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Abstract. The effect of stochastic fluctuations in the background zonal veloc-
ity field on the energy dispersion of stationary wave responses to meridionally
localised forcing is considered, using the non-divergent, barotropic vorticity
equation. It is found that for small noise levels or large lengthscales in the
noise autocovariance function, the oscillatory structure of the solutions is not
altered. However, for noise levels (or autocovariance lengthscales) compara-
ble to or larger (smaller) than those observed in the circulation at 300mb,
the marginal density functions of the solution process displays a pronounced
attenuation away from the stationary wave source. This indicates that fluctua-
tions in the velocity field inhibit the dispersion of wave energy. The symmetry
of the marginal PDFs about the source rather than about the equator indi-
cates that the localisation is primarily an integrated effect of backscattering
by potential vorticity gradients in regions of real refractive index, and not due
to attenuation by regions of imaginary refractive index or by critical lines in
the flow.

1. Introduction

As was first noted by Rossby et al. [22], the barotropic (i.e., depth-integrated),
linearised equations of motion of the atmosphere admit wave solutions of poten-
tially global extent. The restoring force for these waves arises from the meridional
(north-south) variation of the local vertical component of the earth’s rotation axis
- the so-called beta effect [20]. These planetary, or Rossby, waves have played an
important role in shaping our conception of atmospheric dynamics. In particular,
in a linear atmosphere they are the fundamental dynamical elements mediating the
global-scale response to spatially-localised vorticity sources such as topography or
diabatic heating.

Hoskins and Karoly [6] considered the dynamics of planetary waves in a
spherical atmosphere, using the nondivergent, barotropic vorticity equation lin-
earised around a constant angular momentum (superrotation) background flow.
Employing WKB (Liouville-Green) theory, they found that the meridional dis-
persion of a stationary (zero-frequency) wave’s energy was a function of its zonal
(east-west) wavenumber: for their background flow speed of 15ms~—!, they found
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that wavenumbers 1 and 2 were able to propagate from a subtropical or midlati-
tude source to the near vicinity of the poles, while for higher wavenumbers there
are “turning latitudes” beyond which the wave is evanescent. Subsequent mod-
elling studies have considered the dynamics of stationary Rossby waves on zonally-
inhomogeneous flows such as the climatological boreal winter 300 mb flow ([1],
[5],[8]), and of planetary waves of nonzero frequency on both zonally-homogeneous
and inhomogeneous flows ([15],[16]). Observational studies by Kiladis et al. ([10],
[11], [12], [13]) demonstrate the potential importance of Rossby waves in mediat-
ing the interaction between the tropics and extratropics in both the 6-30 day and
30-70 day frequency bands.

All of the above modelling studies have considered the dynamics of planetary
waves on a spatially smooth background flow. Such smooth background flows may
represent the mean circulation, but this is not a state whose neighbourhood in
phase space is often visited by the atmosphere [18]. In fact, at any time, the
atmospheric circulation contains substantial small-scale structure. Pandolfo and
Sutera [19] demonstrated using observed zonal-mean 300mb circulation data that
the mean of solutions to the nondivergent barotropic vorticity equation linearised
around individual realisations of the flow was not identical to the solution of the
equation linearised around the mean background flow. Denoting the dynamical
operator linearised around the flow U as £(U), this difference is a reflection of the
inequality

b # E{y} (1)

where L(U)¢ = S and L(E{U})y) = S (S is a vorticity source). In particular,
Pandolfo and Sutera demonstrated E{y} displayed less meridional dispersion of
wave energy than @[;

This result can be understood by applying the quantum theory of Anderson
localisation [25] to the problem of classical wave propagation. If the properties of
the medium through which the waves propagate fluctuate in a characteristic man-
ner, the waves will be attenuated as they disperse. The restoring force for planetary
waves is the background potential vorticity (PV) gradient, which may be affected
both by variations in topography and background flow field [20]. A number of
studies have demonstrated the asymptotic exponential decay of planetary waves
propagating over rapidly fluctuating topography ([23],[24],[26],[27],[28]), but little
attention has so far been paid to the effects of random fluctuations in the back-
ground flow. Keller and Veronis [9] studied this problem but assumed that the
fluctuations in the background potential vorticity gradient are much smaller than
the planetary PV gradient. In the real atmosphere, however, the fluctuations can
be O(1).

This paper describes a Monte Carlo investigation of the effect of fluctuations
in the PV gradient on the energy dispersion of stationary planetary waves in spher-
ical geometry. This work extends that of Pandolfo and Sutera [19], who considered
observational zonal-mean flows for which the strength of the fluctuations and their
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characteristic autocovariance lengthscale are fixed. By generating random back-
ground flows and studying the probability distribution of the resulting solution
the random linear vorticity equation, we are able to investigate the dependence
of this distribution on the strength and characteristic lengthscales of the fluctua-
tions in the background PV gradient. In Section 2, we describe the model used in
this study. We present the results in Section 3 and their interpretation in terms
of a classical version of the quantum theory of Anderson Localisation in Section
4. Section 5 concludes the paper with a discussion of the physical implications
of our results. The companion article by Imkeller, Monahan, and Pandolfo devel-
ops an analytic theory of classical wave localisation applicable to the problem of
atmospheric planetary waves propagating in fluctuating winds.

2. Spectral Model

We consider the non-divergent, barotropic vorticity equation in spherical coordi-
nates:
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where A and ¢ are the zonal and meridional coordinates, respectively, ¥ is the
streamfunction, a is radius of the Earth, Q is angular frequency of rotation of the
Earth, and p is an Ekman (scale-independent) friction parameter. The zonal and
meridional components of the wind field, respectively u and v, are given by
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Equation (2) is a simple model for the depth-averaged dynamics of a shallow fluid
on a rotating sphere [20]. We simplify equation (2) by assuming ¥ is composed
of a meridionally-varying background zonal flow plus a small perturbation having
zero zonal mean:

[}
T=a / dd' U(@') +1'(\, 6.1). (5)

The derivation of an equation governing the wave perturbation v’ is done in three
steps. Firstly, introduce (5) into (2). Secondly, linearise the resulting equation with
respect to the background wind U. Thirdly, subtract from the linearised equation
its zonal mean. This yields:
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Assuming a stationary wave form for ¢’
¥'(A, ¢) = Re(4p(¢) expil ), (7)

and adding a source term S(¢), the non-divergent barotropic vorticity equation
linearised about the background zonal flow U becomes the ODE in ¢:

ipa cos ¢ d d
(U i ) (cos d)% (cos ¢%¢) — l2¢)

1
- {cos2 ¢% (c0s¢ %(U cos ¢)> } ¥+ (2Qacos® p)yY = S(o). (8)
This equation is exactly equation (6.12) of Held [4], and for 4 = 0 reduces to
equation (A10) of Pandolfo and Sutera [19]. Under a transformation to Mercator
coordinates, the pole is removed to infinity. It is obvious that there is always a
latitude poleward of which the solutions are evanescent, so we obtain the following
boundary conditions:

P(=m/2) = 4(r/2) = 0. 9)

Equation (8) has been well-studied in the case that U(¢) is a deterministic
function [4]. What has not been investigated is the distribution of solution pro-
cesses (@) obtained when U(¢) is taken to be a stochastic process in ¢. This
paper details the initial effort to address this question.

In equation (8), the stochastic processes U(¢) and ¥ (¢) are multiplied to-
gether. Expressing this equation formally as

LU =S, (10)

this implies that in general the mean E{¢} of solution processes to the equation
L(U)y = S will not equal the solution process zﬁ to the equation with the mean op-
erator: L(BE{U})¢ = S. Pandolfo and Sutera [19] pointed out that in consequence
the Rossby wave solution to the equation linearised around a climatological mean
zonal flow need not bear any resemblance to the average of wave solutions to the
equations linearised around individual realisations of the background flow.

Because U is in general not smooth, we cannot use WKB theory to solve (8),
and instead turn to numerical methods. Equation (8) is naturally discretised by
recasting it in spectral form. The natural Fourier basis on the domain [—7/2, 7/2]
is the orthogonal set of functions exp 2in¢g, n = —o0, ..., 00. The function (¢) is
expanded on this basis as

W)= 3 e, (11)

m=—00
where the expansion coefficients 1,, are given by

/2 )
Y = 2 / d 1p()e 2. (12)
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Similar expansions hold for U and S. Substituting these expansions into equation
(8), we obtain the infinite set of coupled algebraic equations for the 1p,:

where
Mpym = (n—=1/2)(n=2m - )Up_pm_1+[2(n—m)* +1—=2m* = *|U,_,

+(n+1/2)(n—2m+ 1)Uy ms1 + 2QaC,, 1,
+# {m(m +1/2) Dp_m_1 + (2m% + 1) Dp_pm
+m(m —1/2)Dp_mi1} - (14)

The coefficients
12 1

= Z(_1)m 15
Cm m (=1) (1 —4m2)(9 — 4m?) (15)
are the Fourier components of cos® ¢, and
2, 1
Dum 7r( 2 1 —4m? (16)

are the Fourier components of cos ¢.
For numerical implementation, equation (13) must of course be truncated to
a finite number 2N + 1 of Fourier components, yielding the approximate equation

N
Mym¥m = Sh. (17)
N

m=—

Throughout this study, we used a value of N = 50. Sensitivity studies indicate
that increasing the number of modes N retained does not change the results.
It is worthwhile to note that the truncated spectral model we have adopted is
superior to, say, a finite difference approximation, because the latter involves errors
both due to limited resolution and finite differencing of derivatives. In a spectral
model all derivatives are evaluated exactly, and the only error is associated with
truncation of the Fourier series.
We model the background zonal wind by the equation

U(¢) = U(9) + nUmas R(9), (18)

where U(¢) represents the resulting mean background wind profile, 7 tunes the
amplitude of the fluctuations,

Unmaz = mgx U(¢) (19)
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scales the noise strength, and R(¢) is a stationary, mean-zero, unit-variance sto-
chastic process with an oscillating gaussian autocovariance function:

E{R(¢9)} = 0, (20)
E{R*(¢)} = 1, (21)
E{R($)R(¢+ ¢o)} = exp(—¢5/27°)cos(2a0), (22)

The oscillating component of the autocovariance function was introduced to em-
ulate the observed “index cycle” fluctuation in the zonal-mean zonal wind [17].
Realisations of this process were generated directly in Fourier space using an al-
gorithm described in Monahan and Pandolfo [17].

Because this study is primarily interested in the variability of the meridional
structure of forced waves, arising from fluctuations in the mean flow, we are not
particularly concerned with the details of how the waves are forced. Thus, through-
out the study, we employ a simple, narrow Gaussian forcing of unit amplitude:

S(8) = = exp(—(6 = ¢r)?/20") (23)

where o = 1°. Because of the narrowness of this source term, the solution processes
will essentially correspond to a random Greens function.

3. Superrotation Flow

The mean background zonal wind considered in this study is a flow with constant
angular velocity:

(7(¢) = Upaz COS @, (24)

also referred to as superrotation. Because it is of such a simple structure, the
propagation of Rossby-type waves in such a flow field has been considered several
times in the atmospheric dynamics literature (eg. [1], [6], [29]). The associated
vorticity field has the same meridional structure as the planetary vorticity, so the
superrotation flow affects the propagation of Rossby waves by either amplifying
(Unmaz > 0) or attenuating (Upqee < 0) the background potential vorticity gradient:

0p(C+ f) =2 (% + Q) cos ¢ (25)

(where ( = V2 (—a J 4 do'U (¢’ )) is the relative vorticity of the background flow

and f = 2Qsin ¢ is the planetary vorticity). For eastward superrotation flow, the
potential vorticity gradient is increased, and wavelike disturbances experience a
stronger meridional restoring force [20].

We consider a series of experiments using superrotation flow with U4, =
35ms—1; Ekman friction, y = (10days)~!; and with perturbations having a zonal
wavenumber [ = 1. Figure 1 displays a plot of |¢|cos'/2 ¢ for the | = 1 wave,
normalised to unity, for a forcing at 18 N in the limit of zero noise, n = 0. The
product [1|? cos ¢ is a measure of the energy per unit area in the perturbation.
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FIGURE 1. Plot of normalised |¢| cos'/? ¢ for a source located at 18N .

Numerical experiments (not shown) show that in the limit of no friction (uz — 0),
the amplitude of the oscillatory function |1)| cos'/? ¢ is approximately constant on
either side of the forcing. This is precisely the result predicted by Hoskins and
Karoly [6] using WKB theory. Their approximate result for superrotation flows
yielded oscillatory solutions for which

Y ~ cos 2 ¢ (26)

For the case of a smooth superrotation background flow, then, the [ = 1 wave is
global in meridional extent, and in the limit of vanishing friction, the envelope of
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the energy per unit area does not diminish poleward. The slight poleward atten-
uation of energy displayed in Figure 1 results from the use of moderately strong
friction g = (10days) .

We now consider the effect of fluctuations in the background wind, with a
forcing located at ¢ = 18N. For 5 # 0, the distribution of ¢ at any latitude
is no longer a delta function. Figure 2 displays plots of the marginal distribution
P(|¢)] cos'/? ¢) for values of 7 in increments of 0.05 from 0.05 to 0.5 with auto-
covariance lengthscale parameters (7, ) = (259, 3). These marginal distributions
were estimated from 1000 realisations of the solution process at each noise level.
For each realisation, |1|? cos ¢ has been normalised to unity, because we are more
concerned with the meridional structure of the response than its overall amplitude.
For 7 less than about 0.2, the distribution of |¢)(¢)|cos'/? ¢ about the noise-free
solution broadens as the noise level increases, but retains an essentially oscillatory
character. However, at about 1 = 0.2, the oscillatory character of the distributions
has started to disappear while the poleward decay is accentuated. As the noise
level increases further, this poleward decay of the amplitude entirely subsumes
the oscillatory structure, characteristic of the = 0 solution, until eventually the
oscillatory character of the PDF has vanished outright. We refer to the poleward
attenuation of stationary wave energy due to the presence of fluctuations in U as
localisation.

Figure 3 displays the marginal PDF of |¢|cos/2 ¢ for the solution process
associated with a source at 36V, over the same range of noise levels 7 as in Figure 2.
Again, the same loss of oscillatory structure and increase in poleward attenuation
of the marginal distribution of |1)| cos'/? ¢ with increasing 7 is seen with the source
at this latitude.

Figures 4 and 5 display the marginal PDF of [¢| cos'/? ¢ for sources at 18N
and 36V, respectively, over a range of values of the autocovariance scale parameters
(r,a) = (j x 5°,15/4) for j = 3,...,10, with n = 0.2 fixed. These values were
selected so that the decay and oscillation lengthscales of the fluctuations in U were
maintained at a constant ratio. The autocovariance function of the observed 300mb
zonal-mean zonal winds is reasonably well approximated when (7,a) = (25°,3)
[17]. We observe that reducing the autocovariance lengthscale of the fluctuations
has the same effect on the distribution of |¢| cos'/? ¢ as increasing the noise level,
namely, increased confinement around the source. This will be discussed further
in the following section.

Thus, the effect of fluctuations in the background zonal wind on the evolution
of a stationary wave is an attenuation in the poleward dispersion of its energy.
This effect is strengthened by either increasing the amplitude of the fluctuations
or decreasing the autocorrelation length scales. The mean effect on the amplitude
of |¢|cos!/? ¢ of fluctuations in U resembles that which would follow from an
increase in the dissipation parameter u. However, the cause of the confinement is
a dynamical mechanism that is physically distinct from friction.
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FIGURE 2. Estimated PDF of [1)| cos'/? ¢ as a function of latitude
for @ = 3, 7 = 25°, and 7 in increments of 0.05 from (a) n = 0.05
to (j) » = 0.5. The source, marked by the triangle, is at 18N.
Contour interval: 0.33.

4. Interpretation

Two mechanisms for the localisation of planetary waves demonstrated above sug-
gest themselves: backscattering of waves by fluctuations in the background PV
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50

FIGURE 3. Estimated PDF of [1)| cos'/? ¢ as a function of latitude
for @ = 3, 7 = 25°, and 7 in increments of 0.05 from (a) n = 0.05
to (j) » = 0.5. The source, marked by the triangle, is at 36N.
Contour interval: 0.33.

gradient, and the appearance in the flow of critical lines. Considering the first
cause, wave attenuation could occur in regions where wind fluctuations create
either an imaginary index of refraction or a highly-fluctuating real index of refrac-
tion. It was noted by Pandolfo and Sutera [19] that fluctuations in the background
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FIGURE 4. Estimated PDF of [1)| cos'/? ¢ as a function of latitude
forn = 0.2 and (1,@) = (j x5°,15/5) from (a) j = 3 to (h) j = 10.
The source, marked by the triangle, is at 18 N. Contour interval:
0.33.

velocity can lead to regions in the flow where the refractive index associated with
the wave equation (8) is imaginary. In these regions solutions are not oscillatory
but decaying. Passing through one of these, the amplitude of a wave is attenuated.
In steady state, these regions are therefore reflective. As the noise level increases
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FIGURE 5. Estimated PDF of [1)| cos'/? ¢ as a function of latitude
forn = 0.2 and (1,@) = (j x5°,15/5) from (a) j = 3 to (h) j = 10.
The source, marked by the triangle, is at 36 N. Contour interval:
0.33.

or the autocovariance lengthscale of the fluctuations decreases, these areas occupy
a larger fraction of latitudes, and consequently the planetary wave energy is in-
creasingly trapped in the vicinity of the source. Pandolfo and Sutera also showed
that in a real index of refraction exhibiting substantial spatial fluctuations, wave
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energy becomes localised near its source. The other mechanism which could be im-
portant for localisation is the appearance of critical lines. In the problem at hand
these will appear at latitudes where the zonal mean zonal velocity vanishes. The
extent to which critical lines are absorbing, reflecting, or overreflecting remains
controversial (e.g. [1],[2],[3],[14]), but without question they inhibit the dispersion
of Rossby waves. The average number of critical lines in a given region increases
with increased noise level 7 and decreased autocovariance length scales; and be-
cause of the form given to U, the frequency of occurrence of critical lines in the
background wind increases toward the poles. Then, as 1 increases or as the auto-
covariance lengthscales decrease, it is possible that the concentration of the PDF
of [¢| cos'/? ¢ near zero, starting near the poles and moving equatorward, merely
reflects the equatorward movement of the latitudes at which the wave is likely to
first encounter a critical line.

Each of the three causes of wave trapping discussed above participates in
producing the PDFs of Figures 2 to 5. However, the fundamental mechanism of
localisation is neither attenuation by regions of imaginary index of refraction nor
attenuation by critical lines. This can be determined by an examination of Figure
6, which contours as a function of latitude and noise level the fraction of realisa-
tions for which the background wind U(¢) is non-positive. Firstly, Figure 6 shows
that, even for high noise levels, critical lines are commonplace only in polar and
sub-polar regions. The corresponding figure for the index of refraction (not shown)
reveals a similar distribution of imaginary realisations. This is because the wave
restoring force is dominated by the advection of planetary vorticity by the per-
turbation field, so the index of refraction is imaginary only where the background
wind is westward [19]. Secondly, the symmetry of wind fluctuations with respect
to the equator present in Figure 6 would be mirrored by the PDFs of Figures 2
through 5 if critical lines (or imaginary indices of refraction) were important fac-
tors in determining the shape of PDFs. This symmetry would exist independently
of the position of the forcing as long as the source is situated in subtropical re-
gions. Conversely, if backscattering by fluctuations in the PV gradient (in regions
where the index of refraction is real) is the dominant mechanism, then the local-
isation should appear symmetric about the source, because then the attenuation
will be an integrated effect of the distance from the source. Indeed, comparing
Figure 2 with Figure 3 and Figure 4 with Figure 5, it is clear that the PDF's are
symmetric with respect to the position of the source. Hence, it is unlikely that
critical lines or imaginary indices of refraction are responsible for the confinement
observed in the PDFs displayed in Figures 2 through 5. This indicates that it is the
fluctuations of (mostly) real indices of refraction that are responsible for the wave
backscattering that localises wave energy around the source. The intensification
of the localisation effect with increasing noise level and with decreasing autoco-
variance lengthscale can then be understood to result simply from an increase in
the density of scattering centres. The symmetry of the PDF with respect to the
source and the monotonic decrease of wave amplitude away from the source in
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FIGURE 6. Fraction of realisations for which U(¢) < 0.

a real index of refraction are the two characteristics of the occurrence of Ander-
son localisation for the dispersion of (classical) waves in a random medium [25].
A companion paper in this volume presents the mathematical framework for de-
scribing the physical mechanisms leading to the localisation effect observed in our
numerical experiments [7].

From a different point of view, Penland and Sardeshmukh [21] also consider
the effects of fluctuations in the background wind field on the dispersion of plan-
etary wave energy. However, their approach is to use wind fluctuations that are
spatially homogeneous but fluctuating in time with a white spectrum. They find
that the average effect of these fluctuations is an enhanced dissipation, inhibiting
the dispersion of wave energy away from the source. Their study is at the op-
posite limit to the present work (in which we consider fluctuations fixed in time
but spatially varying) and yet arrives at a qualitatively similar conclusion. Thus,
it appears that both temporal and spatial fluctuations in the background wind
result in confinement of wave energy.
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5. Conclusions

Using a Monte Carlo technique to sample realisations of a stochastic zonally-
averaged zonal velocity field, we have estimated the joint PDFs of the solution
process to the nondivergent, barotropic vorticity equation linearised around these
realisations. As was demonstrated in Pandolfo and Sutera [19], fluctuations in the
background flow U(¢) around a smooth mean E{U(¢)} can yield wave solutions
with dispersion characteristics that are very different from those of waves propa-
gating on E{U(¢)} itself. In particular, fluctuations can cause wave energy to be
trapped around the wave source. The extent of this trapping does not appear to
be a simple linear function of the magnitude of the fluctuations. If the standard
deviation of U(¢) is less than about 20% of the maximum of the mean background
flow, the waves do not seem to be particularly localised by fluctuations in U(¢).
However, as the noise level increases beyond this point, waves become strongly at-
tenuated in the subpolar region, and in the midlatitudes as the noise increases even
further. This result is complementary to that of Penland and Sardeshmukh [21],
who find that the mean effect of fluctuations in the background wind field, that are
homogeneous in space but rapidly varying in time, is to increase the dissipation
in the system. Reducing the characteristic lengthscale of the noise autocovariance
function also increases localisation.

The boreal winter data considered by Monahan and Pandolfo [17] indicate
that the observed noise level for zonal mean zonal velocity at 300mb is n ~ 0.2.
Hence, linearisation around a smooth climatological flow can only give a rough
qualitative description of wave dispersion. As shown in Figure 2d or 3d, the mar-
ginal PDF is hardly a delta function at each latitude for this noise level. In this
regard, it will be interesting to investigate the propagation characteristics of a
two-dimensional (latitude-longitude) atmosphere for which the constraint of zonal
averaging is removed.

Branstator [1] addressed the question of what velocity field would be an ap-
propriate background flow around which to linearise the equations of motion. The
results presented here indicate that linearisation around a fluctuating background
flow may produce results that are different than those obtained by linearising
around a smooth flow. Physical intuition based on the latter may not be appro-
priate when dealing with realistic atmospheric flows.

Finally, the results of this study can be understood in two distinct ways.
Firstly, this analysis can be thought of as an investigation of the dispersion char-
acteristics of stationary wavelike disturbances on a non-smooth background flow
without wave-mean flow interactions. This interpretation implies a temporal sep-
aration of scales such that the adjustment time of the circulation to a stationary
forcing source is much less than the time scale of changes in the background wind.
If the fluctuations in the background flow are associated with “weather” (in con-
trast to the “climate” of the smooth background flows), it is not clear that this
separation of timescales holds for terrestrial flows. A more complete analysis would
involve adding temporal variability to the problem.
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Secondly, this study may be regarded as an analysis of the sensitivity of the
solutions to the structure of the background flow around which the equations of
motion are linearised. Generally, smooth background flows are chosen for their
simplicity, and not for their relevance to the actual circulation of the atmosphere.
In fact, the long-term climatological average is a circulation whose neighbour-
hood in phase space is rarely visited by the real atmosphere [18]. In general, these
background flows are forced to be solutions to the linearised equations of motion
through the introduction of appropriate forcings, calculated a posteriori after the
selection of the zonal mean background state. This begs the question of the sensi-
tivity of the character of the solutions to the basic state chosen, a question which
this study addresses. The realisations of the background wind with fluctuations are
then seen not so much as representing actual circulations in the atmosphere, but
background states around which it is equally plausible to linearise as around the
smooth background flows. We find that the structure of the background wind can
qualitatively affect the dispersion of energy away from a localised forcing source
for background flows that differ sufficiently from smooth ones.

These two interpretations of the results are distinct. The first is more physical,
but involves an approximation concerning atmospheric relaxation and fluctuation
timescales. The second is more mathematical, but addresses a question that is of
relevance to linearised theories of atmospheric dynamics.
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