressively measurable
processes Z', i =1,...,d,

e a is an RN _valued BMO(P)-process,
e § is some non-negative progressively measurable process with f(;‘r dsds < o0 a.s.,

In € RVXN s the identity matriz,

B is an RVN*N _yalued BMO(P)-process,

e i, i=1,...,d, are progressively measurable and bounded RN*N -valued processes,

e 1 is an R%-valued BMO(P)-process.

Then Y is bounded by
[Yllso < C1- [[¥7lloc + C2 -l prroe),

with constants C1,Cy € [0, 00) which depend only on T, ||B||garow), |l Barom) and 17D 00,
1=1,...,d, and are monotonically increasing in these values.

Proof. In order to get rid of the term 1, Z, we define a Brownian motion with drift on [0, 7]
via s
W, = WS+/ wpdr, s€l0,7T]
0

Using a standard Girsanov measure change W is a Brownian motion w.r.t. to some equivalent
probability measure Q. Furthermore, using (24) the process Y has dynamics

T T d
Y. = vy _/ A z, - / (ar Y (OIn + B) + ZZ}%) dr, s e0,T].
5 s i=1
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Now, choose a t € [0,7]. We want to control Y;. For that purpose define

Fs::exp</t (6:In + Br) dr/ ZdW”/ Z’W ) s e[t T).

t1 =1

According to the It6 formula I' has dynamics

T d T
I,=I7+ / Z dW!~iT, + / (6. In + B,) T dr,
s =1 s

for s € [t,T]. Now, apply the It6 formula to Y;I's:

YSI‘S:YTFT—/ ZdWZ (ZiT, — Y,7iT,)
S

T d
_/ {(ar+ K"((STIN—i_/BT) +Z Z;V:-)Fr_ Y;"((erN‘i‘ﬁw)Fr Z Zz F }d

=1 i=1

A few terms cancel out and we end up with

T
YsFSZYTFT—/ ZdWZ Zl Y,~iT ) / o, Iy dr. (25)

We now want to control sup,cp; 7y [I's|: Observe that due to § > 0 we have for all p > 1

Eg | sup |IsfP | F:
s€t,T)
=Eg| sup exp< /5dr—/ﬂrdr—/2d ”yr—/ Z’yﬂr > ]
s€lt,T)
<Eq | sup |exp /Brdr /Zd /Zﬁyﬁfyﬁ dr ]-'t
s€(t,T] i=1
S p S d -
<Eg| sup exp (p / wdr+2w&)- sup_exp (p / Zdwﬁv,i) H
se[t,T] ¢ se[t,T] et

which using Cauchy-Schwarz inequality can be further controlled by

T :
(E@ o ([ otantar i) 7] 26 / W > % D

According to Lemma 46 the first of the two factors above can be controlled by a finite constant,
which depends only on p, ||| Bro(@)s [7]lec and T" and is monotonically increasing in these
values. Also, note that [|3]| gyro(q) can be controlled by [|3|| parom) and |1l paro) according

sup exp | 2p
s€t,T]
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to Theorem 47.
The second factor can be estimated using Doob’s martingale inequality:

. 1
Wit | | Fe| < —Eq sup
/ ) ‘ ] kzo k! (se[t T)
/ Z dVVZ 2p'7,, ‘ft]
+il L E /TZdWi(Qp’yi)
= K \k—-1 Q Pt " "

Using Cauchy-Schwarz inequality and Doob’s martingale inequality again, the above value
can be controlled by

k

Eg |exp | 2p sup
s€t,T)

/ Z aw; (2py)

<1+ Eg | sup

s€(t,T)

k
Fi

1
T d 2 2 0 k
_ . ) 1
142 | Eg /ZdWﬁ(zp%&) ‘]—} +ZH4E@ ‘/ Zdwl (2p77) ‘]—}
toi=1 k=2
T d ~
< 10Eq |exp <2p/ ZdWﬁ’yﬁ) ‘ft
to=1

This value is bounded by a finite constant, which depends only on p, T' and ||7||~ and is
monotonically increasing in these values: For instance use Theorem 2.1 in [Kaz94] by applying
it to finitely many sufficiently small subintervals of [t, T] such that 2p||7y||cc multiplied by the
square root of the size of every subinterval is smaller % Also, use the triangle inequality
and the tower property after splitting up the stochastic integral. Omne implication of the
above control for sup,c, 7 |I's| is that the stochastic integral in (25) represents a uniformly

integrable martingale w.r.t. Q since
S
/ Z AW} (ZiT, = Y,7iT,) = Y[y — Vil — / o, dr  as., for all s € [t,T],
t

and, therefore, using triangle inequality, Cauchy-Schwarz inequality and simple estimates

g sun | [13- awizin, v |
s€t,T) )
[ T S
<2||Y||Eq | sup |Is|| +Eq | sup / a, T, dr
| s€[t,T] | seft,T] 1/t
[ i T
<2||Y||Eq | sup |Is|| +Eq | sup \F| la,| dr
| sE[t,T] s€t,T)

T
< 2|Y|oEq | sup |Ts| +<E@[sup Fs|2] Eq [T/ \al%er :
| s€[t,T] ] s€[t,T) t

N
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which is finite due to & € BMO(P) and Theorem 47. We can finally estimate using (25) and
Cauchy-Schwarz inequality:

T
¥il = [Eq [YiT |l = )E@ Yool - Eg [ [ arear
t

!
.7-}])2 (EQ [T/tT o |* drr
7))
)

where we again used Theorem 47. K depends only on ||u| garo) and T'. O

sup [T/
s€[t,T)

< [1¥7]looy/Ea [IP71217] + VTl mo@) (EQ [ sup |Lsf?

s€(t,T]

< Y2 lloon/ Eq [IT7?| ] + Killall sroee) (E@ [ sup [[y?

s€[t,T)

)

< Y7l Eq [T || F] + (EQ

N

Fi

The following theorem is an extension of a result from [BE09].

Theorem 49. Let Y, Z, X, ¢, ¢ be some progressively measurable processes on [0,T] such
that

e Y is real-valued and bounded,

o 7 is R™ 4 yalued and s.t. fOT |Zs|? < 00 a.s.,

o Y, ¢ are real-valued and in BMO(P),

e X is real-valued and satisfies X < 1%+ |Z|¢ + C|Z|?* with some constant C > 0.

Assume furthermore
T T
Yt:YT—I—/ Xsds—/ ZsdWy  a.s., tel0,T).
t t

Then we have ||Z|| gyrory < K < oo for some constant K, which only depends on ||Y ||, C,
el Brow)s 1Yl Barow) and is monotonically increasing in theses values.

Proof. Clearly, we see
1 1
X <9+ |2l +C1Z1° < (0* + 56%) + (C+ )2

Define ) := (/92 + 192 € BMO(P), C := C + 3}, and write

t t
Y}:Y[)—/Xsds—i—/stWS.
0 0

Let 8 € R be some constant specified later. Using It6’s formula we get
2

t t g2 [t )
exp(BY:) :exp(ﬁYO)—/o Bexp(BYS)Xsds—k/O ,Bexp(ﬂYs)stWS+2/0 exp(fYs)|Zs|” ds.
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So for every stopping time 7 € [t,T] we can write
2

exp(8Y) = exp(BY; )+ /t B exp(AYs) X, ds— /t B exp(BYs)Zs dW,— 2

s [ ewrlzf as,
t

which can be rearranged to
ﬂ/ exp(pYs) <§|Zs|2 - XS) ds = exp(BY;) — exp(5Y;) — /TB exp(BY;s)Zs AW,
t t

or again to
B / exp(BY;) @ZSF + 97 — Xs) ds
t

— exp(9Y;) — exp(3Yi) + 5 [ exp(8Y.)i2ds — [ Bexp(8Y.)Z, WL,
t t
Setting 3 := 2C 4+ 2 = 2C + 3, we have
‘Zs‘2 < g’ZsP + 1[}2 - Xs-

Now choose a localizing sequence of stopping times 7, € [t,T], n € N, s. t. E [ tT" | Zs)? ds] <
oo for every n € N while 7, 1 T for n — co. Applying conditional expectations we have

E {ﬁ/ exp(BY3)| Zs|? s .7-",5} <E {ﬁ/ exp(8Y) <§|ZS|2 42 —Xs> ds]
t t

<E [expwm —exp(a1)+ 58 [ exp(YI0 + 1) ds ft] ,

which we can rewrite as

E[/Tn exp(BY;)|Z,|* ds ]-'t]
t
exp(BY7,) — exp(8Y) o 1,
== [ BYr — BY; (Y, =¥0) + /t exp(BYs)(¢° + 5¢°) ds ]—}}
Ys,) - exp(BY; 1
B exp(BBYTj = eﬁ)g(ﬂ : o Y5, = Yilloo + exp (B][Y o) <WHQBMO(P) + 2!<PH23MO(1P>>) :

Finally, note that the exponential function is Lipschitz continuous on any interval [a,b] with
exp(a V b) as Lipschitz constant, so

exp(fSYr, ) — exp(8Y3)
BYs, — BY:
We obtain by monotone convergence

T Tn
E [/ | Z,|% ds ft] = lim E U | Z|* ds
t n—oo t

< lim exp(B]Y[loo)E [ /
n—oo t

] Y5, = Villoo < exp(B1Y o) - 2- [V 1.

7

" exp(BY,)| Zs|? ds

]—“t]
1
< 2exp(2AY ) o+ 50 281 1) (1ot + 3lonsore

1
= 2exp(2(2C + 3)[[Y [loo) Y [loo + exp (2(2C + 3)[[Y [|oc) (II@DIIZ)BMO(IP) + 2H<P||2BMO(1P>)> )

which is finite and increasing in ||Y||oo, C, |l¢llBaro), 1Yl Bro®)- O
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Miscellaneous

Lemma 50. For N,m € N, let g: RN — R™ be Lipschitz continuous. Moreover, let X : R —
RN, n € N be weakly differentiable. Then

e g(X) is also weakly differentiable,
o for almost every A € R™ the restriction Q‘Tf of g to the affine space

5% = {a: eRNz=X0\)+ %X(A)v, for some v € R"}

is differentiable at X (\) and

e for almost all A € R™ we have
d d d
9O = o glrr (X)) - X,
This implies in particular:

e Ifn = N and the matriz d%\X()\) is invertible for a.a. X\, then TX = RN for a.a. X and

d d d
—g(X)=| — X)—X
3 4x) (dx9)< )
a.e., where d%ﬂg is a weak derivative of g.
e If g is differentiable everywhere then d%\g(X) = (%g) (X)d%\X a.e.
e If g is only locally Lipschitz continuous rather than Lipschitz continuous, but differen-
tiable everywhere, while X is bounded, then still C%\g(X) = (d%cg) (X)d%\X a.e.
Proof. For the main statement consult Corollary 3.2 in [AD90]. Concerning the three impli-
cations we may state:
o (Clearly, if d%\X (\) is invertible for some A € R", then 75X must be the whole RY for

this A\. So for almost all A the expression %Q\TAX (X (X)) coincides with the classical

derivative of g at the point X (A).
Furthermore, if we choose the identity on R™ for X, the main statement of the lemma
implies that

— g is differentiable almost everywhere,

— g is weakly differentiable and

— any weak derivative of g coincides with the classical derivative up to a null set.
So, if we define a function on R™ by setting it to the classical derivative of g at all points

for which the classical derivative exists and to 0 for all those points in which it does
not, we obtain a weak derivative.

o If g is differentiable everywhere, then d%c 9|Tj< (X (M) is just the classical derivative of g
at X(N).

e If X is bounded, we can assume without loss of generality that g is Lipschitz continuous
by restricting its domain or using a removable inner cutoff.

O]
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