Some mathematical remarks concerning the localisation of planetary waves in a stochastic background flow

Peter Imkeller, Adam Hugh Monahan, and Lionel Pandolfo

Abstract. In this article we develop some mathematically rigorous ideas to explain the phenomenon of localisation of planetary waves in a stochastic background flow as presented in the physical companion paper. For this purpose the barotropic vorticity equation linearised around a zonal background wind and driven by a local source is transformed into a Sturm-Liouville problem with random potential function. We distinguish between two types of localising mechanisms. The first type is a background effect of localisation symmetrical with respect to the equator which is due to the nodes of the potential function (critical lines). The second is a more subtle effect and forces localisation around the source. It comes from the superposition of the source term with the Green's kernel expressed in terms of the eigenfunctions of the spectral resolution of the random Sturm-Liouville operators involved. On average, this effect is moderate for zero damping, and stronger for small non-zero damping.

1. Introduction

In this second part we shall tackle the problem of wave localisation using a more rigorous mathematical approach. The goal is to provide a mathematical theory with which to explain the hypothesis put forth as an explanation of the numerical simulations presented in the first part[12]. As we shall see, the problem of analysing a small perturbation of the vorticity equation pre-existing on a random background zonal wind leads into the outskirts of a well developed and understood area of mathematics known as random Schrödinger operators (see for example Carmona, Lacroix [2] or Stollmann [17]). In fact, simple algebraic operations allow the transformation of the key equation (9) of [12] into an equation of the Sturm-Liouville type with a random potential term. The main term characterising the random medium being a stationary random process, one would suspect that asymptotic properties such as the ones we are interested in, namely the decay rates of waves propagating through the random medium, could be tackled using the powerful tools of ergodic theory. They would then correspond to Lyapunov

exponents, objects by now well understood (see Arnold [1]). Yet, the situation is somewhat unfortunate. The parameter space of our random process is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, physically the interval between south and north pole. This interval is simply too short for the main argument of ergodic theory, according to which averages over the parameter space on the long run can be replaced by phase space averages, to be applied. Due to this annoying fact, we resort to a pathwise analysis of decay of planetary waves. As we shall point out precisely below, the hypotheses made in [12] on the random perturbation R of the potential function U lead to very smooth paths. We show that the stationary process has in fact C^{∞} -paths. Since the wave propagation and attenuation effects we are interested in are stable when passing from a C^{∞} path to a still smoother one, we start by considering pathwise analytic potential functions. Once this is established, we use the tools of the classical theory of singular differential equations and special functions, accompanied by the Liouville-Green approximations of solutions commonly known as WKB approximations (see Olver [13]). Assuming typical path properties qualitatively derived from Rice's formula and other tools of the theory of stationary processes, we can then explain some of the reasons causing the localisation patterns described in [12]. We organise the presentation of the main results in the following way.

In section 2 we explain some smoothness and oscillation properties characterising stationary stochastic processes such as the random component R of U with properties chosen in [12]. Section 3 is devoted to transforming the key equation (9) of [12] into Sturm-Liouville equations with random potential functions. A clear distinction is made between the cases of zero damping ($\mu=0$) and non-zero damping. The former leads to random differential operators of the second order roughly of the form $Lu=(V^2u')'+pVu$ with a random potential function V and a slowly varying nonrandom positive function p. In the latter, L is replaced by a more complicated operator K of the form $Kv=(V^2w')'+p\beta V$ with a new random quantity β which fluctuates rather fast and changes sign relatively often on average, even inside excursion intervals of the potential V, i.e. intervals bounded by consecutive zeroes.

In the subsequent sections we explain the different mechanisms of localisation resulting from the theory. There is, first of all, a background localisation effect due to the presence of critical lines, i. e. latitudes at which the waves become extinct. The critical lines are given by the zeroes of the random potential function $U(\phi) = U_{eq} \cos \phi + \eta U_{max} R(\phi)$, which, on average, are symmetrical around the equator because of the particular choice made for the non-random part of $U(\phi)$. In section 4, critical lines are discussed for zero damping and in section 5 for small non-zero damping.

To describe the more subtle effects of localisation due to fluctuations in the structure of $U(\phi)$, we have to study the random spectra of the operators L (for zero damping) and K (for non-zero damping), restricted to excursion intervals of the potential V. In section 6, we show that the continuous part of the spectrum of L lies on the interval $[0, \infty[$, while the more interesting pure point part lies in $]-\infty, 0[$.

For the case V < 0, the pure point part is empty, while for V > 0 it contains at most finitely many negative eigenvalues. Eigenfunctions of negative eigenvalues decay exponentially near the nodes of V. Since propagating waves are described by superposing the Green's kernel composed of the eigenfunctions with the source term, this leads, for typical sample functions of V, to a moderate localisation effect around the source (Theorem 6.1). In section 7, finally, this localisation effect is studied for non-zero damping. Because of the strongly fluctuating factor β in K, which is due to its dependence on the second derivative of R, there is, firstly, no distinction between intervals of positive resp. negative sign of V, and, secondly, negative ground states lie deeper in narrower potential wells, thus causing, by superposition with the source term, a more pronounced effect of localisation around the source (Theorem 7.1).

2. Some remarks concerning path properties of R

We start with a few remarks concerning the consequences of the hypotheses made on the covariance function of the stationary process R on the behaviour of the paths. The basic hypothesis is

$$r(\phi_0) = E(R(\phi) R(\phi + \phi_0)) = \exp(-\frac{|\phi_0|^2}{2\tau^2}) \cos(2\alpha \phi_0), \tag{1}$$

for $\phi, \phi_0 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. The following calculation involving Hermite polynomials will clarify the structure of r and its bearing on path regularity. We may write

$$r(\phi) = Re[\exp(-\frac{\phi^2}{2\tau^2} + 2i\,\alpha\,\phi)],$$

and

$$\exp(-\frac{\phi^2}{2\tau^2} + 2i \alpha \phi) = \exp(-2\alpha^2 \tau^2) \exp(-\frac{1}{2} \left[\frac{\phi}{\tau} - 2i\alpha \tau\right]^2).$$

If we change variables according to $\gamma = \frac{\phi}{\tau} - 2i\alpha\tau$, and define

$$\rho(\gamma) = R(\phi), \quad s(\gamma) = r(\phi) = \exp(-\frac{1}{2}\gamma^2) \exp(-2\alpha^2\tau^2)$$

we obtain $R' = \frac{1}{\tau} \rho'$, and therefore for $k \geq 0$, via the well known relationship

$$s^{(2k)}(\gamma) = \exp(-2\alpha^2\tau^2) \left(\frac{d}{d\gamma}\right)^{2k} \exp(-\frac{1}{2}\gamma^2) = \exp(-2\alpha^2\tau^2) H_{2k}(\gamma) \exp(-\frac{1}{2}\gamma^2)$$

the equation

$$r^{(2k)}(0) = \frac{1}{\tau^{2k}} s^{(2k)}(-2i\alpha\tau)$$

$$= \frac{1}{\tau^{2k}} \exp(-2\alpha^2\tau^2) H_{2k}(-2i\alpha\tau) \exp(-\frac{1}{2}(-2i\alpha\tau)^2) = \frac{1}{\tau^{2k}} H_{2k}(-2i\alpha\tau).$$

Here H_l denotes the Hermite polynomial of degree l defined implicitly in the preceding equation. Using well known formulas for Hermite polynomials we finally arrive at

$$r^{(2k)}(0) = (-1)^k \frac{1}{\tau^{2k}} \sum_{l=0}^k \frac{(2k)!}{2^l \, l! \, (2(k-l))!} (4\alpha^2 \tau^2)^{k-l},$$

while the derivatives of odd order at 0 vanish.

It is well known (see Cramer, Leadbetter [4]) that R' exists as a real valued process under (1), is itself stationary and possesses the covariance functional -r''. Consequently, iteration $R^{(k)}$ exists as a real valued process with continuous sample paths, is stationary, and its covariance function is given by $(-1)^k r^{(2k)}$. This in particular means that by (1) R is a stochastic process with C^{∞} trajectories. Due to the exponential decay of the second moments of the Fourier coefficients, and the assumption that they be independent, the polynomials used in the simulations converge uniformly on $[-\frac{\pi}{2}, \frac{\pi}{2}]$ to the trajectories of R. Since this uniform convergence pertains to the derivative processes, we also know that at least non degenerate level crossing points and extrema converge. Therefore the subsequent pathwise analysis of localisation, in which we take R to be analytic (as the polynomials used in the simulation) will pertain when generalised to the stationary process R satisfying (1) as chosen in Monahan, Pandolfo, Imkeller [12].

This pathwise analysis will largely depend on the oscillation behaviour of processes closely related to R, and therefore directly with the oscillation behaviour of R itself. Let us therefore add a few remarks concerning the expected number of zero level crossings, extrema etc. which emerge from the famous Rice formula. According to the classical formula, the expected number of zero level crossings N_0 of R over the whole parameter range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is given by

$$E(N_0) = \left[-\frac{r''(0)}{r(0)} \right]^{\frac{1}{2}} = \left[\frac{1}{\tau^2} (1 + 4\alpha^2 \tau^2) \right]^{\frac{1}{2}},\tag{2}$$

the expected number of zero level crossings N'_0 of R' correspondingly by

$$E(N_0') = \left[-\frac{r^{(4)}(0)}{r''(0)} \right]^{\frac{1}{2}} = \left[\frac{1}{\tau^2} \frac{3 + 24\alpha^2 \tau^2 + 16\alpha^4 \tau^4}{1 + 4\alpha^2 \tau^2} \right]^{\frac{1}{2}}.$$
 (3)

A similar formula exists for R'' which is relevant below. There are explicit formulas for the law of the height of a maximum (depth of a well) conditional on its position, if the law of the stationary process is Gaussian (see Cramer, Leadbetter [4], p. 247) and similar quantities specifying the oscillation of the trajectories.

To explain the localisation phenomena observed in the simulations we resorted to a pathwise analysis for the following reason. There is no obvious way to use ergodic theory, despite the stationarity of R: the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ on which it lives is "too short". This situation is somewhat unfortunate, considering the fact that the powerful tools of the well developed theory of random Schrödinger operators are therefore not available. They are applied for example in Carmona, Lacroix

[2] which use multiplicative ergodic theory, and are thus able to express localisation in terms of the Lyapunov exponents of the system. If the use of stationary and self similar fields like fractional Brownian motion (known for example from Mandelbrot's works), instead of R would physically make sense, this approach would come into reach.

3. Transformation into Sturm-Liouville problems

We consider the linear equation for the spectral component of zonal wave number 1 of a small perturbation ψ to the zonally averaged streamfunction. The equation has been linearised with respect to a background zonal wind U, and reads

$$(U - i \mu a \cos \phi) \left[\cos \phi \frac{d}{d\phi} (\cos \phi \frac{d}{d\phi} \psi) - \psi\right]$$

$$-\cos^2 \phi \frac{d}{d\phi} \left[\frac{1}{\cos \phi} \frac{d}{d\phi} (U \cos \phi)\right] \psi + 2\Omega a \cos^3 \phi \psi = S(\phi).$$
(4)

This is equation (8) of Monahan, Pandolfo, Imkeller [12]. Here U is a random process given by

$$U(\phi) = \tilde{U}(\phi) + \eta U_{max} R(\phi),$$

where \tilde{U} describes the mean background wind, which in the idealised case of the superrotation flow is given by

$$\tilde{U}(\phi) = U_{eq} \cos \phi,$$

and R is a stationary centred stochastic process of unit variance, indexed by the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We shall concentrate on the case of a superrotation flow for most of the following notes. We fix a sample path of R and denote this function by the same symbol. Since in the numerical simulation R is taken to be a trigonometric polynomial, we shall assume for our analysis that the path of U we fix is real analytic. In fact, as has been explained in the previous section, the sample path properties of our stationary process R under (1) are such that, besides explaining the simulation result, our qualitative results will remain valid as we pass to the limit process.

Our first aim is to transcribe (4) into an extended Sturm-Liouville problem on the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$ or on $\mathbf R$ by introducing renormalisations of the functions involved, and eventually new natural coordinates. We abbreviate $\psi' = \frac{d}{d\phi}\psi, \psi'' = \frac{d^2}{d\phi^2}\psi$, and note

$$\cos\phi \, \frac{d}{d\phi}(\cos\phi \, \frac{d}{d\phi} \, \psi)(\phi) = -\sin\phi \, \cos\phi \, \psi'(\phi) + \cos^2\phi \, \psi''(\phi),$$

$$\cos^2 \phi \, \frac{d}{d\phi} \left[\frac{1}{\cos \phi} \, \frac{d}{d\phi} (U \cos \phi) \right] = -U(\phi) - \sin \phi \, \cos \phi \, U'(\phi) + \cos^2 \phi \, U''(\phi).$$

Using these identities, and dividing by $\cos^2 \phi$, we obtain the equation

$$[U\psi'' - \psi U''](\phi) - \tan\phi \left[U\psi' - \psi U'\right](\phi)$$

$$-i\mu a \left[-\frac{1}{\cos\phi}\psi(\phi) - \sin\phi\psi'(\phi) + \cos\phi\psi''(\phi)\right] + 2\Omega a \cos\phi\psi(\phi) = \frac{S(\phi)}{\cos^2\phi}.$$
(5)

We now normalize the functions to account for geometric factors, as is also done in the plots of [12]. For $\phi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ we let

$$\chi(\phi) = \psi(\phi) \sqrt{\cos \phi}, \quad V(\phi) = U(\phi) \sqrt{\cos \phi}.$$

One easily verifies the equations

$$\psi'(\phi) = \frac{1}{\sqrt{\cos \phi}} \left[\chi'(\phi) + \frac{1}{2} \tan \phi \, \chi(\phi) \right],\tag{6}$$

$$\psi''(\phi) = \frac{1}{\sqrt{\cos \phi}} [\chi''(\phi) + \tan \phi \, \chi'(\phi) + \frac{3}{4} \, \tan^2 \phi \, \chi(\phi) + \frac{1}{2} \, \chi(\phi)], \tag{7}$$

and analogous ones for V. Exploiting (6) and (7), one can see that (5) simplifies to the following equation

$$[V\chi'' - \chi V''](\phi)$$

$$+i\mu a \frac{1}{\sqrt{\cos \phi}} [(\frac{1}{2} + \frac{1}{4}\sin^2 \phi) \chi(\phi) - \cos^2 \phi \chi''(\phi)] + 2\Omega a \cos^{\frac{3}{2}} \phi \chi(\phi) = \frac{S(\phi)}{\cos \phi}.$$
(8)

We shall study the propagation and attenuation of ψ , and investigate mathematically the different factors described in [12] as responsible for the localisation of ψ in the numerical simulations. Recalling that the set of zeroes of U is finite, we fix therefore any interval $[\phi_1,\phi_2]$ bounded by *critical lines* on the interior of which U does not vanish, i.e. such that $U(\phi_i)=0, i=1,2, U|_{]\phi_1,\phi_2[}\neq 0$. These intervals are the same for the renormalized V. On the interval $]\phi_1,\phi_2[$, we may finally introduce another normalisation of χ which turns out to be quite practical for investigating the decay of ψ near the critical lines. For $\phi\in]-\frac{\pi}{2},\frac{\pi}{2}[$, we let

$$u(\phi) = \frac{\chi(\phi)}{V(\phi)} = \frac{\psi(\phi)}{U(\phi)}.$$

Then the obvious equation

$$V^2 u' = V \chi' - \chi V'$$

implies that on the interval $]\phi_1,\phi_2[$ we obtain the differential equation

$$(V^{2} u')'(\phi) + \frac{1}{\sqrt{\cos \phi}} [i\mu a \frac{\cos^{2} \phi}{V(\phi)} (V^{2} u')'(\phi)$$

$$+i\mu a [(\frac{1}{2} + \frac{1}{4} \sin^{2} \phi) V(\phi) + \cos^{2} \phi V''(\phi)] u(\phi) + 2\Omega a \cos^{2} \phi V u(\phi)] = \frac{S(\phi)}{\cos \phi}.$$
(9)

To abbreviate, define the positive geometric functions

$$g(\phi) = \frac{\frac{1}{2} + \frac{1}{4}\sin^2\phi}{\sqrt{\cos\phi}}, \quad h(\phi) = \cos^{\frac{3}{2}}\phi, \quad \phi \in [-\frac{\pi}{2}, \frac{\pi}{2}],$$

and the functions

$$\gamma = 2\Omega a h^2 - V'' h + g V, \quad T = \frac{S}{\cos \phi}.$$

We next define the differential operator of the second order on $]\phi_1, \phi_2[$

$$L u = (V^2 u')' + 2\Omega ah V u. \tag{10}$$

Then (9) can be written as

$$(1 - i\mu a \frac{h}{V}) Lu + i\mu a\gamma u = T.$$
(11)

When the friction μ vanishes, (11) takes the simpler form of the Sturm-Liouville type

$$Lu = \frac{S}{\cos \phi}. (12)$$

For non-vanishing friction, we may put u = v + iw and derive equations for the real and imaginary parts, giving

$$L v + \mu a \frac{h}{V} L w - \mu a \gamma w = T, \qquad (13)$$

$$L w - \mu a \frac{h}{V} L v + \mu a \gamma v = 0. \tag{14}$$

By substituting one into the other, (13) and (14) may finally be transformed into the equations

$$L v - \frac{(\mu a)^2 \frac{h}{V} \gamma}{1 + (\mu a \frac{h}{V})^2} v - \frac{\mu a \gamma}{1 + (\mu a \frac{h}{V})^2} w = \frac{T}{1 + (\mu a \frac{h}{V})^2}, \tag{15}$$

$$Lw - \frac{(\mu a)^2 \frac{h}{V} \gamma}{1 + (\mu a \frac{h}{V})^2} w + \frac{\mu a \gamma}{1 + (\mu a \frac{h}{V})^2} v = \frac{\mu a \frac{h}{V} T}{1 + (\mu a \frac{h}{V})^2}.$$
 (16)

Now note that if we finally set

$$\beta = \frac{V^2 + \mu^2 \frac{a}{2\Omega} (V'' h - Vg)}{V^2 + (\mu a h)^2},\tag{17}$$

and define a second order differential operator K by

$$K v = (V^2 v')' + 2\Omega ah \beta V v,$$

a little algebra shows

$$Lv - \frac{(\mu a)^2 \frac{h}{V} \gamma}{1 + (\mu a \frac{h}{V})^2} v = Kv,$$

and therefore (15) and (16) are given by

$$K v = \frac{V^2}{V^2 + (\mu a h)^2} (T + \mu a \gamma w), \tag{18}$$

$$K w = \frac{V^2 \mu a}{V^2 + (\mu a h)^2} \left(\frac{h}{V} T - \gamma v\right). \tag{19}$$

To finally compare the operators K and L, note that

$$\frac{K \, v - (V^2 \, v')'}{L \, v - (V^2 v')'} = \beta. \tag{20}$$

Due to the presence of V'', β fluctuates fast, whereas the geometric function h determining L is slowly fluctuating.

4. Critical lines for $\mu = 0$

Here we shall briefly discuss the behaviour of the wave function near the critical lines, in particular its decay there, in the simple case of null friction. We shall deal with (12) and show that ψ decays as fast as U, or equivalently χ as fast as V. For this purpose we shall study the homogeneous part of (12) first.

We shall assume that $\phi_1 > -\frac{\pi}{2}$, $\phi_2 < \frac{\pi}{2}$, and that $V'(\phi_1), V'(\phi_2) \neq 0$. This is the generic case. To save some writing, let $\phi_1 = 0$, $\phi_2 = 1$. Let us consider the singularity 0 of the differential equation first. Due to our assumptions, for x in a neighbourhood of 0, we have the equation

$$u''(x) + \frac{1}{x}h_1(x)u'(x) + \frac{1}{x}h_2(x)u(x) = 0,$$
(21)

with h_1, h_2 analytic in a neighbourhood of 0, and $h_1(0) = 2, h_2(0) = \frac{2\Omega a h(0)}{V'(0)}$. To describe the singularities of (21), we follow Walter [19] or Coddington, Levinson [3]. One may consider the singular system of the first order

$$y' = \frac{1}{r} A(x) \, y,$$

where

$$A(x) = \left[\begin{array}{cc} 0 & 1 \\ -xh_2(x) & 1 - h_1(x) \end{array} \right].$$

The zeroes of the characteristic polynomial $\lambda \mapsto (\lambda I - A(0))$ are then given by $\lambda_1 = -1, \lambda_2 = 0$. In this case it is well known that a fundamental system of solutions is given by

$$\hat{u}_1(x) = p(x), \tag{22}$$

$$\hat{u}_2(x) = \frac{1}{x} [p_1(x) + \log x \, p_2(x)],\tag{23}$$

with p, p_1, p_2 analytic in a neighbourhood of 0. Let us next discuss the singularity 1. We have the expansion

$$u''(x) + \frac{1}{x-1}k_1(x)u'(x) + \frac{1}{x-1}k_2(x)u(x) = 0,$$
 (24)

where k_1, k_2 are analytic in a neighbourhood of 1, and $k_1(1) = 2, k_2(1) = \frac{2\Omega a h(1)}{V'(1)}$. The situation is thus the same as above, modulo the affine transformation $x \mapsto x + 1$, and we obtain the fundamental system of solutions with analytic functions q, q_1, q_2 in a neighbourhood of 1

$$\hat{v}_1(x) = q(x), \tag{25}$$

$$\hat{v}_2(x) = \frac{1}{x - 1} \left[q_1(x) + \log(1 - x) \, q_2(x) \right]. \tag{26}$$

Recalling local uniqueness in the interior of]0, 1[, we can now combine (22) and (26) as well as (23) and (25) by matching values of the functions and their derivatives, to obtain a fundamental system of solutions of the homogeneous part of (12). We return to the original coordinates and write the solutions as follows:

$$u_1(\phi) = \frac{a_1}{\phi - \phi_1} + \log(\phi - \phi_1) + v_1(\phi), \tag{27}$$

$$u_2(\phi) = \frac{a_2}{\phi_2 - \phi} + \log(\phi_2 - \phi) + v_2(\phi), \tag{28}$$

 $\phi \in]\phi_1, \phi_2[$, where a_1, a_2 are constants, v_1, v_2 are bounded and continuous on $[\phi_1, \phi_2]$. In fact, the functions are analytic except at a finite number of points. It is well known that in this context the Green's kernel is given by

$$\Gamma(x,y) = u_1(x) u_2(y) 1_{[\phi_1,x]}(y) + u_2(x) u_1(y) 1_{[x,\phi_2]}(y),$$

 $x, y \in [\phi_1, \phi_2]$. Thus a solution of the inhomogeneous problem (12) is well defined and given by the formula

$$u(\phi) = \int_{\phi_1}^{\phi_2} \Gamma(\phi, y) T(y) dy. \tag{29}$$

By our assumptions $T = \frac{S}{\cos \phi}$ is bounded and continuous on $[\phi_1, \phi_2]$, so that by our choice of fundamental system we have

$$u(\phi) = \int_{\phi_1}^{\phi} T(y) \, u_2(y) \, dy \cdot u_1(\phi) + \int_{\phi}^{\phi_2} T(y) \, u_1(y) \, dy \cdot u_2(\phi),$$

 $\phi \in]\phi_1, \phi_2[$. But the properties of the solutions u_1, u_2 imply immediately that u can be continuously extended to the whole of $[\phi_1, \phi_2]$. Hence

$$\psi = U u \tag{30}$$

is a solution of (4) for $\mu=0$ on the interval $[\phi_1,\phi_2]$, which satisfies $\psi(\phi_i)=0, i=1,2,$ and $|\psi(\phi)|\leq c|U(\phi)|$ for all $\phi\in[\phi_1,\phi_2]$. Hence the solution of (4) decays like U near the critical lines. This in particular means that ψ cannot survive the critical lines next to the source S, and decays like U there. We formulate this fact more

precisely. Let $C \subset]-\frac{\pi}{2},\frac{\pi}{2}[$ be the compact support of S. Recall our hypothesis that U possesses roots, and let

$$\begin{array}{lcl} \underline{\phi} & = & \sup\{\phi: U(\phi) = 0, [-\frac{\pi}{2}, \phi] \cap C = \emptyset\}, \\ \overline{\phi} & = & \inf\{\phi: U(\phi) = 0, [\phi, \frac{\pi}{2}] \cap C = \emptyset\}. \end{array}$$

We can then apply the solution algorithm discussed above on all intervals in $[\underline{\phi}, \overline{\phi}]$ bounded by consecutive roots of U. We obviously obtain the following statement.

Theorem 4.1. Suppose $\mu = 0$, and that U has at least two roots in $]-\frac{\pi}{2}, \frac{\pi}{2}[$. Then there is a solution ψ of (4) which satisfies

$$|\psi(\phi)| \le c |U(\phi)| \tag{31}$$

for some constant c, and

$$\psi|_{\left[-\frac{\pi}{2},\phi\right]} = \psi|_{\left[\overline{\phi},\frac{\pi}{2}\right]} = 0. \tag{32}$$

Any solution of (4) satisfies (31).

5. Critical lines for general μ

The most important object determining the properties of the solutions in the preceding section was the Green's kernel Γ of the operator L. Instead of (12) we now have to solve the pair of equations (18) and (19). This means we need information about the Green's kernel of the operator K instead. We fix again an interval between two consecutive zeroes ϕ_1, ϕ_2 of U or V. It is now essential to remark that the singularities of the fundamental system of solutions of the homogeneous part of (12) were completely determined by $h_1(x) = \frac{(x-\phi_1) V'(x)}{V(x)}$, resp. $k_1(x) = \frac{(x-\phi_2) V'(x)}{V(x)}$. So the essential difference between L and K, expressed in (20) through the fast fluctuating β , only enters through the non-singular parts of the solutions. Hence we may again choose a pair of fundamental solutions of the equation K v = 0 given by

$$u_1(\phi) = \frac{b_1}{\phi - \phi_1} + \log(\phi - \phi_1) + w_1(\phi), \tag{33}$$

$$u_2(\phi) = \frac{b_2}{\phi_2 - \phi} + \log(\phi_2 - \phi) + w_2(\phi), \tag{34}$$

 $\phi \in]\phi_1, \phi_2[$, where b_1, b_2 are constants, w_1, w_2 are bounded and continuous on $[\phi_1, \phi_2]$. The Green's kernel of K therefore has the same structure as that of L in the preceding section

$$\Lambda(x,y) = u_1(x) u_2(y) 1_{[\phi_1,x]}(y) + u_2(x) u_1(y) 1_{[x,\phi_2]}(y),$$

 $x, y \in [\phi_1, \phi_2]$. Via convolution

$$\Lambda p(x) = \int_{\phi_1}^{\phi_2} \Lambda(x, y) p(y) dy, \quad x \in [\phi_1, \phi_2],$$

A well defines a linear operator on the space of continuous functions $C([\phi_1, \phi_2])$. It is not hard to show that it is bounded with respect to the \sup -norm $||.||_{\infty}$. Indeed, we have

$$\begin{split} ||\Lambda \, p||_{\infty} & = \sup_{x \in [\phi_1, \phi_2]} |u_1(x) \, \int_{\phi_1}^x u_2(y) \, p(y) \, dy + u_2(x) \, \int_x^{\phi_2} u_1(y) \, p(y) \, dy | \\ & \leq \sup_{x \in [\phi_1, \phi_2]} |u_1(x)| \, \int_{\phi_1}^x |u_2(y)| \, dy + |u_2(x)| \, \int_x^{\phi_2} |u_1(y)| \, dy] \, ||p||_{\infty}, \end{split}$$

and (33) and (34) imply that the constant

$$\sup_{x\in \left[\phi_{1},\phi_{2}\right]}\left|u_{1}(x)\right|\,\int_{\phi_{1}}^{x}\left|u_{2}(y)\right|dy+\left|u_{2}(x)\right|\,\int_{x}^{\phi_{2}}\left|u_{1}(y)\right|dy$$

is finite. With this in mind, a few comments on the solvability of (18) and (19) are now in order.

Abbreviate
$$\alpha = \frac{V^2}{V^2 + (\mu a h)^2}$$
, define
$$\begin{aligned} w_0 &=& 0, \\ v_1 &=& \Lambda(\alpha T), \\ w_1 &=& \Lambda[\alpha(\frac{h}{V}T - \gamma \, v_1)], \end{aligned}$$

and recursively

$$\begin{array}{rcl} v_{n+1} & = & \Lambda[\alpha(T + \mu a \, \gamma \, w_n)], \\ \\ w_{n+1} & = & \mu a \, \Lambda[\alpha\,(\frac{h}{V}T - \gamma \, v_{n+1})]. \end{array}$$

Since Λ is bounded, a standard contraction argument provides the convergence of the sequences $(v_n)_{n\in\mathbb{N}}$ and $(w_n)_{n\in\mathbb{N}}$ in the space $C([\phi_1,\phi_2])$ with the norm $||.||_{\infty}$. In fact, the limits are even smoother, provide solutions of (18) and (19), and, still for $\mu < \frac{1}{a ||\Lambda \propto \gamma||}$ can be expressed in the Neumann series

$$v = \sum_{n=0}^{\infty} (-1)^n (\mu a)^{2n} (\Lambda \alpha \gamma)^{2n} \Lambda \alpha T + \sum_{n=0}^{\infty} (-1)^n (\mu a)^{2n+2} (\Lambda \alpha \gamma)^{2n+1} \Lambda \alpha \frac{h}{V} T,$$
(35)

$$w = \sum_{n=0}^{\infty} (-1)^n (\mu a)^{2n+1} (\Lambda \alpha \gamma)^{2n} \Lambda \alpha \frac{h}{V} T - \sum_{n=0}^{\infty} (-1)^n (\mu a)^{2n+1} (\Lambda \alpha \gamma)^{2n+1} \Lambda \alpha T.$$
(36)

By the continuity of v and w we can now finish our argument just as in the preceding section. Recalling u = v + iw, we have

$$\psi = U u \tag{37}$$

is a solution of (4) on the interval $[\phi_1, \phi_2]$, which satisfies $\psi(\phi_i) = 0, i = 1, 2$, and $|\psi(\phi)| \le c|U(\phi)|$ for all $\phi \in [\phi_1, \phi_2]$. Hence the solution of (4) decays like U near the critical lines. This again means that ψ cannot survive the critical lines next to the source S, and decays like U there. We formulate these facts in the following Theorem.

Theorem 5.1. Suppose that U has at least two roots in $]-\frac{\pi}{2},\frac{\pi}{2}[$. Then for $\mu < \frac{1}{a \mid |\Lambda \mid \alpha \mid \gamma \mid|}$ there is a solution ψ of (4) which satisfies

$$|\psi(\phi)| \le c |U(\phi)| \tag{38}$$

for some constant c, and

$$\psi|_{[-\frac{\pi}{2},\underline{\phi}]} = \psi|_{[\overline{\phi},\frac{\pi}{2}]} = 0. \tag{39}$$

Any solution of (4) satisfies (38).

Due to the fact that we express solutions in terms of Neumann series, we are forced in Theorem 5.1 to make statements only for μ inside the interval of convergence of these series. We omit here the mathematical treatment of the case of non-small μ , not without remarking that this case is clearly more relevant to atmospheric flow.

So far, the effects on wave amplitude caused by propagation through intervals of non-zero U or in regions where the function β fluctuates rapidly remain unexplained. To find a mathematical explanation, we need the spectral decomposition of the Green's kernel Λ .

6. The spectrum of L

We shall first consider the problem without damping, i. e. investigate the operator L. Here we have to distinguish two completely different cases with essentially different localisation patterns. Of course, as before we shall consider the situation on an interval $[\phi_1,\phi_2]$ bounded by critical lines. When $U|_{]\phi_1,\phi_2[}$ is negative, we shall see that the spectrum of L is purely continuous and coincides with that of the Laplace operator. As a consequence, possible localisation of waves related to negative U cannot be distinguished from that already produced by the critical lines. When $U|_{]\phi_1,\phi_2[}$ is positive, besides the continuous spectrum $[0,\infty[$ of the Laplace operator, there is a finite discrete set of negative eigenvalues, whose eigenfunctions are exponentially strongly localised, eventually near the negative absolute minimum of the effective potential function. We will describe the essential features of these eigenfunctions, in particular the decay pattern, by looking at their Liouville-Green approximation.

The potential function is not necessarily symmetric around the equator. Hence, convolutions of the spectral resolution of the associated Green's kernels Γ on the union of the finite number of excursion intervals of U with the source term will favour components which belong to negative ground states and at the same time are strongly localised and have a strong overlap with the source function. This seems to be responsible for the localisation around the source, as opposed to localisation by critical lines, which emerges for larger values of η as pointed out in [12]. Though we shall not explicitly derive statements about the random typical location of the absolute minimum of the potential function from the knowledge of the covariance function of R, it shall become qualitatively clear from the following discussion that this explanation is mathematically reasonable.

We therefore consider the eigenvalue problem

$$Lu + \lambda u = 0. (40)$$

To be able to refer to known results, let us transform the Sturm-Liouville form (40) into a more familiar Schrödinger type equation by using the classical variable change

$$x = T(\phi) = \int_{\phi_0}^{\phi} \frac{1}{V^2(\theta)} d\theta, \quad \phi_1 \le \phi \le \phi_2,$$

with some $\phi_0 \in]\phi_1, \phi_2[$, and set, for $x \in \mathbf{R}$

$$\begin{array}{rcl} w(x) & = & u(T^{-1}(x)), \\ W(x) & = & V(T^{-1}(x)), \\ p(x) & = & 2\Omega a h(T^{-1}(x)). \end{array}$$

Then (40) turns into

$$w'' + p W w + \lambda w = 0. \tag{41}$$

Of course, (40) and (41) have the same spectra. Now note that $\lim_{|x|\to\infty}|p\,W(x)|=0$. So if we can show that $p\,W$ is locally in the Kato class K_1 , a well known criterion based on Weyl's characterisation (see Carmona, Lacroix [2], p. 76), this will imply that the essential spectrum of L (i. e. the set of $\lambda\in\mathbf{R}$ for which the rank of the spectral projection in any vicinity of λ is infinite) is identical to the purely continuous spectrum $[0,\infty[$ of the Laplace operator. K_1 is just the set of measurable functions, say f on \mathbf{R} , for which the condition

$$\sup_{x \in \mathbf{R}} \int_{\{|x-y| \le 1\}} |f(y)| dy < \infty$$

is valid. Due to boundedness of p it is enough to show this for W. If K is a compact subset of \mathbb{R} , $T^{-1}(K)$ is a compact subset of $]\phi_1, \phi_2[$. Therefore,

$$\int_K |W(x)|\,dx = \int_{T^{-1}(K)} |V(\phi)|\,\frac{1}{V^2(\phi)}\,d\phi < \infty,$$

and W is locally in K_1 .

To comment on the type of localisation observed in (40), let us first consider the eigenfunctions corresponding to the continuous part of the spectrum. For this purpose we briefly look again at the solutions in the vicinity of the singular points ϕ_1, ϕ_2 , and concentrate on ϕ_1 . In a neighbourhood of ϕ_1 the differential equation is described by

$$u''(\phi) + \frac{1}{\phi - \phi_1} h_1(\phi) u'(\phi) + \frac{1}{(\phi - \phi_1)^2} h_2(\phi) u(\phi) = 0, \tag{42}$$

with h_1, h_2 analytic, and $h_1(\phi_1) = 2, h_2(\phi_1) = \frac{\lambda}{V'(\phi_1)^2}$. Arguing as in section 4, the singularities of the solutions are determined by the roots of the characteristic polynomial

$$\mu(\mu+1) + \frac{\lambda}{V'(\phi_1)^2} = 0,$$

i. e. by the exponents

$$\mu_{1/2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{\lambda}{V'(\phi_1)^2}}.$$

Keep in mind in the following discussion that, to return to eigensolutions of the eigenvalue problem corresponding to the original equation (4), we have to multiply by V the solutions discussed on the interval $]\phi_1,\phi_2[$. This way e.g. sublinear growth will have to be interpreted as a type of polynomial decay for (4). Let us first discuss the case $\lambda > \frac{1}{4}V'(\phi_1)^2$. In this case the solutions are of an oscillatory nature. A fundamental system is given by

$$u_1^{\lambda}(\phi) = (\phi - \phi_1)^{-\frac{1}{2}} \left[\cos(\sqrt{\frac{\lambda}{V'(\phi_1)^2} - \frac{1}{4}} \log(\phi - \phi_1))\right] + i \sin(\sqrt{\frac{\lambda}{V'(\phi_1)^2} - \frac{1}{4}} \log(\phi - \phi_1))\right] p_1(\phi),$$
(43)

$$u_2^{\lambda}(\phi) = (\phi - \phi_1)^{-\frac{1}{2}} \left[\cos(\sqrt{\frac{\lambda}{V'(\phi_1)^2} - \frac{1}{4}} \log(\phi - \phi_1))\right] -i \sin(\sqrt{\frac{\lambda}{V'(\phi_1)^2} - \frac{1}{4}} \log(\phi - \phi_1))\right] p_2(\phi),$$
(44)

with p_1, p_2 analytic, as long as $2\sqrt{\frac{\lambda}{V'(\phi_1)^2} - \frac{1}{4}} \notin i \mathbf{Z}$, and with an additional term containing

 $(\phi-\phi_1)^{-\frac{1}{2}}\log(\phi-\phi_1)$ instead of just $(\phi-\phi_1)^{-\frac{1}{2}}$ if it is an integer on the imaginary axis.

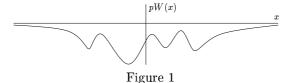
Let us now consider the case $0 \le \lambda \le \frac{\lambda}{V'(\phi_1)^2}$. Here we have a fundamental system of functions with sublinear growth given by

$$u_1^{\lambda}(\phi) = (\phi - \phi_1)^{-\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\lambda}{V'(\phi_1)^2}}} p_1(\phi), \tag{45}$$

$$u_2^{\lambda}(\phi) = (\phi - \phi_1)^{-\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\lambda}{V'(\phi_1)^2}}} p_2(\phi), \tag{46}$$

with p_1, p_2 analytic, plus an eventual logarithmic term.

To come to the part of the spectrum located on the negative half axis, we now have to distinguish between U<0 and U>0. Let us first argue for the simpler case $U|_{]\phi_1,\phi_2[}<0$, i. e. W<0. A typical sample function of the potential function pW is presented in Figure 1.



To explain the spectrum, we make use of the well known relationship between spectral theory and the oscillation theory of eigenfunctions, as for example presented in Dunford and Schwartz [5]. First of all, if $\lambda < 0$, a pair of independent solutions is still given by formulas (45) and (46). But now (46) does no more respect the critical lines, since we have

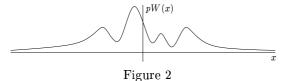
$$\lim_{\phi \to \phi_1} V(\phi) \, u_2^{\lambda}(\phi) \in \{\pm \infty\}.$$

Hence there is only one solution satisfying the boundary condition

$$\lim_{\phi \to \phi_1} V(\phi) \, u^{\lambda}(\phi) = 0$$

at ϕ_1 , namely u_1^{λ} . But since the same situation is met near ϕ_2 , an argument involving analyticity and growth at the singular points shows that u_1^{λ} has to vanish. Hence the point spectrum below the infimum 0 of the essential spectrum is void.

Let us now consider the case $U|_{]\phi_1,\phi_2[} > 0$, i. e. W > 0. A typical sample of the potential function pW has the shape depicted in Figure 2.



The operator -L is bounded below by the constant $-\sup_{x\in\mathbf{R}} pW(x)$. Moreover, the regularity of (45) and (46) and their analogues near ϕ_2 entail that there is at least one solution for $\lambda=0$ which has only finitely many zeroes. Hence the hypotheses of Theorem 55 in Dunford and Schwartz [5], p. 1480, are satisfied and

oscillation theory implies that the spectrum between $-\infty$ and 0 is pure point and contains a finite number of eigenvalues. We shall now give a qualitative description of a typical solution using the Liouville-Green approximation, usually called WKB approximation. A nice presentation of this approximation that also keeps track of the resulting errors can be found in Olver [13]. Fix a negative eigenvalue λ . Abbreviate

$$f(x) = -pW(x) - \lambda.$$

Since $\lim_{|x|\to\infty} pW(x) = 0$, **R** can be decomposed into finitely many intervals $]-\infty,\kappa_o], [\kappa_0,\kappa_1],\cdots,[\kappa_{n-1},\kappa_n], [\kappa_n,\infty[$ such that in the interior of each of the compact ones f has exactly one up- or downcrossing of level 0, and such that on the unbounded ones f is positive and bounded below by $\frac{|\lambda|}{2}$. To describe the behaviour of the eigensolution on one of the compact intervals, let us consider $[\kappa_1,\kappa_2]$ on which f has an upcrossing, say, at x_0 . We follow Olver [13], pp. 397-400, and define

$$r(x) = \left[\frac{f(x)}{x - x_0}\right]^{\frac{1}{2}},$$

$$s(x) = \frac{1}{(x - x_0)^{\frac{3}{2}}} \int_{x_0}^{x} (t - x_0)^{\frac{1}{2}} r(t) dt,$$

$$\xi(x) = (x - x_0) \left[\frac{3}{2} s(x)\right]^{\frac{2}{3}},$$

$$\hat{f}(x) = r^2(x) \left[\frac{3}{2} s(x)\right]^{\frac{2}{3}},$$

 $x \in \mathbf{R}$. Then according to Olver [13], p. 399, our equation on $[\kappa_1, \kappa_2]$ has the independent solutions

$$w_1^{\lambda}(x) = \hat{f}^{-\frac{1}{4}}(x)[Bi(\xi(x)) + \epsilon_1(x)], \tag{47}$$

$$w_2^{\lambda}(x) = \hat{f}^{-\frac{1}{4}}(x)[Ai(\xi(x)) + \epsilon_2(x)], \tag{48}$$

with uniformly bounded errors ϵ_1, ϵ_2 , and Airy's integrals

$$Ai(x) = \frac{1}{\pi} \int_0^\infty \cos(\frac{1}{3}t^3 + x t) dt,$$

$$Bi(x) = \frac{1}{\pi} \int_0^\infty \left[\exp(-\frac{1}{3}t^3 + x t) + \sin(\frac{1}{3}t^3 + x t) \right] dt,$$

 $x \in \mathbf{R}$. Let us now come to the essential point of localisation, and describe the behaviour of the solutions on one of the unbounded intervals, say $[\kappa_n, \infty[$. Here we may, still following Olver [13], p. 193, find the solution

$$w^{\lambda}(x) = f(x)^{-\frac{1}{4}} \exp(-\int_{\kappa_{-}}^{x} \sqrt{f(y)} \, dy) (1 + \epsilon(x)), \tag{49}$$

with an error function ϵ which is bounded on $[\kappa_n, \infty[$. Most importantly, due to the fact that f is bounded below by $\frac{|\lambda|}{2}$, the solution decays exponentially as $x \to \infty$, where the exponential decay rate is at least as big as the (random) spectral gap

between 0 and the closest negative eigenvalue. Of course, by matching boundary values, solutions on the finite set of intervals can be reasonably glued together to yield the eigenfunction for λ . To make the main finding clearer, let us restate it in the framework of the old coordinates. Given an eigenvalue $\lambda < 0$, there is an interval $[\kappa_1, \kappa_2] \subset]\phi_1, \phi_2[$, depending crucially on the geometry of the potential function $2\Omega ahV$, and typically not symmetric with respect to the equator 0, such that the eigenfunction u^{λ} decays exponentially outside $[\kappa_1, \kappa_2]$ at a rate at least half the spectral gap.

We may summarise our findings in the following Theorem.

Theorem 6.1. Suppose $\mu = 0$. Let $\phi_1, \phi_2 \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ be such that $U(\phi_i) = 0, U'(\phi_i) \neq 0, i = 1, 2, U|_{]\phi_1, \phi_2[} \neq 0$. Then the essential part of the spectrum of L is given by $[0, \infty[$. The part of the spectrum contained in $]-\infty, 0[$ is pure point, and consists of at most finitely many simple eigenvalues.

Eigenfunctions for $\lambda > \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 have an oscillatory structure with a square root singularity, and given by (43), (44). Eigenfunctions for $0 \le \lambda \le \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 have a singularity of sublinear growth, and are given by (45), (46). Similar results hold near ϕ_2 .

For $U|_{]\phi_1,\phi_2[} < 0$, the point spectrum is empty.

For $U|_{|\phi_1,\phi_2|} > 0$, the point spectrum is generically non-empty.

For eigenvalues $\lambda < 0$ there exist intervals $[\kappa_1, \kappa_2] \subset]\phi_1, \phi_2[$ generically non-symmetric w.r.t. 0, such that the corresponding eigenfunctions decay exponentially in $(\phi - \phi_1)^{-\frac{1}{2}}$ resp. $(\phi_2 - \phi)^{-\frac{1}{2}}$ near ϕ_1 resp. ϕ_2 , at a rate at least half the spectral gap.

Corresponding eigenfunctions for the spectral decomposition related to (4) on the interval $[\phi_1, \phi_2]$ for $\lambda > \frac{1}{4}V'(\phi_1)^2$ and near ϕ_1 are oscillatory and have a square root decay. For $0 \le \lambda \le \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 they have a decay of a sublinear power. Similar results hold near ϕ_2 . For the finitely many negative eigenvalues outside of the compact subintervals generically non-symmetric w.r.t. 0 eigenfunctions decay exponentially in $(\phi - \phi_1)^{-\frac{1}{2}}$ resp. $(\phi_2 - \phi)^{-\frac{1}{2}}$ near ϕ_1 resp. ϕ_2 , at a rate at least half the spectral gap.

The results of Theorem 6.1 carry obvious consequences for the localisation of solutions of (4) with a strongly local source S. One may write out a spectral resolution of the Green's kernel Λ using the information of the Theorem, and then take the convolution of the kernel with the source function. According to the statements of the Theorem, in intervals of negative U bounded by critical lines, the decay of eigenfunctions is at most polynomial near the critical lines. Hence the localisation effect caused by the presence of critical lines will not be topped by much. In particular, the geometry of the random potential U will not play a big role in these intervals. Physically, cases of negative U are less relevant for the earth's atmosphere. This is because outside of the surface layer flows are mostly positive (i.e. from the west) when averaged zonally (i.e. along a parallel of latitude).

In addition, the conservation of potential vorticity by atmospheric motions of planetary scale implies that vorticity waves generated by a source embedded in a negative U flow will be localised near the source. For all these reasons, the structure of the U field away from the source region is not as important as the structure of the source itself in determining the resulting shape of $\psi(\phi)$.

However, since we consider the example of flows for which the ensemble average is described by a superrotation, intervals of positive U are much more important. In fact, generically for these flows, intervals of positive U bounded by critical lines exist throughout the flow. They are larger near the equator and decrease in width toward the poles. If for some negative eigenvalue, the position and size of the characteristic interval outside of which exponential localisation takes place strongly overlaps with the support of the source, the contribution of its eigenfunction to the solution of (4) will be large. Consequently, the localisation will be centred around the source, and non-symmetric w.r.t. the equator. So if the fluctuations of U governed by the parameter η are sufficiently large, there will be a localisation effect around the source that overrides the effect of the critical lines described above.

Due to the stronger fluctuations of U'' as compared to U the localisation effect just described will still be enhanced when passing to the case of non-zero friction. We shall treat this case in the following section.

7. The spectrum of K

Let us fix again an interval $[\phi_1, \phi_2]$ bounded by critical lines, on which U does not vanish. As was pointed out when discussing the critical lines for general μ , localisation of solutions of (4) is closely related to the spectral decomposition of the Green's kernel Λ of K. We shall now point out that this spectrum is different from the one of L. Due to the appearance of the function β in the potential function of K, which strongly depends on the second derivative of R, the system undergoes stronger fluctuations than without friction. Therefore the localising effect of the negative part of the spectrum will be enhanced. So generically we have the same picture for intervals of positive U as in the preceding section, with the exception that the point spectrum exerts a stronger localising effect.

Gluing together the intervals bounded by critical lines as usual, and using spectral resolutions of the Green's kernels on each of the intervals, we see that this leads to the same overall localisation picture as in the preceding section, except that the localisation around the source is enhanced.

We have to consider the eigenvalue problem

$$Ku + \lambda u = 0 \tag{50}$$

on the fixed excursion interval $[\phi_1, \phi_2]$ of V from 0. Recall from (20) that the essential difference between L and K is the function β which contains the heavily fluctuating quantity V''. Let us start our analysis with a few, still superficial,

remarks about the oscillation behaviour of β . Recall that we are discussing the superrotation flow, and set, for simplicity, $U_{max} = 1$. So we have

$$U(\phi) = \cos \phi + \eta R(\phi).$$

Using the notation of previous sections and the definition of V, a little algebra gives us the equations

$$[V'' h - V g](\phi) = -2 \cos^3 \phi + \eta [R''(\phi) \cos^2 \phi - R'(\phi) \sin \phi \cos \phi - R(\phi)]$$

= -2 \cos^3 \phi + \eta[\cos \phi (R' \cos \phi)' - R(\phi)],

and thus, abbreviating $\epsilon = \frac{\mu^2 a}{2\Omega}$,

$$\beta [V^{2} + (\mu a h)^{2}](\phi) = [V^{2} + \epsilon (V'' h - V g)](\phi)$$

$$= \cos^{2} \phi (1 - 2\epsilon \cos \phi) + \eta^{2} R^{2}(\phi)$$

$$+ \eta [(2 \cos \phi - \epsilon) R(\phi) + \epsilon \cos \phi (R' \cos \phi)'(\phi)].$$
(51)

Equation (51) describes the fluctuation of β around zero . From the remarks made in section 2 about the moments and regularity of R, we know that

$$E(R(0)^{2}) = 1,$$

$$E(R'(0)^{2}) = \frac{1}{\tau^{2}}[1 + 4\alpha^{2} \tau^{2}],$$

$$E(R''(0)^{2}) = \frac{1}{\tau^{4}}[3 + 24\alpha^{2} \tau^{2} + 16\alpha^{4} \tau^{4}].$$

Then, it becomes plausible that the term in (50) which contributes most to the fluctuation of β around 0 is given by $\cos \phi(R'\cos \phi)'$. In addition, because of the presence of the two cos functions in this term the amplitude of its fluctuations will be larger around the equator. To stick to our pathwise analysis, we choose a typical trajectory of R for which β in the interval $[\phi_1, \phi_2]$ will have several zero crossings and local minima below 0 of varying depth. Let us, as in the preceding section,transform the Sturm-Liouville form (49) into a more familiar Schrödinger type equation by the change of variables

$$x = T(\phi) = \int_{\phi_0}^{\phi} \frac{1}{V^2(\theta)} d\theta, \quad \phi_1 \le \phi \le \phi_2,$$

with some $\phi_0 \in]\phi_1, \phi_2[$. Then, writing

$$\begin{array}{rcl} w(x) & = & u(T^{-1}(x)), \\ W(x) & = & V(T^{-1}(x)), \\ p(x) & = & 2\Omega a h(T^{-1}(x)), \\ \gamma(x) & = & \beta(T^{-1}(x)), \end{array}$$

we obtain the eigenvalue problem

$$w'' + p W \gamma w + \lambda w = 0. \tag{52}$$

A typical trajectory of $pW\gamma$ looks like Figure 3.

Figure 3

With the same arguments as in the preceding section we see that the potential function is in the Kato class K_1 , and obviously we have

$$\lim_{|x|\to\infty} pW\gamma(x) = 0.$$

Therefore according to Carmona and Lacroix [2] the essential spectrum of the operator K is the same as the continuous spectrum of the Laplace operator $[0, \infty[$. Again -K is bounded below by the constant $-\sup_{x\in\mathbf{R}} pW\gamma(x)$. Hence we may apply oscillation theory as before to obtain the main result.

Theorem 7.1. Suppose $\mu \neq 0$. Let $\phi_1, \phi_2 \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ be such that $U(\phi_i) = 0, U'(\phi_i) \neq 0, i = 1, 2, U|_{]\phi_1, \phi_2[} \neq 0$. Then the essential part of the spectrum of K is given by $[0, \infty[$. The part of the spectrum contained in $]-\infty, 0[$ is pure point, and consists of at most finitely many simple eigenvalues.

Eigenfunctions for $\lambda > \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 have an oscillatory structure with a square root singularity, and given by (43), (44). Eigenfunctions for $0 \le \lambda \le \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 have a singularity of sublinear growth, and are given by (45), (46). Similar results hold near ϕ_2 .

For eigenvalues $\lambda < 0$ there exist intervals $[\kappa_1, \kappa_2] \subset]\phi_1, \phi_2[$ generically non-symmetric w.r.t. 0, such that the corresponding eigenfunctions decay exponentially in $(\phi - \phi_1)^{-\frac{1}{2}}$ resp. $(\phi_2 - \phi)^{-\frac{1}{2}}$ near ϕ_1 resp. ϕ_2 , at a rate at least half the spectral gap.

Corresponding eigenfunctions for the spectral decomposition related to (4) on the interval $[\phi_1,\phi_2]$ for $\lambda > \frac{1}{4}V'(\phi_1)^2$ and near ϕ_1 are oscillatory and have a square root decay. For $0 \le \lambda \le \frac{1}{4}V'(\phi_1)^2$ near ϕ_1 they have a decay of a sublinear power. Similar results hold near ϕ_2 . For the finitely many negative eigenvalues outside of the compact subintervals generically non-symmetric w.r.t. 0, eigenfunctions decay exponentially in $(\phi - \phi_1)^{-\frac{1}{2}}$ resp. $(\phi_2 - \phi)^{-\frac{1}{2}}$ near ϕ_1 resp. ϕ_2 , at a rate at least half the spectral gap.

A few remarks concerning the difference in localisation with and without friction are in order. First of all, since the moments of R''(0) are essentially higher than the ones of R(0), an asymptotic estimate of the number of negative eigenvalues (which in the given setting is another challenge considering that we cannot employ ergodic theory in an obvious manner), should reveal that the proportion of the point spectrum to the entire spectrum is much higher for K than for L. Also, when friction is included, the eigenvalues should be located deeper on average. Therefore generically the localisation effect outside small characteristic intervals

defined by the deepest potential wells should be stronger. So we would expect localisation around the source to overrun the basic localisation by the critical lines at lower values of the parameter η . To make these statements precise, one should perhaps make some assumptions on the stationary process R that would allow one to bring ergodic theory into the game, especially for applying multiplicative ergodic theory, and to be able to argue with Lyapunov exponents for describing localisation.

References

- [1] L. Arnold, Random dynamical systems. Springer: Berlin 1999.
- [2] R. Carmona, J. LaCroix, Spectral theory of random Schrödinger operators. Birkhäuser: Basel 1990.
- [3] E. A. Coddington, N. Levinson, Theory of ordinary differential equations. McGraw-Hill: New York 1955.
- [4] H. Cramer, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications. New York-London-Sydney: John Wiley and Sons, 1967.
- [5] N. Dunford, J. T. Schwartz, Linear Operators. Part II. Spectral Theory. New York: Wiley 1963.
- [6] S. A. Gredeskul, A. V. Marchenko, L. A. Pastur, Particle and wave transmission in one-dimensional disordered systems. Freidlin. M. (ed.) et al., Surveys in Applied Mathematics. Vol. 2. New York: Plenum Press. 63.166 (1995)
- [7] P. D. Hislop, I. M. Segal, Introduction to spectral theory. With applications to Schroedinger operators. Appl. Math. Sci. 113. New York: Springer 1996.
- [8] W. Kohler, G. Papanicolaou, B. White, Localization of low frequency elastic waves. S. A. Molchanov (ed.) et al., Stochastic models in geosystems. Based on a workshop, held during the week of May 16, 1994 at IMA, Minneapolis, MN, USA. Berlin: Springer. IMA Vol. Math. Appl. 85, 209-217 (1997).
- [9] S. Kotani, N. Ushiroya, One-dimensional Schroedinger operators with random decaying potentials. Comm. Math. Phys. 115 (1988), 247-266.
- [10] M. F. Kratz, J. R. Leon, Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes. Stoch. Proc. Appl. 66 (1997), 237-252.
- [11] S. Molchanov, Lectures on random media. P. Bernard (ed.), Lectures on Probability Theory. Ecole d'Eté de Probabilités de St. Flour XXII-1992. LNM 1581, 242-441. Berlin: Springer 1994.
- [12] A. Monahan, L. Pandolfo, P. Imkeller Stochastic Confinement of Rossby Waves by Fluctuating Eastward Flows. In this volume (2000).
- [13] F. Olver, Asymptotics and special functions. Boston: Academic Press 1974.
- [14] A. N. Shiryaev Probability. Graduate Texts in Mathematics. 95. New York, NY: Springer-Verlag 1995.
- [15] L. Pandolfo, A. Sutera, Rossby waves in a fluctuating zonal mean flow. Tellus 43 (1991), 257-265.

- [16] L. Pastur, A. Figotin, Spectra of random and almost periodic operators. Grundlehren der Mathematischen Wissenschaften. 297. Berlin: Springer 1992.
- [17] P. Stollmann Caught by disorder: lectures on bound states in random media. Preliminary version of book: Univ. Frankfurt 2000.
- [18] A. S. Sznitman Brownian motion, obstacles, and random media. Springer: Berlin 1998
- [19] W. Walter, Gewöhnliche Differentialgleichungen. Zweite Auflage. Springer: Berlin 1976.

Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

 $E ext{-}mail\ address: imkeller@mathematik.hu-berlin.de}$

Earth and Ocean Sciences and Crisis Point Group, Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, B. C., Canada

 $E\text{-}mail\ address: \verb|monahan@ocgy.ubc.ca|, lionel@ocgy.ubc.ca|}$