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Abstract

We consider the problem of utility maximization for small traders on incom-
plete financial markets. As opposed to most of the papers dealing with this
subject, the investors’ trading strategies we allow underly constraints described
by closed, but not necessarily convex, sets. The final wealths obtained by trading
under these constraints are identified as stochastic processes which usually are
supermartingales, and even martingales for particular strategies. These strate-
gies are seen to be optimal, and the corresponding value functions determined
simply by the initial values of the supermartingales. We separately treat the
cases of exponential, power and logarithmic utility.
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Introduction

In this paper we consider a small trader on an incomplete financial market who can
trade in a finite time interval [0, T ] by investing in risky stocks and a riskless bond.
He aims at maximizing the utility he draws from his final wealth measured by some
utility function. The trading strategies he may choose to attain his wealth underly
some restriction formalized by a constraint. For example, he may be forced not to have
a negative number of shares or that his investment in risky stocks is not allowed to
exceed a certain threshold. We will be interested not only in describing the trader’s
optimal utility, but also the strategies which he may follow to reach this goal. As
opposed to most of the papers dealing so far with the maximization of expected utility
under constraints we essentially relax the hypotheses to be fulfilled by them. They are
formulated as usual by the requirement that the strategies take their values in some
set, which is supposed to simply be closed instead of convex. We consider three types
of utility functions. In the second section we carry out the calculation of the value
function and an optimal strategy for exponential utility. In this case, the investor
is allowed to have an additional liability, and maximizes the utility of its sum with
terminal wealth. In section 3 we consider power utility, and in the final section the
simplest one: logarithmic utility.

The method that we apply in order to obtain value function and optimal strategy is
simple. We propose to construct a stochastic process Rρ depending on the investor’s
trading strategy ρ, and such that its terminal value equals the utility of the trader’s
terminal wealth. As mentioned above, to model the constraint, trading strategies are
supposed to take their values in a closed set. In our market, the absence of completeness
is not explicitly described by a set of martingale measures equivalent to the historical
probability. Instead, we choose Rρ such that that for every trading strategy ρ, Rρ is
a supermartingale. Moreover, there exists at least one particular trading strategy ρ∗

such that Rρ∗ is a martingale. Hereby, the initial value is supposed not to depend on
the strategy. Evidently, the strategy ρ∗ related to the martingale has to be the optimal
one. Then the value function of the optimization problem is just given by the initial
value of Rρ∗ .

Since we work on a Wiener filtration, the powerful tool of backward stochastic
differential equations (BSDE) is available. It allows the construction of the stochastic
control process ρ∗, and thus the description of the value function in terms of the solution
of a BSDE.

In a related paper, El Karoui and Rouge [ER] compute the value function and the
optimal strategy for exponential utility by means of BSDE, assuming more restrictively
that the strategies be confined to a convex cone. Sekine [Sek] relies on a duality
result obtained by Cvitanic and Karatzas [CK], also describing constraints through
convex cones. He studies the maximization problem for the exponential and power
utility functions, and uses an attainability condition which solves the primal and dual
problems, finally writing this condition as a BSDE. In contrast to these papers, we
do not use duality, and directly characterize the solution of the primal problem. This
allows us to pass from convex to closed constraints.

Utility maximization is one of the most frequent problems in financial mathematics
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and has been considered by numerous authors. Here are some of the milestones viewed
from our perspective of maximization under constraints using the tools of BSDEs. For
a complete market, utility maximization has been considered in [KLS]. Cvitanic and
Karatzas [CK] prove existence and uniqueness of the solution for the utility maximiza-
tion problem in a Brownian filtration constraining strategies to convex sets. There are
numerous papers considering general semimartingales as stock price processes. Delbaen
et al. [DGR] give a duality result between the optimal strategy for the maximization
of the exponential utility and the martingale measure minimizing the relative entropy
with respect to the real world measure P . This duality can be used to characterize the
utility indifference price for an option. Also relying upon duality theory, Kramkov and
Schachermayer [KS] and Cvitanic et al. [CSW] give a fairly complete solution of the
utility optimization problem on incomplete markets for a class of general utility func-
tions not containing the exponential one. See also the review paper by Schachermayer
[Sch] for a more complete account and further references.

The powerful tool of BSDE has been introduced to stochastic control theory by
Bismut [B]. Its mathematical treatment in terms of stochastic analysis was initiated
by Pardoux and Peng [PP], and its particular significance for the field of utility maxi-
mization in financial stochastics clarified in El Karoui, Peng and Quenez [EPQ].

1 Preliminaries and the market model

A probability space (Ω,F , P ) carrying an m–dimensional Brownian motion (Wt)t∈[0,T ]

is given. The filtration F is the completion of the filtration generated by W .
Let us briefly explain some special notation that will be used in the paper. |·| stands

for the Euclidean norm in Rm. For q ≥ 1, Lq denotes the set of FT –measurable random
variables F such that E[|F |q] < ∞, for k ∈ N, Hk(Rd) the set of all Rd–valued stochas-

tic processes ϑ which are predictable with respect to F and satisfy E[
∫ T

0
|ϑt|kdt] < ∞.

H∞(Rd) is the set of all F–predictableRd–valued processes that are λ⊗P–a.e. bounded
on [0, T ]× Ω. Note here that we write λ for the Lebesgue measure on [0, T ] or R.

Let M denote a continuous semimartingale. The stochastic exponential E(M) is
given by

E(M)t = exp

(
Mt − 1

2
〈M〉t

)
, t ∈ [0, T ],

where the quadratic variation is denoted by 〈M〉. Let C denote a closed subset of Rm

and a ∈ Rm. The distance between a and C is defined as

distC(a) = min
b∈C

|a− b|.

The set ΠC(a) consists of those elements of C at which the minimum is obtained:

ΠC(a) = {b ∈ C : |a− b| = distC(a) }.

This set is not empty and evidently may contain more than one point.
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The financial market consists of one bond with interest rate zero and d ≤ m stocks.
In case d < m we face an incomplete market. The price process of stock i evolves
according to the equation

dSi
t

Si
t

= bi
tdt + σi

tdWt, i = 1, . . . , d, (1)

where bi (resp. σi) is anR– valued (resp. R1×m–valued) predictable uniformly bounded
stochastic process. The lines of the d × m–matrix σ are given by the vector σi

t, i =
1, . . . , d. The volatility matrix σ = (σi)i=1,...,d has full rank and we assume that σσtr

is uniformly elliptic, i.e. KId ≥ σσtr ≥ εId, P–a.s. for constants K > ε > 0. The
predictable Rm–valued process

θt = σtr
t (σtσ

tr
t )−1bt, t ∈ [0, T ],

is then also uniformly bounded.
A d–dimensional F–predictable process π = (πt)0≤t≤T is called trading strategy if∫

π dS
S

is well defined, e.g.
∫ T

0
‖πtσt‖2dt < ∞ P–a.s. For 1 ≤ i ≤ d, the process πi

t

describes the amount of money invested in stock i at time t. The number of shares is
πi

t

Si
t
. The wealth process Xπ of a trading strategy π with initial capital x satisfies the

equation

Xπ
t = x +

d∑
i=1

∫ t

0

πi,u

Si,u

dSi,u = x +

∫ t

0

πuσu(dWu + θudu), t ∈ [0, T ].

In this notation π has to be taken as a vector in R1×d. Trading strategies are self–
financing. The investor uses his initial capital and during the trading interval [0, T ]
there is no extra money flow out of or into his portfolio. Gains or losses are only
obtained by trading with the stock.

The optimal trading strategy we will find in this paper happens to be in the class
of martingales of bounded mean oscillation, briefly called BMO–martingales. Here
we recall a few well known facts from this theory following the exposition in [Kaz].
The statements in [Kaz] are made for infinite time horizon. In the text they will be
applied to the simpler framework of finite time horizon, replacing ∞ with T . Let G be
a complete, right–continuous filtration, P a probability measure and M a continuous
local (P,G)–martingale satisfying M0 = 0. Let 1 ≤ p < ∞. Then M is in the normed
linear space BMOp if

‖M‖BMOp := sup
τ G−stopping time

E[|MT −Mτ |p|Gτ ]
1/p < ∞.

By Corollary 2.1 in [Kaz], M is a BMOp–martingale if and only if it is a BMOq–
martingale for every q ≥ 1. Therefore it is simply called BMO–martingale. In partic-
ular, M is a BMO–martingale if and only if

‖M‖BMO2 = sup
τ G−stopping time

E[〈M〉T − 〈M〉τ |Gτ ]
1/2 < ∞.
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This means, local martingales of the form Mt =
∫ t

0
ξsdWs are BMO–martingales if and

only if

‖M‖BMO2 = sup
τ G−stopping time

E[

∫ T

τ

‖ξs‖2ds|Gτ ]
1/2 < ∞. (2)

Due to the finite time horizon, this condition is satisfied for bounded integrands. Ac-
cording to Theorem 2.3 in [Kaz], the stochastic exponential E(M) of a BMO–martingale
M is a uniformly integrable martingale. If Q is a probability measure defined by
dQ = E(M)T dP for a P–BMO martingale M , then the Girsanov transform of a P–
BMO martingale is a BMO–martingale under Q (Theorem 3.6 in [Kaz]).

Suppose our investor has a liability F at time T . This random variable F is assumed
to be FT –measurable and bounded, but not necessarily positive. He tries to find a
trading strategy that is optimal in presence of this liability F , in a sense to be made
precise in the beginning of the following section.

In order to compute the optimal trading strategy we use quadratic Backward Stochas-
tic Differential Equations (BSDE) and apply a result of Kobylanski [Kob] to get exis-
tence of a solution for our BSDE. This result is proved for bounded terminal random
variables. Therefore we have to assume that F is bounded.

2 Exponential Utility

In this section, we specify the sense of optimality for trading strategies by stipulating
that the investor wants to maximize his expected utility with respect to the exponential
utility from his total wealth Xp

T −F . Let us recall that for α > 0 the exponential utility
function is defined as

U(x) = − exp(−αx), x ∈ R.

The definition of admissible trading strategies guarantees that there is no arbitrage.
In addition, we allow constraints on the trading strategies. Formally, they are supposed
to take their values in a closed set, i.e. πt(ω) ∈ C̃, with C̃ ⊆ R1×d. We emphasize that
C̃ is not assumed to be convex.

Definition 1 (Admissible Strategies with constraints) Let C̃ be a closed set in
R1×d. The set of admissible trading strategies Ã consists of all d–dimensional pre-
dictable processes π = (πt)0≤t≤T which satisfy E[

∫ T

0
|πtσt|2dt] < ∞ and πt ∈ C̃ λ⊗ P–

a.s., as well as

{exp(−αXπ
τ ) : τ stopping time with values in [0, T ]}

is a uniformly integrable family.

Remark 2 The condition of square integrability in Definition 1 guarantees that there
is no arbitrage. In fact, the square integrability condition on π and the boundedness
of θ yields that E[sup0≤t≤T (Xπ

t )2] < ∞. According to Theorem 2.1 in Pardoux, Peng
[PP], (Xt, πtσt) is the unique solution of the BSDE

Xt = XT −
∫ T

t

(πsσs)dWs −
∫ T

t

(πsσs)θsds,
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with E[
∫ T

0
(Xπ

s )2ds] < ∞, E[
∫ T

0
(πsσs)

2ds] < ∞. So the initial capital Xπ
0 needed to

attain Xπ
T is uniquely determined. In particular, Theorem 2.2 in El Karoui, Peng,

Quenez [EPQ] yields if Xπ
0 = 0 and Xπ

T ≥ 0 P–a.s., then Xπ
T = 0 P–a.s.

Remark 3 In accordance with the classical literature (see Dellacherie, Meyer [DM])
the uniform integrability condition in Definition 1 coincides with the notion of class D.

Remark 4 If Xπ is square integrable and πt ∈ C̃ λ⊗P–a.s., as well as Xπ is bounded
from below on [0, T ], it is obvious that π ∈ Ã.

For t ∈ [0, T ], ω ∈ Ω define the set Ct(ω) ⊆ Rm by

Ct(ω) = C̃σt(ω). (3)

The entries of the matrix–valued process σ are uniformly bounded. Therefore we get

min{ |a| : a ∈ Ct(ω) } ≤ k1 for λ⊗ P − a.e. (t, ω) (4)

with a constant k1 ≥ 0. Furthermore, for every (ω, t), the set Ct(ω) is closed. This is
crucial for our analysis.

Remark 5 Writing
pt = πtσt, t ∈ [0, T ],

the set of admissible trading strategies Ã is equivalent to a set A of R1×m–valued
predictable stochastic processes p with p ∈ A iff E[

∫ T

0
|p(t)|2dt] < ∞ and pt(ω) ∈ Ct(ω)

P–a.s., as well as

{exp(−αXp
τ ) : τ stopping time with values in [0, T ]}

is a uniformly integrable family.
Such a process p ∈ A will also be named strategy, and X(p) denotes its wealth process.

So the investor wants to solve the maximization problem

V (x) := sup
π∈Ã

E

[
− exp

(
−α

(
x +

∫ T

0

πt
dSt

St

− F

))]
,

where x is the initial wealth. V is called value function. Losses, i.e. realizations with
Xπ − F < 0, are punished very strongly. Large gains or realizations with Xπ − F > 0
are weakly valued.

Remark 6 We shall show below that the sup is taken by a particular strategy p∗ which
is admissible in the sense of our definition. Note that this process might not lead to a
wealth process which is bounded from below, and therefore not admissible in this sense.
For further details see Schachermayer [Sch2] and Merton [M].
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The maximization problem is evidently equivalent to

V (x) = sup
p∈A

E

[
− exp

(
−α

(
x +

∫ T

0

pt(dWt + θtdt)− F

))]
. (5)

In order to find the value function and an optimal strategy we construct a family of
stochastic processes R(p) with the following properties:

• R
(p)
T = − exp(−α(Xp

T − F )) for all p ∈ A,

• R
(p)
0 = R0 is constant for all p ∈ A,

• R(p) is a supermartingale for all p ∈ A and there exists a p∗ ∈ A such that R(p∗)

is a martingale.

The process R(p) and its initial value R0 depend of course on the initial capital x.
Given processes possessing these properties we can compare the expected utilities of
the strategies p ∈ A and p∗ ∈ A by

E[− exp(−α(Xp
T − F ))] ≤ R0(x) = E[− exp(−α(Xp∗

T − F ))] = V (x), (6)

whence p∗ is the desired optimal strategy. To construct this family, we set

R
(p)
t := − exp(−α(X

(p)
t − Yt)), t ∈ [0, T ], p ∈ A,

where (Y, Z) is a solution of the BSDE

Yt = F −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ].

In these terms we are bound to choose a function f for which R(p) is a supermartingale
for all p ∈ A and there exists a p∗ ∈ A such that R(p∗) is a martingale. This function
f also depends on the constraint set (Ct) where (pt) takes its values (see (3)). We get

V (x) = R
(p,x)
0 = − exp(−α(x− Y0)), for all p ∈ A.

In order to calculate f , we write R as the product of a (local) martingale M (p) and a
(not strictly) decreasing process Ã(p) that is constant for some p∗ ∈ A. For t ∈ [0, T ]
define

M
(p)
t = exp(−α(x− Y0)) exp

(
−

∫ t

0

α(ps − Zs)dWs − 1

2

∫ t

0

α2(ps − Zs)
2ds

)

Comparing R(p) and M (p)Ã(p) yields

Ã
(p)
t = − exp(

∫ t

0

v(s, ps, Zs)ds), t ∈ [0, T ],

with

v(t, p, z) = −αpθt + αf(t, z) +
1

2
α2|p− z|2.
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In order to obtain a decreasing process Ã(p) evidently f has to satisfy

v(t, pt, Zt) ≥ 0 for all p ∈ A

and
v(t, p∗t , Zt) = 0

for some particular p∗ ∈ A. For t ∈ [0, T ] we have

1

α
v(t, pt, Zt) =

α

2
|pt|2 − αpt(Zt +

1

α
θt) +

α

2
|Zt|2 + f(t, Zt)

=
α

2
|pt − (Zt +

1

α
θt)|2 − α

2
|Zt +

1

α
θt|2 +

α

2
Z2

t + f(t, Zt)

=
α

2
|pt − (Zt +

1

α
θt)|2 − Ztθt − 1

2α
|θt|2 + f(t, Zt).

Now set

f(t, z) = −α

2
dist2

(
z +

1

α
θt, Ct(ω)

)
+ zθt +

1

2α
|θt|2.

For this choice we get v(t, p, z) ≥ 0 and for

p∗t ∈ ΠCt(ω)

(
Zt +

1

α
θt

)
, t ∈ [0, T ],

we obtain v(·, p∗, Z) = 0.
Here we see why the set C̃ and hence Ct on which trading strategies are restricted

is assumed to be closed. In order to find the value function we have to minimize the
distance between a point and a set. Furthermore there must exist some element in Ct

realizing the minimal distance. Both requirements are satisfied for closed sets. In a
convex set the minimizer is unique. This would lead to a unique utility maximizing
trading strategy. However, we prove existence of a possibly non–unique trading strategy
solving the maximization problem for closed but not necessarily convex constraints.

Theorem 7 The value function of the optimization problem (5) is given by

V (x) = − exp(−α(x− Y0)),

where Y0 is defined by the unique solution (Y, Z) ∈ H∞(R)×H2(Rm) of the BSDE

Yt = F −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ], (7)

with

f(·, z) = −α

2
dist2

(
z +

1

α
θ, C

)
+ zθ +

1

2α
|θ|2.

There exists an optimal trading strategy p∗ ∈ A with

p∗t ∈ ΠCt(ω)(Zt +
1

α
θt), t ∈ [0, T ], P − a.s. (8)
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Proof In order to get the existence of solutions of the BSDE (7) we apply Theorem
2.3 of [Kob]. According to Lemma 11 below, for fixed z ∈ Rm, (f(t, z))t∈[0,T ] defines a
predictable process. A sufficient condition for the existence of a solution is condition
(H1) in [Kob]: there are constants c0, c1 such that

|f(t, z)| ≤ c0 + c1|z|2 for all z ∈ Rn P − a.s. (9)

By means of (4) we get for z ∈ Rm, t ∈ [0, T ]

dist2

(
z +

1

α
θt, Ct

)
≤ 2|z|2 + 2(

1

α
|θt|+ k1)

2.

So (9) follows from the boundedness of θ. Theorem 2.3 in [Kob] states that the BSDE
(7) possesses at least one solution (Y, Z) ∈ H∞(R)×H2(Rm).

To prove uniqueness, suppose that solutions (Y 1, Z1) ∈ H∞(R)×H2(Rm), (Y 2, Z2) ∈
H∞(R)×H2(Rm) of the BSDE are given. Then we have

Y 1 − Y 2 = −
∫ T

·
(Z1 − Z2)dW −

∫ T

·
(f(s, Z1

s )− f(s, Z2
s ))ds.

Now note that for s ∈ [0, T ], z1, z2 ∈ Rm we may write

f(s, z1)− f(s, z2) = −α

2
[dist2(z1 +

1

α
θs, Cs)− dist2(z2 +

1

α
θs, Cs) + (z1 − z2)θs.

Using the Lipschitz property of the distance function from a closed set we obtain the
estimate

|f(s, z1)− f(s, z2)| ≤ c1|z1 − z2|+ c2(|z1|+ |z2|)(|z1 − z2|)
≤ c3(1 + |z1|+ |z2|)|z1 − z2|.

Let us set

β(t) =

{
f(t,Z1

t )−f(t,Z2
t )

Z1
t−Z2

t
, if Z1

t − Z2
t 6= 0,

0, if Z1
t − Z2

t = 0.

Then we obtain from the preceding estimate

|β(t)| ≤ c(1 + |Z1
t |+ |Z2

t |), t ∈ [0, T ].

Moreover, from the boundedness of Y 1 and Y 2, the P−BMO property of
∫ ·

0
Zi(s)dWs,

i = 1, 2, follows, see Lemma 12. This in turn entails that
∫ ·
0
β(s)dWs is a P−BMO

martingale. But this allows us to give an alternative description of the difference of
solutions in

Y 1 − Y 2 = −
∫ T

·
(Z1

s − Z2
s )dWs −

∫ T

·
β(s) (Z1

s − Z2
s )ds

= −
∫ T

·
(Z1

s − Z2
s )[dWs + β(s)ds].
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This process is a martingale under the equivalent probability measure Q which has
density

E(−
∫ T

0

β(t)dWt)

with respect to P . Since Y 1
T = F = Y 2

T we therefore conclude Y 1 = Y 2 and Z1 = Z2,
and uniqueness is established.

To find the value function of our optimization problem, we proceed with the unique
solution (Y, Z) ∈ H∞(R) × H2(Rm) of (7). Let p∗ denote the predictable process

constructed in Lemma 11 for a = Z+ 1
α
θ. Then Ã

(p∗)
t (ω) = −1 for λ⊗P almost all (t, ω).

By Lemma 12 below,
∫ ·

0
(p∗s−Zs)dWs is a P–BMO–martingale, whence R(p∗) is uniformly

integrable (Theorem 2.3 in [Kaz]). Since, moreover, Y is a bounded process, we obtain

the uniform integrability of the family {exp(−αX
(p∗)
τ ) : τ stopping time in [0, T ]}.

Therefore p∗ ∈ A. Hence R(p∗,x) is a martingale and

R
(p∗)
0 = E

[
− exp

(
−α

(
x +

∫ T

0

p∗s(dWs + θsds)− F

))]

= − exp(−α(x− Y0)).

It remains to show that R(p) is a supermartingale for all p ∈ A. Since p ∈ A, the process
M = M0E(−α

∫
(ps − Zs)dWs) is a local martingale. Hence there exists a sequence of

stopping times (τn)n∈N satisfying limn→∞ τn = T P–a.s. such that (Mt∧τn)t is a positive

martingale for each n ∈ N. The process Ã(p) is decreasing. Thus R
(p)
t∧τn

= Mt∧τnÃ
(p)
t∧τn

is a supermartingale, i.e. for s ≤ t

E[R
(p)
t∧τn

|Fs] ≤ R
(p)
s∧τn

.

For any set A ∈ Fs we have

E[R
(p)
t∧τn

1A] ≤ E[R
(p)
s∧τn

1A].

Since {R(p)
t∧τn

}n and {R(p)
s∧τn

}n are uniformly integrable by the definition of admissibility
and the boundedness of Y , we may let n tend to ∞ to obtain

E[R
(p)
t 1A] ≤ E[R(p)

s 1A].

This implies the claimed supermartingale property of R(p).

2

Remark 8 If the process
∫ ·

0
psdWs is a BMO martingale and E[exp(−α(X

(p)
T −F ))] <

∞, a variant of an argument of the above proof can be used to see that p ∈ A. In fact,
we see that M (p) is a uniformly integrable martingale, while A(p) is decreasing. Hence
R(p) is a supermartingale. This just states that for stopping times τ

− exp(−α(X(p)
τ − Yτ )) ≥ E[− exp(−α(X

(p)
T − F ))|Fτ ].

Consequently

exp(−αX(p)
τ ) ≤ exp(−αYτ ) E[exp(−α(X

(p)
T − F ))|Fτ ].

This clearly implies uniform integrability of {exp(−αX
(p)
τ ) : τ stopping time in [0, T ]}.
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We can show that the strategy p∗ is optimal in a wider sense. In fact, an investor
who has chosen at time 0 the strategy p∗ will stick to this decision if he starts solving
the optimization problem at some later time between 0 and T . For this purpose, let us
formulate the optimization problem more generally for a stopping time τ ≤ T and an
Fτ–measurable random variable which describes the capital at time τ , i.e. Xτ = Xp

τ

for some p ∈ A. So we consider the maximization problem

V (τ, Xτ ) = ess supp∈AE

[
− exp

(
−α

(
Xτ +

∫ T

τ

ps(dWs + θsds)− F

))]
. (10)

Proposition 9 (Dynamic Principle) The value function x 7→ − exp(−α(x − y))
satisfies the dynamic programming principle, i.e.

V (τ, Xτ ) = − exp(−α(Xτ − Yτ ))

for all stopping times τ ≤ T where Yτ belongs to a solution of the BSDE (7). An
optimal strategy that attains the essential supremum in (10) is given by p∗, the optimal
strategy constructed in Theorem 7.

Proof For t ∈ [0, T ], set

Rt = − exp(−α(Xt − Yt))E
(
−

∫ T

t

α(ps − Zs)dWs

)
exp(

∫ T

t

v(s, ps, Zs)ds)

and apply the optional stopping theorem to the stochastic exponential. The claim
follows as in Theorem 7.

2

Remark 10 If the constraint C on the strategies is a convex cone, the value function
V and the optimal strategy p∗ both constructed in Theorem 7 are equivalent to those
determined in [Sek] and [ER].

Sekine considers the utility function x 7→ − 1
α

exp(−αx). He obtains the value function

V (x) = − 1

α
exp(−αx + Ȳ0)

starting with the BSDE

Ȳt = αF −
∫ T

t

z̄sdWs −
∫ T

t

f̄(s, θs, z̄s)ds, t ∈ [0, T ],

where

f̄(t, θt, z̄) = θtΠCt(z̄ + θt)− 1

2
|z̄ − ΠCt(z̄ + θt)|2.

We evidently have to show that Ȳt = αYt for t ∈ [0, T ] or equivalently αf(t, θt,
z
α
) =

f̄(t, θt, z). Note that for a convex set C, the projection ΠC(a) is unique. If C is a
convex cone and β > 0, then βΠC(a) = ΠC(βa). The equality for the functions f and

11



f̄ therefore follows. El Karoui and Rouge [ER] have obtained the same BSDE and
value function before Sekine.

In the following Lemma we return to a technical point in the proof of Theorem 7.
We show that it is possible to define a predictable process which satisfies (8). Instead
of referring to a classical section theorem, see Dellacherie and Meyer [DM], we prefer
to give a direct and constructive proof.

Lemma 11 (measurable selection) Let (at)t∈[0,T ], (σt)t∈[0,T ] be R1×m– resp. Rd×m–

valued predictable stochastic processes, C̃ ⊂ Rd a closed set and Ct = C̃σt, t ∈ [0, T ].

(a) The process
d = (dist(at, C̃σt))t∈[0,T ]

is predictable.

(b) There exists a predictable process a∗ with

a∗t ∈ ΠCt(at) for all t ∈ [0, T ].

Proof In order to prove (a), observe that d is the composition of continuous mappings
with predictable processes. For k ∈ N let Hk denote the space of compact subsets
of Rk equipped with the Hausdorff metric and B(Hk) the Borel sigma algebra with
respect to this metric. The mapping dist : Rm ×Hm → R is jointly continuous hence
B(Rm) ⊗ B(Hm)–B(R) measurable. Now consider j : Rd×m × Hd → Hm that maps
a compact subset C̃ in Rd by applying an d ×m–matrix σ̃ to a compact subset K̃ of
Rm. More formally, j maps C̃ to the following set:

K̃ = {b ∈ Rm | ∃c̃ ∈ C̃ : b = c̃σ̃}.

The mapping j is also jointly continuous and therefore B(Rm×d) ⊗ B(Hd)–B(Hm)-
measurable. Hence (a) follows for compact C̃.

If more generally C̃ is closed but not bounded, take C̃n = C̃ ∩ Bn where Bn is
the closed ball with radius n centered at the origin. According to what has already
been shown, for n ∈ N, dist(at, C̃nσt) defines a predictable process and dist(at, C̃nσt)
converges to dist(at, C̃σt), for n →∞. This proves the first claim.

In order to prove the second claim, we first concentrate on the case of compact
C̃. We have to show that for z ∈ Rm and a compact set K̃ ⊂ Rm there exists a
B(Rm) ⊗ B(Hm) – B(Rm)– measurable mapping ξ(z, K̃) with ξ(z, K̃) ∈ ΠK̃(z). This
is achieved by the definition of a sequence of mappings ξn(z, K̃) with a subsequence
of randomly chosen index that converges to an element of ΠK̃(z). The choice of the
converging subsequence will depend in a measurable way on z and K̃.

For n ∈ N, let Gn = (xn
i )i∈N be a dyadic grid with minx∈Gn dist(z̄, x) ≤ 1

n
for

all z̄ ∈ Rm. Let the elements of the grid Gn be numbered by Gn = {gn
i : i ∈ N}.

Let K̃n be the elements of the grid with distance at most 1
n

from Gn. Since we can

describe the sets K̃n as the intersections of the discrete set Gn with the closed set
of all points in Rm having distance at most 1

n
from K̃, and this closed set depends

continuously on K̃, K̃n is measurable in K̃. For any z ∈ Rm, let Πn(z, K̃) be the set of

12



all points in K̃n with minimal distance from z. Since K̃n is measurable in K̃, Πn(z, K̃)
is obviously measurable in (z, K̃). To define ξn(z, K̃), we have to choose one point in
Πn(z, K̃). Let it be the one with minimal index in the enumeration of Gn. This choice
preserves the measurability in (z, K̃). Hence we obtain that ξn(z, K̃) is B(Rm)⊗B(Hm)
– B(Rm)– measurable. Furthermore, lim infn→∞ |ξn(z, K̃)| < ∞ for all (z, K̃). This is
one assumption in Lemma 1.55 in [FS] that we aim to apply. This lemma is stated for
equivalence classes of random variables, where two random variables are equivalent if
they are equal almost everywhere with respect to a probability measure. Considering
carefully the proof we see that we can apply this lemma also without reference to any
measure, to obtain a result for every (z, K̃) ∈ Rm ×Hm.

Lemma 1.55 in [FS] yields a strictly increasing sequence (τn)n∈N of integer valued,
B(Rm) ⊗ B(Hm) – B(R)– measurable functions and a mapping ξ : Rm × Hm → Rm

measurable with respect to the corresponding product σ–algebra, satisfying

lim
n→∞

ξτn(z,K̃)(z, K̃) = ξ(z, K̃) ∀ z ∈ Rm, K̃ ∈ Hm.

But ξ is a selection. Indeed, for every n ∈ N,

|dist(z, ξτn(z, K̃))− dist(z, K̃)| ≤ 1

τn

≤ 1

n
.

Since ξτn converges to ξ, we obtain dist(ξ, K̃) = 0, hence ξ ∈ K̃ and dist(z, ξ) =
dist(z, K̃). Thus by construction, ξ(z, K̃) ∈ ΠK̃(z) for all (z, K̃) ∈ Rm ×Hm.

We may then choose
a∗ = ξ(a, Cσ)

to satisfy the requirements of the second part of the assertion in the compact case.
Finally, if C̃ is only closed, we may proceed similarly as in the proof for (a). Let

an
t = ξ(a, (C̃ ∩ Bn)σt), t ∈ [0, T ]. This time we apply Lemma 1.55 in [FS] to the

sequence of predictable processes (an)n∈N and the measure P ⊗ λ on Ω × [0, T ]. We
obtain a strictly increasing sequence of random indices τ̃n(ω, t) measurable with respect
to the predictable σ–algebra and a predictable process a such that

lim
n→∞

a
τ̃n(ω,t)
t (ω) = at(ω), for P ⊗ λ a.e. (ω, t).

For the process a we have dist(at, C̃σt) = 0 P ⊗ λ a.e.

2

Lemma 12 Let (Y, Z) ∈ H∞(R)×H2(Rm) be a solution of the BSDE (7), and let p∗

be given by Lemma 11 for a = Z + 1
α
θ. Then the processes

∫ ·

0

ZsdWs,

∫ ·

0

p∗sdWs

are P–BMO martingales.
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Proof Let k denote the upper bound of the uniformly bounded process Y . Applying
Itô’s formula to (Y − k)2, we obtain for stopping times τ ≤ T

E

[∫ T

τ

Z2
s ds

∣∣∣∣Fτ

]
= E[(F − k)2|Fτ ]− |Yτ − k|2

−2E

[∫ T

τ

(Ys − k)f(s, Zs)ds

∣∣∣∣Fτ

]

The definition of f yields for all (t, z) ∈ [0, T ]×Rm

f(t, z) ≤ zθt +
1

2α
|θt|2.

Therefore there exist positive constants c1, c2 and c̃1 such that

E

[∫ T

τ

|Zs|2ds

∣∣∣∣Fτ

]
≤ c1 + c2E

[∫ T

τ

|Zs + 1|ds

∣∣∣∣Fτ

]

≤ c̃1 +
1

2
E

[∫ T

τ

|Zs|2ds

∣∣∣∣Fτ

]
.

Hence,
∫ ·
0
ZsdWs is a BMO–martingale.

We next deal with the stochastic integral process of p∗. The triangle inequality
implies

|p∗| ≤ |Z +
1

α
θ|+ |p∗ − (Z +

1

α
θ)|.

The definition of p∗ together with (4) yields for some constants k1, k2

|p∗t | ≤ 2|Zt|+ 2

α
|θt|+ k1 ≤ 2|Zt|+ k2, t ∈ [0, T ],

and thus for every stopping time τ ≤ T

E

[∫ T

τ

|p∗t |2dt

∣∣∣∣Fτ

]
≤ E

[∫ T

τ

8|Zt|2dt + 2Tk2
2

∣∣∣∣Fτ

]
.

This implies the P−BMO property of
∫ ·

0
p∗sdWs.

2

3 Power utility

In this section we calculate the value function and characterize the optimal strategy
for the utility maximization problem with respect to

Uγ(x) =
1

γ
xγ, x ≥ 0, γ ∈ (0, 1).

This time, our investor maximizes the expected utility of his wealth at time T without
an additional liability. The trading strategies are constrained to take values in a closed
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set C̄2 ⊆ Rd. In this section, we shall use a somewhat different notion of trading
strategy: ρ̃ = (ρ̃i)i=1,...,d denotes the part of the wealth invested in stock i. The

number of shares of stock i is given by
ρ̃i

tXt

Si
t

. A d–dimensional F–predictable process

ρ̃ = (ρ̃t)0≤t≤T is called trading strategy (part of wealth) if the following wealth process
is well defined:

X
(ρ̃)
t = x +

∫ t

0

d∑
i=1

X
(ρ̃)
s ρ̃i,s

Si,s

dSi,s = x +

∫ t

0

X(ρ̃)
s ρ̃sσs(dWs + θsds), (11)

and the initial capital x is positive. The wealth process X(ρ̃) can be written as:

X
(ρ̃)
t = xE

(∫
ρ̃sσs(dWs + θsds)

)

t

, t ∈ [0, T ].

As before, it is more convenient to introduce

ρt = ρ̃tσt, t ∈ [0, T ].

Accordingly, ρ is constrained to take its values in

Ct(ω) = C̃σt(ω) t ∈ [0, T ], ω ∈ Ω.

The sets Ct satisfy (4). In order to formulate the optimization problem we first define
the set of admissible trading strategies.

Definition 13 The set of admissible trading strategies Ã consists of all d–dimensional
predictable processes ρ = (ρt)0≤t≤T that satisfy ρt ∈ Ct(ω) P⊗λ–a.s and

∫ T

0
|ρs|2ds < ∞

P–a.s.

Define the probability measure Q ∼ P by

dQ

dP
= E

(
−

∫
θsdWs

)

T

.

The set of admissible trading strategies is free of arbitrage because for every ρ ∈ Ã,
the wealth process X(ρ̃) is a local Q–martingale bounded from below, hence a Q–
supermartingale. Since Q is equivalent to P , the set of trading strategies Ã is free of
arbitrage.

The investor faces the maximization problem

V̄ (x) = sup
ρ̃∈Ã

E
[
U

(
X

(ρ̃)
T

)]
. (12)

In order to find the value function and an optimal strategy we apply the same method
as for the exponential utility function. We therefore have to construct a stochastic
process R̃(ρ) with terminal value

R̃
(ρ)
T = U

(
x +

∫ T

0

Xsρs
dSs

Ss

)
,
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and an initial value R̃
(ρ)
0 = R̃x

0 that does not depend on ρ, R̃(ρ) is a supermartingale
for all ρ ∈ Ã and a martingale for a ρ∗ ∈ Ã. Then ρ∗ is the optimal strategy and the
value function given by V̄ (x) = R̃x

0 . Applying the utility function to the wealth process
yields

(Xρ,x
t )γ = xγ exp

(∫ t

0

γρsdWs +

∫ t

0

γρsθsds− 1

2

∫ t

0

γ|ρs|2ds

)
, t ∈ [0, T ].

This equation suggests the following choice:

R̃
(ρ)
t = xγ exp

(∫ t

0

γρsdWs +

∫ t

0

γρsθsds− 1

2

∫ t

0

γ|ρs|2ds + Yt

)
, (13)

where (Y, Z) is a solution of the BSDE

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ].

In order to get the supermartingale property of R̃(ρ) we have to construct f(t, z) such
that for t ∈ [0, T ]

γρtθt − 1

2
γ|ρt|2 + f(t, Zt) ≤ −1

2
|γρt + Zt|2 for all ρ ∈ Ã. (14)

R̃(ρ∗) will even be a martingale if equality holds for ρ∗ ∈ Ã. This is equivalent to

f(t, Zt) ≤ 1

2
γ(1− γ)

∣∣∣∣ρt − 1

1− γ
(Zt + θt)

∣∣∣∣
2

− 1

2

γ|Zt + θt|2
1− γ

− 1

2
|Zt|2.

Hence the appropriate choice for f is

f(t, z) =
γ(1− γ)

2
dist2

(
1

1− γ
(z + θt), Ct

)
− γ|z + θt|2

2(1− γ)
− 1

2
|z|2,

and a candidate for the optimal strategy must satisfy

ρ∗t ∈ ΠCt(ω)

(
1

1− γ
(Zt + θt)

)
, t ∈ [0, T ].

In the following Theorem both value function and optimal strategy are described.

Theorem 14 The value function of the optimization problem is given by

V (x) = xγ exp(Y0) for x > 0,

where Y0 is defined by the unique solution (Y, Z) ∈ H∞(R)×H2(Rm) of the BSDE

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ], (15)
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with

f(t, z) =
γ(1− γ)

2
dist2

(
1

1− γ
(z + θt), Ct

)
− γ|z + θt|2

2(1− γ)
− 1

2
|z|2.

There exists an optimal trading strategy ρ∗ ∈ Ã with the property

ρ∗t ∈ ΠCt(ω)

(
1

1− γ
(Zt + θt)

)
. (16)

Proof According to Lemma 11, (f(t, z))t∈[0,T ] is a predictable stochastic process which
also depends on σ. Due to (4) and the boundedness of θ, Condition (H1) for Theorem
2.3 in [Kob] is fulfilled. We obtain the existence of a solution (Y, Z) ∈ H∞(R) ×
H2(Rm) for the BSDE (15). Uniqueness follows from the comparison arguments in the
uniqueness part of the proof of Theorem 7.

Let ρ∗ denote the predictable process constructed with Lemma 11 for a = 1
1−γ

(Z+θ).

Lemma 17 below shows that ρ∗ ∈ Ã. By Theorem 2.3 in [Kaz], the process R̃(ρ∗) is a
martingale with terminal value

R̃
(ρ∗)
T = xγ exp

(∫ T

0

γρ∗sdWs +

∫ T

0

γρ∗sθsds− 1

2

∫ T

0

γ|ρ∗s|2ds

)
.

This is the power utility from terminal wealth of the trading strategy ρ∗. Therefore
the expected utility of ρ∗ is equal to R̃

(ρ∗,x)
0 = xγ exp(Y0).

To show that this provides the value function let ρ ∈ Ã. (14) yields

R̃
(ρ)
t = xγ exp(Y0)E

(∫
(γρs + Zs)dWs

)

t

exp

(∫ t

0

vsds

)
, t ∈ [0, T ],

for a process v with vs ≤ 0 λ⊗ P a.s.
The stochastic exponential is a local martingale. There exists a sequence of stopping

times (τn)n∈N, limn→∞ τn = T such that

E[R̃
(ρ)
t∧τn

|Fs] ≤ R̃
(ρ)
s∧τn

, s ≤ t

for every n ∈ N. Furthermore, R̃(ρ) is bounded from below by 0. Passing to the limit
and applying Fatou’s lemma yields that R̃(ρ) is a supermartingale. The terminal value
R̃

(ρ,x)
T is the utility of the terminal wealth of the trading strategy ρ. Consequently

E[U(X
(ρ,x)
T )] ≤ R̃

(x)
0 = xγ exp(Y0) for all ρ ∈ A.

2

Again we can show that an investor starting to act at some stopping time in the trading
interval [0, T ] will perceive the strategy ρ∗ just constructed as optimal. Let τ ≤ T
denote a stopping time and Xτ an Fτ–measurable random variable which describes the
capital at time τ , i.e. Xτ = Xρ

τ for a ρ ∈ Ã and an initial capital x > 0. Consider the
maximization problem

V̄ (τ, Xτ ) = ess supρ∈Aτ
E

[
U

(
Xτ +

∫ T

τ

Xsρs(dWs + θsds)

)]
. (17)
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Proposition 15 (Dynamic Principle) The value function xγ exp(y) satisfies the dy-
namic programming principle, i.e.

V̄ (τ,Xτ ) = (Xτ )
γ exp(Yτ )

for all stopping times τ ≤ T , where Yτ is given by the unique solution (Y, Z) of the
BSDE (15). An optimal strategy which attains the essential supremum in (17) is given
by ρ∗ constructed in Theorem 14.

Proof See Proposition 9.

Remark 16 Suppose that the constraint set C is a convex cone. Then the optimal
strategy ρ∗ constructed in Theorem 14 is the same as in [Sek].

Sekine uses the utility function x 7→ 1
γ
xγ and obtains the value function

Ṽ (x) =
1

γ
xγ exp((1− γ)Ỹ0),

where Ỹ0 is defined by the unique solution (Ỹ , Z̃) ∈ H∞(R)×H2(Rm) of the BSDE

Ỹt = 0−
∫ T

t

Z̃sdWs −
∫ T

t

g(s, Z̃s)ds, t ∈ [0, T ].

Here

g(t, z̃) =
|θt|2
2

− 1

2

∣∣∣∣θt − ΠCt

(
z̃ +

θt

1− γ

)∣∣∣∣
2

− 1− γ

2

∣∣∣∣z̃ − ΠCt

(
z̃ +

θt

1− γ

)∣∣∣∣
2

.

As for the exponential utility function we have to show (1 − γ)Ỹ = Y or equivalently
(1− γ)g(t, z

1−γ
) = f(t, z). In fact, we have

(1− γ)g

(
t,

z

1− γ

)
= (1− γ)

[
|θt|2
2

− 1

2

∣∣∣∣θt − ΠCt

(
z + θt

1− γ

)∣∣∣∣
2
]

−(1− γ)2

2

∣∣∣∣
z

1− γ
− ΠCt

(
z + θt

1− γ

)∣∣∣∣
2

= θtΠCt(z + θt)− 1

2(1− γ)
|ΠCt(z + θt)|2

−1

2
|z|2 + zΠCt(z + θt)− 1

2
|ΠCt(z + θt)|2

= (z + θt)ΠCt(z + θt)− 2− γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2

= − γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2.

To obtain the last equality, we use

(z + θt)ΠCt(z + θt) = |ΠCt(z + θt)|2
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(see (18) below).
For the function f we obtain

f(t, z) =
γ(1− γ)

2

∣∣∣∣
1

1− γ
(z + θt)− ΠCt

(
1

1− γ
(z + θt)

)∣∣∣∣
2

−γ

2

(z + θt)
2

(1− γ)
− 1

2
|z|2

= − γ

1− γ
(z + θt)ΠCt(z + θt) +

γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2

= − γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2.

For t ∈ [0, T ], z ∈ Rm we therefore have

(1− γ)g(t,
z

1− γ
) = f(t, z).

It remains to prove that for a convex cone C and a ∈ Rm the following equality holds:

ΠC(a)(a− ΠC(a)) = 0. (18)

If ΠC(a) = 0 then the identity is satisfied. If not, consider the half line λΠC(a), λ ≥ 0.
This half line is part of the cone C, so ΠC(a) is also the projection of a on the half line.

2

Lemma 17 Let (Y, Z) ∈ H∞(R) × H2(Rm) be a solution of the BSDE (15), and let
ρ∗ be given by (16). Then the processes

∫ ·

0

ZsdWs,

∫ ·

0

ρ∗sdWs

are P–BMO martingales.

Proof We can use the same line of reasoning as in the proof of Lemma 12. The
argument given there has to be slightly modified, however. We may take a lower
bound k for Y , and apply Itô’s formula to |Y − k|2, to conclude in the same manner
as before.

2

4 Log Utility

To complete the spectrum of important utility functions, in this section we shall con-
sider logarithmic utility. As in the preceding section, the agent has no liability at time
T . Trading strategies and wealth process have the same meaning as in section 3 (see
(11)). The trading strategies ρ̃ are constrained to take values in a closed set C̃2 ⊂ Rd.
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For ρt = ρ̃tσt the constraints are described by Ct = C̃2σt, t ∈ [0, T ]. In order to com-
pare the logarithmic utility of the terminal wealth of two trading strategies we have to
impose a mild integrability condition on ρ. Recall that ρi > 1 means that the investor
has to borrow money in order to buy stock i and if ρi < 0 then the investor has a
negative number of stock i. An integrability condition on ρ is not restrictive.

Definition 18 The set of admissible trading strategies Al consists of all Rd–valued
predictable processes ρ satisfying E[

∫ T

0
|ρs|2ds] < ∞ and ρt ∈ Ct P ⊗ λ–a.s.

For the logarithmic utility function

U(x) = log(x), x > 0,

we obtain a particularly simple BSDE that leads to the value function and the optimal
strategy. The optimization problem is given by

V (x) = sup
ρ∈Al

E[log(X
(ρ)
T )] (19)

= log(x) + sup
ρ∈Al

E

[∫ T

0

ρsdWs +

∫ T

0

(ρsθs − 1

2
|ρs|2)ds

]
, (20)

where the initial capital x is positive again. As in section 2 we want to determine a
process R(ρ) with R

(ρ)
T = log(X

(ρ)
T ), and an initial value that does not depend on ρ.

Furthermore, R(ρ) is a supermartingale for all ρ ∈ Al, and there exists a ρ∗ ∈ Al such
that R(ρ∗) is a martingale. The strategy ρ∗ is the optimal strategy and Rρ∗

0 is the value
function of the optimization problem (19).

We can choose for t ∈ [0, T ]

R
(ρ)
t = log x + Y0 +

∫ t

0

(ρs + Zs)dWs +

∫ t

0

(
−1

2
|ρs − θs|2 +

1

2
θ2

s + f(s)

)
ds,

where

f(t) =
1

2
dist2(θt, Ct)− 1

2
|θt|2, t ∈ [0, T ],

and (Yt, Zt) is the unique solution of the following BSDE:

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s)ds, t ∈ [0, T ].

Due to definition 18, the boundedness of θ and (4), the stochastic integral in R(ρ) is a
martingale for all ρ ∈ Al. Hence R(ρ) is a supermartingale for all ρ ∈ Al. An optimal
trading strategy ρ∗ which satisfies ρ∗t ∈ ΠCt(θt) can be constructed by means of Lemma
11. The initial value Y0 satisfies

Y0 = −E

[∫ T

0

f(s)ds

]
.

Hence

V (x) = Rρ∗
0 (x) = log(x) + E

[
−

∫ T

0

f(s)ds

]
.
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In particular ρ∗ only depends on θ, σ and the set C̃2 describing the constraints on the
trading strategies.
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