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Abstract. In this article we develop some mathematically rigorous ideas to
explain the phenomenon of localisation of planetary waves in a stochastic
background flow as presented in the physical companion paper. For this pur-
pose the barotropic vorticity equation linearised around a zonal background
wind and driven by a local source is transformed into a Sturm-Liouville prob-
lem with random potential function. We distinguish between two types of
localising mechanisms. The first type is a background effect of localisation
symmetrical with respect to the equator which is due to the nodes of the po-
tential function (critical lines). The second is a more subtle effect and forces
localisation around the source. It comes from the superposition of the source
term with the Green’s kernel expressed in terms of the eigenfunctions of the
spectral resolution of the random Sturm-Liouville operators involved. On av-
erage, this effect is moderate for zero damping, and stronger for small non-zero
damping.

1. Introduction

In this second part we shall tackle the problem of wave localisation using a more
rigorous mathematical approach. The goal is to provide a mathematical theory
with which to explain the hypothesis put forth as an explanation of the numer-
ical simulations presented in the first part[12]. As we shall see, the problem of
analysing a small perturbation of the vorticity equation pre-existing on a random
background zonal wind leads into the outskirts of a well developed and under-
stood area of mathematics known as random Schrédinger operators (see for exam-
ple Carmona, Lacroix [2] or Stollmann [17]). In fact, simple algebraic operations
allow the transformation of the key equation (9) of [12] into an equation of the
Sturm-Liouville type with a random potential term. The main term characterising
the random medium being a stationary random process, one would suspect that
asymptotic properties such as the ones we are interested in, namely the decay
rates of waves propagating through the random medium, could be tackled using
the powerful tools of ergodic theory. They would then correspond to Lyapunov



2 P. Imkeller, A. H. Monahan, L. Pandolfo

exponents, objects by now well understood (see Arnold [1]). Yet, the situation is
somewhat unfortunate. The parameter space of our random process is [-7, 7],
physically the interval between south and north pole. This interval is simply too
short for the main argument of ergodic theory, according to which averages over
the parameter space on the long run can be replaced by phase space averages, to
be applied. Due to this annoying fact, we resort to a pathwise analysis of decay
of planetary waves. As we shall point out precisely below, the hypotheses made in
[12] on the random perturbation R of the potential function U lead to very smooth
paths. We show that the stationary process has in fact C'°°—paths. Since the wave
propagation and attenuation effects we are interested in are stable when passing
from a C* path to a still smoother one, we start by considering pathwise ana-
lytic potential functions. Once this is established, we use the tools of the classical
theory of singular differential equations and special functions, accompanied by the
Liouville-Green approximations of solutions commonly known as WKB approxi-
mations (see Olver [13]). Assuming typical path properties qualitatively derived
from Rice’s formula and other tools of the theory of stationary processes, we can
then explain some of the reasons causing the localisation patterns described in
[12]. We organise the presentation of the main results in the following way.

In section 2 we explain some smoothness and oscillation properties charac-
terising stationary stochastic processes such as the random component R of U
with properties chosen in [12]. Section 3 is devoted to transforming the key equa-
tion (9) of [12] into Sturm-Liouville equations with random potential functions. A
clear distinction is made between the cases of zero damping (u = 0) and non-zero
damping. The former leads to random differential operators of the second order
roughly of the form Lu = (V2?u')' + pVu with a random potential function V and
a slowly varying nonrandom positive function p. In the latter, L is replaced by a
more complicated operator K of the form Kv = (VZw')’ + pB8V with a new ran-
dom quantity § which fluctuates rather fast and changes sign relatively often on
average, even inside ezcursion intervals of the potential V, i.e. intervals bounded
by consecutive zeroes.

In the subsequent sections we explain the different mechanisms of localisation
resulting from the theory. There is, first of all, a background localisation effect
due to the presence of critical lines, i. e. latitudes at which the waves become
extinct. The critical lines are given by the zeroes of the random potential function
U(p) = Ueqgcos¢d + 1 Upaz R(¢), which, on average, are symmetrical around the
equator because of the particular choice made for the non-random part of U(¢).
In section 4, critical lines are discussed for zero damping and in section 5 for small
non-zero damping.

To describe the more subtle effects of localisation due to fluctuations in the
structure of U(¢), we have to study the random spectra of the operators L (for zero
damping) and K (for non-zero damping), restricted to excursion intervals of the
potential V. In section 6, we show that the continuous part of the spectrum of L lies
on the interval [0, o[, while the more interesting pure point part lies in | — oo, 0].
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For the case V' < 0, the pure point part is empty, while for V' > 0 it contains
at most finitely many negative eigenvalues. Eigenfunctions of negative eigenvalues
decay exponentially near the nodes of V. Since propagating waves are described
by superposing the Green’s kernel composed of the eigenfunctions with the source
term, this leads, for typical sample functions of V', to a moderate localisation
effect around the source (Theorem 6.1). In section 7, finally, this localisation effect
is studied for non-zero damping. Because of the strongly fluctuating factor £ in
K, which is due to its dependence on the second derivative of R, there is, firstly,
no distinction between intervals of positive resp. negative sign of V, and, secondly,
negative ground states lie deeper in narrower potential wells, thus causing, by
superposition with the source term, a more pronounced effect of localisation around
the source (Theorem 7.1).

2. Some remarks concerning path properties of R

We start with a few remarks concerning the consequences of the hypotheses made
on the covariance function of the stationary process R on the behaviour of the
paths. The basic hypothesis is

2
r(do) = E(R(8) R(o + bo) = exp(—120) cos(2a o), )
for ¢, po € [—7,%]. The following calculation involving Hermite polynomials will

clarify the structure of r and its bearing on path regularity. We may write

¢2
7’(‘25) = Re[exp(_ 9272 +2ia ¢)]a
and

2

exp(— g +2i @) = exp(~20°7%) exp(—3 [2 ~ 2iar]).

If we change variables according to v = % — 2iart, and define

p(1) = R(8), 5(7) =7(6) = exp(—57") exp(~20°7)

we obtain R' = % p', and therefore for k > 0, via the well known relationship

d 1 1
50 () = exp(—2a27?) (@)2’“ exp(—577) = exp(—=2077?) Hai () exp(—577)

the equation

rR ) = —kS(Zk)(—QiC!T)

1 1
= 5 exp(—20’7%) Hyp(—2iar) exp(—=(—2iar)?) = = Hap(—2iar).
T 2 T
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Here H; denotes the Hermite polynomial of degree ! defined implicitly in the
preceding equation. Using well known formulas for Hermite polynomials we finally

arrive at
k

T(Qk)((]) — (_1)ki (Zk)‘ !(4a272)k_l,

T2k = 2011 (2(k = 1))
while the derivatives of odd order at 0 vanish.

It is well known (see Cramer, Leadbetter [4]) that R’ exists as a real valued
process under (1), is itself stationary and possesses the covariance functional —r".
Consequently, iteration R*) exists as a real valued process with continuous sam-
ple paths, is stationary, and its covariance function is given by (—1)* r(2¥), This
in particular means that by (1) R is a stochastic process with C™ trajectories.
Due to the exponential decay of the second moments of the Fourier coefficients,
and the assumption that they be independent, the polynomials used in the simu-
lations converge uniformly on [-7, 7] to the trajectories of R. Since this uniform
convergence pertains to the derivative processes, we also know that at least non
degenerate level crossing points and extrema converge. Therefore the subsequent
pathwise analysis of localisation, in which we take R to be analytic (as the poly-
nomials used in the simulation) will pertain when generalised to the stationary

process R satisfying (1) as chosen in Monahan, Pandolfo, Imkeller [12].

This pathwise analysis will largely depend on the oscillation behaviour of
processes closely related to R, and therefore directly with the oscillation behaviour
of R itself. Let us therefore add a few remarks concerning the expected number
of zero level crossings, extrema etc. which emerge from the famous Rice formula.
According to the classical formula, the expected number of zero level crossings Ny
of R over the whole parameter range [—7, 7] is given by

r"(0).1 1 2,2\
B(No) = [ 1? = (51 +4atr)E, @)
the expected number of zero level crossings Nj of R’ correspondingly by
) (0) 1 3+ 240’7 4 160474
r 1 a’T att 1
E(N)) = [-——~2]7 =[—= 2. 3
( 0) [ 7’”(0) ]2 [7_2 1+4a27_2 ]2 ( )

A similar formula exists for R"” which is relevant below. There are explicit formulas
for the law of the height of a maximum (depth of a well) conditional on its position,
if the law of the stationary process is Gaussian (see Cramer, Leadbetter [4], p. 247)
and similar quantities specifying the oscillation of the trajectories.

To explain the localisation phenomena observed in the simulations we re-
sorted to a pathwise analysis for the following reason. There is no obvious way to
use ergodic theory, despite the stationarity of R: the interval [—F, 7] on which it
lives is "too short”. This situation is somewhat unfortunate, considering the fact
that the powerful tools of the well developed theory of random Schrédinger opera-

tors are therefore not available. They are applied for example in Carmona, Lacroix
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[2] which use multiplicative ergodic theory, and are thus able to express localisa-
tion in terms of the Lyapunov exponents of the system. If the use of stationary and
self similar fields like fractional Brownian motion (known for example from Man-
delbrot’s works), instead of R would physically make sense, this approach would
come into reach.

3. Transformation into Sturm-Liouville problems

We consider the linear equation for the spectral component of zonal wave number
1 of a small perturbation 9 to the zonally averaged streamfunction. The equation
has been linearised with respect to a background zonal wind U, and reads

(U i cosg) [cos 5 (cos s 5 ) 1] (4)

—c0s2¢% cols¢ %(U cos 9)] 1 +2Q a cos® ¢ b = S(¢).

This is equation (8) of Monahan, Pandolfo, Imkeller [12]. Here U is a random
process given by

U(¢) = U(9) + 1 Umas R(9),
where U describes the mean background wind, which in the idealised case of the
superrotation flow is given by

ﬁ(‘ﬁ) = Ueq Cos ¢>

and R is a stationary centred stochastic process of unit variance, indexed by the
mT T

interval [—-7, T]. We shall concentrate on the case of a superrotation flow for most
of the following notes. We fix a sample path of R and denote this function by the
same symbol. Since in the numerical simulation R is taken to be a trigonometric
polynomial, we shall assume for our analysis that the path of U we fix is real
analytic. In fact, as has been explained in the previous section, the sample path
properties of our stationary process R under (1) are such that, besides explaining
the simulation result, our qualitative results will remain valid as we pass to the

limit process.

Our first aim is to transcribe (4) into an extended Sturm-Liouville problem

on the interval [-7, 7] or on R by introducing renormalisations of the functions
involved, and eventually new natural coordinates. We abbreviate 1) = %w,w” =

d%«/}, and note

cos %(cos $ d% $)(8) = —sing cosd () + cos® d ¥ (4),

cos® ¢ % cols¢ %(U cos ¢)] = —U(#) —sin ¢ cos ¢ U'(¢) + cos® ¢ U" ().
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Using these identities, and dividing by cos? ¢, we obtain the equation

U4 - 9 U")(¢) — tang [U ' — HU')(9) )
ipal- _— (8) ~ sin ' (9) + cos 94" (6)] + 20a cos 9 () = S

We now normalize the functions to account for geometric factors, as is also done
in the plots of [12]. For ¢ € [-Z, 7] we let

X(8) = ¢(d) Veosp,  V(§) =U(¢)\/cos ¢.

One easily verifies the equations

$(g) = —

cos ¢

() + 5 tan 6 X (9], (©

V(0 = o= (0) +1ngx (9) + |t 9x() + 3 XOL ()

and analogous ones for V. Exploiting (6) and (7), one can see that (5) simplifies
to the following equation

Vx" —xV"](¢) (8)

(% + i sin’ ) x(6) — cos” X" ()] + 2 cos* ¢ x(9) = %

1

+ipa \/cquﬁ[
We shall study the propagation and attenuation of 1, and investigate mathemat-
ically the different factors described in [12] as responsible for the localisation of
in the numerical simulations. Recalling that the set of zeroes of U is finite, we fix
therefore any interval [¢1, ¢2] bounded by critical lines on the interior of which U
does not vanish, i.e. such that U(¢;) = 0,i = 1,2,Ul}4,,4,[ # 0. These intervals are
the same for the renormalized V. On the interval |¢y, ¢2[, we may finally introduce
another normalisation of x which turns out to be quite practical for investigating

the decay of 1 near the critical lines. For ¢ €] — 7, T, we let
X9 _ 99
"9 = 6) = Ug)

Then the obvious equation
V2u/ — VX/ _XV/
implies that on the interval ]¢1, o[ we obtain the differential equation
1 cos? ¢
V2u') (¢) + ipa V2u') (¢ 9
(V20 (9) + slina T (V) (6) ©)
S(¢)

+iua[(% + % sin® @)V (¢) + cos® ¢ V" (¢)] u(¢) + 2Qa cos”® ¢ Vu(g)] = c0s @)

To abbreviate, define the positive geometric functions
1,1 02
_ 3 tysin ¢

Veosgp

™

h(¢) = cos® ¢, ¢ €[+

9(4) 55
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and the functions
S

cos¢

v=2Qah®> - V"h+gV, T=

We next define the differential operator of the second order on |¢;, ¢of
Lu=(V*u") +2Qah Vu. (10)

Then (9) can be written as
h
(1—ipa V) Lu+ipayu =T. (11)

When the friction p vanishes, (11) takes the simpler form of the Sturm-Liouville
type
S

u= c0s g’ (12)

For non-vanishing friction, we may put u = v 4 iw and derive equations for the
real and imaginary parts, giving

h
Lv—}—pava—ua'yw:T, (13)

Lw—uagquLuawU:O. (14)

By substituting one into the other, (13) and (14) may finally be transformed into
the equations

(na)® ¢ v pa~y T
Lv— V_—y— w = , (15)
1+ (pag)? 1+ (pag)? 1+ (pagr)?
(pa)® &y pay _ papT
w— D g V= VR (16)
1+ (pay) 1+ (pay) 1+ (pay)
Now note that if we finally set
V242 L(V"h—-V
p= i 2, (a7
V2 + (uah)?
and define a second order differential operator K by
Kv=(V?v") +2Qah Vv,
a little algebra shows
2h
Lv— Lvhl v=Kuv,
1+ (pay;)
and therefore (15) and (16) are given by
V2
Kv=——= (T + payw), (18)

V2 + (pah)?



8 P. Imkeller, A. H. Monahan, L. Pandolfo

V2 ua h
Kw=———"-—(=T- . 1
YTy (uah)? (V ) (19)
To finally compare the operators K and L, note that
Kv— (V')
_— - 7 _— 4. 2
Lv— (V') B (20)

Due to the presence of V', 8 fluctuates fast, whereas the geometric function h
determining L is slowly fluctuating.

4. Critical lines for =0

Here we shall briefly discuss the behaviour of the wave function near the critical
lines, in particular its decay there, in the simple case of null friction. We shall deal
with (12) and show that ¢ decays as fast as U, or equivalently x as fast as V. For
this purpose we shall study the homogeneous part of (12) first.

We shall assume that ¢; > —Z,¢2 < %, and that V'(¢1),V'(¢2) # 0. This
is the generic case. To save some writing, let ¢1 = 0,2 = 1. Let us consider the
singularity 0 of the differential equation first. Due to our assumptions, for z in a
neighbourhood of 0, we have the equation

u'(z) + i hi(z)u'(x) + ihz(m) u(z) =0, (21)

with hy, hy analytic in a neighbourhood of 0, and hy (0) = 2,h(0) = 2. To
describe the singularities of (21), we follow Walter [19] or Coddington, Levinson

[3]. One may consider the singular system of the first order

1
y' = EA(:E) Y,

where

0 1
—zho(z) 1—hi(z) |~
The zeroes of the characteristic polynomial A — (A — A(0)) are then given by
A1 = —1,)Xy = 0. In this case it is well known that a fundamental system of
solutions is given by

A(z) =

i1(z) = p(@), (22)
i2(2) = ~{p1 (+) + log 2 pa(@)], (23)

with p, p1,p2 analytic in a neighbourhood of 0. Let us next discuss the singularity
1. We have the expansion

1 1

W' (@) + = I () ' () + —

ka(z) u(z) =0, (24)
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where ki, ko are analytic in a neighbourhood of 1, and k(1) = 2, k2 (1) = 2?,‘??1()1 )

The situation is thus the same as above, modulo the affine transformation z —
z + 1, and we obtain the fundamental system of solutions with analytic functions
q,q1,q2 in a neighbourhood of 1

01(z) = q(x), (25)

02(2) = — (&) + log(1 = ) o ()] (26)

Recalling local uniqueness in the interior of |0, 1[, we can now combine (22) and (26)
as well as (23) and (25) by matching values of the functions and their derivatives,
to obtain a fundamental system of solutions of the homogeneous part of (12). We
return to the original coordinates and write the solutions as follows:

ui(¢) = Py log(¢ — ¢1) +v1(9), (27)

a2
¢ — ¢
¢ €]¢1,d2[, where a1,as are constants, vy,v2 are bounded and continuous on

[¢1,¢=2]. In fact, the functions are analytic except at a finite number of points. It
is well known that in this context the Green’s kernel is given by

uz(9) = +log(d2 — @) + v2(9), (28)

L(z,y) = ui(x) u2(y) 1ig, 0] (¥) + u2(2) w1 (Y) 12,60 (1),

x,y € [¢1, P2]- Thus a solution of the inhomogeneous problem (12) is well defined
and given by the formula

b2
u(g) = / T'(6,y) T(y) dy. (29)

By our assumptions 7' = CO‘Z 3 is bounded and continuous on [¢1, 2], so that by

our choice of fundamental system we have

[} P2
u(g) = / T(y) ua(y) dy - ur () + /¢ T(y) ur (y) dy - us(6),

¢ €]¢1,P2[. But the properties of the solutions u,us imply immediately that u
can be continuously extended to the whole of [¢1, #=2]. Hence

Yv=Uu (30)

is a solution of (4) for 4 = 0 on the interval [¢;, ¢=], which satisfies ¥(¢;) =0, =
1,2, and |¢(9)| < c|U(¢)| for all ¢ € [¢1, ¢=2]. Hence the solution of (4) decays like
U near the critical lines. This in particular means that ) cannot survive the critical
lines next to the source S, and decays like U there. We formulate this fact more
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precisely. Let C' C] — 7, 7[ be the compact support of S. Recall our hypothesis

that U possesses roots, and let
¢ = sup{¢p:U($)=0,[-5,4InC =0},
inf{¢: U(9) = 0,6, 51N C = 0}.

¢

We can then apply the solution algorithm discussed above on all intervals in [¢, @]
bounded by consecutive roots of U. We obviously obtain the following statement.

Theorem 4.1. Suppose ju =0, and that U has at least two roots in | — T, Z[. Then
there is a solution v of (4) which satisfies

()| < c|U(9)| (31)

for some constant ¢, and
Vli-5.01 = Ylg,5 = 0 (32)
Any solution of (4) satisfies (31).

5. Critical lines for general 1

The most important object determining the properties of the solutions in the
preceding section was the Green’s kernel I' of the operator L. Instead of (12)
we now have to solve the pair of equations (18) and (19). This means we need
information about the Green’s kernel of the operator K instead. We fix again
an interval between two consecutive zeroes ¢1, ¢ of U or V. It is now essential
to remark that the singularities of the fundamental system of solutions of the

homogeneous part of (12) were completely determined by h(z) = %,

resp. ki(z) = % So the essential difference between L and K, expressed
in (20) through the fast fluctuating 3, only enters through the non-singular parts
of the solutions. Hence we may again choose a pair of fundamental solutions of the
equation K v = 0 given by

u1(¢) =

by

b— ¢

+1log(¢ — ¢1) + w1(9), (33)

by
P2 — @
¢ €]¢p1, P2[, where by, by are constants, wy,ws are bounded and continuous on

[¢1,¢P2]. The Green’s kernel of K therefore has the same structure as that of L in
the preceding section

up(9) = +log(¢2 — ¢) + wa(9), (34)

A(z,y) = wi(2) us(y) L, 2 (Y) + u2(z) w1 (y) 1z, (9),
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Z,y € [¢1, P2]- Via convolution

®2
Ap(z) = ; A(z,y)p(y) dy, = € [$1,¢2],
1
A well defines a linear operator on the space of continuous functions C([¢1, ¢2]).
It is not hard to show that it is bounded with respect to the sup—norm ||.||s-
Indeed, we have

T P2
[[Aplleo = ?;lqu]IM(w)/ uz(y)p(y)dy+u2(w)/ u1(y) p(y) dy|
TE|P1,02 1 x
T ¢2
< [ sw fu@)| [ Ju@ld+heE] [ uw]d [
z€[¢1,92] $1 z

and (33) and (34) imply that the constant

xz ¢2
sup fur ()] /¢ ua(w)ldy +ua(@)] [ furo)]dy

zE[P1,02]

is finite. With this in mind, a few comments on the solvability of (18) and (19) are
now in order.

Abbreviate a = #}jahﬁ’ define

wy = 0,
v = A(OLT),
h
w = A[a(VT—'yvl)],
and recursively
Unt1 = Ale(T + paywn)),
h

Wn+1 = Ha A[Q(VT—W%H)]-

Since A is bounded, a standard contraction argument provides the convergence of
the sequences (v, )nen and (wy)nen in the space C([¢1, ¢2]) with the norm ||.||oo.
In fact, the limits are even smoother, provide solutions of (18) and (19), and, still
for p < m can be expressed in the Neumann series

b= 3 (1) (ua)" (Aan) AaT + Y (1" (ua)*™ (Aa)*"* Aa o,
i = (35)
w= Y (1" (1) (A0 Ao BT — 3 (1) (ua)™ (A0r)*" Ao,
n=0 n=0

(36)
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By the continuity of v and w we can now finish our argument just as in the
preceding section. Recalling u = v + iw, we have

Y=Uu (37)

is a solution of (4) on the interval [¢1, ¢2], which satisfies ¥(¢;) = 0,7 = 1,2, and
[1h(P)| < c|U(@)] for all ¢ € [¢1, P2]. Hence the solution of (4) decays like U near
the critical lines. This again means that ¢ cannot survive the critical lines next to
the source S, and decays like U there. We formulate these facts in the following
Theorem.

Theorem 5.1. Suppose that U has at least two roots in | — 5, Z[. Then for p <
m there is a solution v of (4) which satisfies

()| < c|U(9)| (38)

for some constant ¢, and
V-39 = Ylig, 5 = 0- (39)
Any solution of (4) satisfies (38).

Due to the fact that we express solutions in terms of Neumann series, we
are forced in Theorem 5.1 to make statements only for p inside the interval of
convergence of these series. We omit here the mathematical treatment of the case
of non-small u, not without remarking that this case is clearly more relevant to
atmospheric flow.

So far, the effects on wave amplitude caused by propagation through intervals
of non-zero U or in regions where the function § fluctuates rapidly remain unex-
plained. To find a mathematical explanation, we need the spectral decomposition
of the Green’s kernel A.

6. The spectrum of L

We shall first consider the problem without damping, i. e. investigate the operator
L. Here we have to distinguish two completely different cases with essentially differ-
ent localisation patterns. Of course, as before we shall consider the situation on an
interval [¢1, ¢2] bounded by critical lines. When U}y, 4.[ is negative, we shall see
that the spectrum of L is purely continuous and coincides with that of the Laplace
operator. As a consequence, possible localisation of waves related to negative U
cannot be distinguished from that already produced by the critical lines. When
Uljg1,05] is positive, besides the continuous spectrum [0, oo of the Laplace opera-
tor, there is a finite discrete set of negative eigenvalues, whose eigenfunctions are
exponentially strongly localised, eventually near the negative absolute minimum
of the effective potential function. We will describe the essential features of these
eigenfunctions, in particular the decay pattern, by looking at their Liouville-Green
approximation.
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The potential function is not necessarily symmetric around the equator.
Hence, convolutions of the spectral resolution of the associated Green’s kernels
I" on the union of the finite number of excursion intervals of U with the source
term will favour components which belong to negative ground states and at the
same time are strongly localised and have a strong overlap with the source function.
This seems to be responsible for the localisation around the source, as opposed to
localisation by critical lines, which emerges for larger values of 7 as pointed out
in [12]. Though we shall not explicitly derive statements about the random typical
location of the absolute minimum of the potential function from the knowledge of
the covariance function of R, it shall become qualitatively clear from the following
discussion that this explanation is mathematically reasonable.

We therefore consider the eigenvalue problem
Lu+ Au=0. (40)

To be able to refer to known results, let us transform the Sturm-Liouville form
(40) into a more familiar Schrodinger type equation by using the classical variable
change

[
x:T((b):/qsoV%(mda’ ¢1 < ¢ < ¢,

with some ¢g €]¢1, P2[, and set, for z € R

wz) = u(T™(z)),
W(z) = V(I'™(2)),
p(z) = 20ah(T(z)).
Then (40) turns into
w" +pWw+Aw=0. (41)

Of course, (40) and (41) have the same spectra. Now note that lim |, o [p W (z)| =
0. So if we can show that p W is locally in the Kato class K1, a well known criterion
based on Weyl’s characterisation (see Carmona, Lacroix [2], p. 76), this will imply
that the essential spectrum of L (i. e. the set of A € R for which the rank of
the spectral projection in any vicinity of A is infinite) is identical to the purely
continuous spectrum [0, oo of the Laplace operator. K is just the set of measurable
functions, say f on R, for which the condition

sup / F@)ldy < oo
z€R J{|z—y|<1}

is valid. Due to boundedness of p it is enough to show this for W. If K is a compact
subset of R, T~1(K) is a compact subset of ]¢1, ¢2[. Therefore,

1
Wiz dxz/ 1% ——— d¢ < 00,
fw@laz= [ VO g a9
and W is locally in K.
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To comment on the type of localisation observed in (40), let us first consider
the eigenfunctions corresponding to the continuous part of the spectrum. For this
purpose we briefly look again at the solutions in the vicinity of the singular points
@1, @2, and concentrate on ¢;. In a neighbourhood of ¢; the differential equation
is described by

1 , 1
¢_¢1 hl(d’)u (¢) + (¢_¢1)2

with hl,hg analytic, and hl (¢1) = Q,hg(d)l) = W
the singularities of the solutions are determined by the roots of the characteristic
polynomial

u" (@) + h2(¢) u(¢) =0, (42)

Arguing as in section 4,

plp+1) + =0,

i. e. by the exponents

Hi/2 = 2

Keep in mind in the following discussion that, to return to eigensolutions
of the eigenvalue problem corresponding to the original equation (4), we have
to multiply by V the solutions discussed on the interval |¢1, ¢a[. This way e.g.
sublinear growth will have to be interpreted as a type of polynomial decay for (4).
Let us first discuss the case A > 1 V'(¢;)%. In this case the solutions are of an
oscillatory nature. A fundamental system is given by

W (8) = (9= ) Hloos(y g — 7 log@ =) (43
i siny | sy = 7 1080~ 61)] 21 (9)

W(8) = (9= o) Hoos(y G — 7 log@ =) (40
i siny | sy = 1 1080 = 61)] Pa(0)

with p;, p2 analytic, as long as 2 m — % & i Z, and with an additional term
containing

(q)—qbl)*% log(¢— ¢1) instead of just (¢—¢1)*% if it is an integer on the imaginary
axis.
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Let us now consider the case 0 < A\ < W Here we have a fundamental
system of functions with sublinear growth given by

W 6) = (p— 1) TV TG py(g), (45)

Py

u3(¢) = (¢ — ¢1) V1O pa(4), (46)

with pq, ps analytic, plus an eventual logarithmic term.

1 /i
2 4

To come to the part of the spectrum located on the negative half axis, we
now have to distinguish between U < 0 and U > 0. Let us first argue for the
simpler case Uljg,,4,[ < 0, i. . W < 0. A typical sample function of the potential
function pW is presented in Figure 1.

‘pW(E)

T

—~ F—

Figure 1

To explain the spectrum, we make use of the well known relationship be-
tween spectral theory and the oscillation theory of eigenfunctions, as for example
presented in Dunford and Schwartz [5]. First of all, if A < 0, a pair of indepen-
dent solutions is still given by formulas (45) and (46). But now (46) does no more
respect the critical lines, since we have

lim V() u}(9) € {=oc}.
$—¢1
Hence there is only one solution satisfying the boundary condition

Jm V(9) u(¢) =0

at ¢, namely u}. But since the same situation is met near ¢,, an argument
involving analyticity and growth at the singular points shows that u} has to vanish.
Hence the point spectrum below the infimum 0 of the essential spectrum is void.

Let us now consider the case Uljg, 4, > 0, i. . W > 0. A typical sample of
the potential function pIW has the shape depicted in Figure 2.
W (2)

\ T

Figure 2

The operator —L is bounded below by the constant —sup, g pW (x). More-
over, the regularity of (45) and (46) and their analogues near ¢, entail that there
is at least one solution for A = 0 which has only finitely many zeroes. Hence the
hypotheses of Theorem 55 in Dunford and Schwartz [5], p. 1480, are satisfied and
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oscillation theory implies that the spectrum between —oo and 0 is pure point and
contains a finite number of eigenvalues. We shall now give a qualitative descrip-
tion of a typical solution using the Liouville-Green approximation, usually called
WKB approximation. A nice presentation of this approximation that also keeps
track of the resulting errors can be found in Olver [13]. Fix a negative eigenvalue
A. Abbreviate

f(x) = —pW(z) - A.
Since lim 4, pW (z) = 0, R can be decomposed into finitely many intervals
] — 00, ko), [Ko, 1], -+ * 5 [Kn—1, Kn], [kn, 00[ such that in the interior of each of the
compact ones f has exactly one up- or downcrossing of level 0, and such that
on the unbounded ones f is positive and bounded below by %‘ To describe the
behaviour of the eigensolution on one of the compact intervals, let us consider
[£1, k2] on which f has an upcrossing, say, at zo. We follow Olver [13], pp. 397-
400, and define

@) = [
1 ¢ 1
@ = ooy [ o

@ = P@ sk,

z € R. Then according to Olver [13], p. 399, our equation on [k, k2] has the
independent solutions

wi(z) = 75 (2)[Bi(£(2)) + e (2)], (47)
w}(z) = {5 (@)[Ai(E(2)) + ex(2))], (48)
with uniformly bounded errors €1, €3, and Airy’s integrals
Ai(z) = %/00 cos(%t3 + zt) dt,
0
Bi(z) = % /oo[exp(—étﬁ - sin(%t3 +at)]dt,
0

z € R. Let us now come to the essential point of localisation, and describe the
behaviour of the solutions on one of the unbounded intervals, say [, co[. Here we
may, still following Olver [13], p. 193, find the solution

w(z) = f(z)" ¥ exp(— /a: VIy)dy) (1 +€(x)), (49)

with an error function € which is bounded on [y, 0o[. Most importantly, due to the

fact that f is bounded below by %, the solution decays exponentially as x — oo,
where the exponential decay rate is at least as big as the (random) spectral gap
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between 0 and the closest negative eigenvalue. Of course, by matching boundary
values, solutions on the finite set of intervals can be reasonably glued together to
yield the eigenfunction for A. To make the main finding clearer, let us restate it
in the framework of the old coordinates. Given an eigenvalue A\ < 0, there is an
interval [k1, k2] C]é1, P2[, depending crucially on the geometry of the potential
function 2QahV, and typically not symmetric with respect to the equator 0, such
that the eigenfunction u* decays exponentially outside [k1, k2] at a rate at least
half the spectral gap.
We may summarise our findings in the following Theorem.

Theorem 6.1. Suppose p = 0. Let ¢, 2 €]—5, T[ be such that U(¢p;) = 0,U'(¢;) #
0,4 = 1,2,U|j¢;,¢o[ # 0. Then the essential part of the spectrum of L is given by
[0, 00[. The part of the spectrum contained in | — 0o, 0[ is pure point, and consists

of at most finitely many simple eigenvalues.

Eigenfunctions for A > 1V'(¢1)? near ¢1 have an oscillatory structure with
a square root singularity, and given by (43), (44). Eigenfunctions for 0 < \ <
TV (¢1)? near ¢1 have a singularity of sublinear growth, and are given by (45),
(46). Similar results hold near ¢-.

For Uljg, g1 < 0, the point spectrum is empty.
For Uljs, 4.1 > 0, the point spectrum is generically non-empty.

For eigenvalues \ < 0 there ezist intervals [k1, k2] Cld1, 2| generically non-
symmetric w.r.t. 0, such that the corresponding eigenfunctions decay exponentially
in (¢ — qﬁl)’% resp. (¢2 — @) 2 mear ¢y resp. ¢, at a rate at least half the spectral
gap.

Corresponding eigenfunctions for the spectral decomposition related to (4) on
the interval [¢1, 2] for A > 1V'(¢1)? and near ¢y are oscillatory and have a square
root decay. For 0 < X\ < 1V'(¢1)? near ¢1 they have a decay of a sublinear power.
Similar results hold near ¢=. For the finitely many negative eigenvalues outside of
the compact subintervals generically non-symmetric w.r.t. 0 eigenfunctions decay
exponentially in (¢ — ¢1)’% resp. (P2 — qﬁ)_% near ¢1 resp. ¢=, at a rate at least
half the spectral gap.

The results of Theorem 6.1 carry obvious consequences for the localisation
of solutions of (4) with a strongly local source S. One may write out a spectral
resolution of the Green’s kernel A using the information of the Theorem, and
then take the convolution of the kernel with the source function. According to the
statements of the Theorem, in intervals of negative U bounded by critical lines,
the decay of eigenfunctions is at most polynomial near the critical lines. Hence
the localisation effect caused by the presence of critical lines will not be topped
by much. In particular, the geometry of the random potential U will not play a
big role in these intervals. Physically, cases of negative U are less relevant for the
earth’s atmosphere. This is because outside of the surface layer flows are mostly
positive (i.e. from the west) when averaged zonally (i.e. along a parallel of latitude).
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In addition, the conservation of potential vorticity by atmospheric motions of
planetary scale implies that vorticity waves generated by a source embedded in a
negative U flow will be localised near the source. For all these reasons, the structure
of the U field away from the source region is not as important as the structure of
the source itself in determining the resulting shape of ().

However, since we consider the example of flows for which the ensemble aver-
age is described by a superrotation, intervals of positive U are much more impor-
tant. In fact, generically for these flows, intervals of positive U bounded by critical
lines exist throughout the flow. They are larger near the equator and decrease
in width toward the poles. If for some negative eigenvalue, the position and size
of the characteristic interval outside of which exponential localisation takes place
strongly overlaps with the support of the source, the contribution of its eigen-
function to the solution of (4) will be large. Consequently, the localisation will be
centred around the source, and non-symmetric w.r.t. the equator. So if the fluc-
tuations of U governed by the parameter 7 are sufficiently large, there will be a
localisation effect around the source that overrides the effect of the critical lines
described above.

Due to the stronger fluctuations of U" as compared to U the localisation
effect just described will still be enhanced when passing to the case of non-zero
friction. We shall treat this case in the following section.

7. The spectrum of K

Let us fix again an interval [¢1, #2] bounded by critical lines, on which U does
not vanish. As was pointed out when discussing the critical lines for general p,
localisation of solutions of (4) is closely related to the spectral decomposition of
the Green’s kernel A of K. We shall now point out that this spectrum is different
from the one of L. Due to the appearance of the function 8 in the potential function
of K, which strongly depends on the second derivative of R, the system undergoes
stronger fluctuations than without friction. Therefore the localising effect of the
negative part of the spectrum will be enhanced. So generically we have the same
picture for intervals of positive U as in the preceding section, with the exception
that the point spectrum exerts a stronger localising effect.

Gluing together the intervals bounded by critical lines as usual, and using
spectral resolutions of the Green’s kernels on each of the intervals, we see that this
leads to the same overall localisation picture as in the preceding section, except
that the localisation around the source is enhanced.

We have to consider the eigenvalue problem
Ku+Au=0 (50)
on the fixed excursion interval [¢1, 2] of V from 0. Recall from (20) that the

essential difference between L and K is the function 8 which contains the heavily
fluctuating quantity V"'. Let us start our analysis with a few, still superficial,
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remarks about the oscillation behaviour of 8. Recall that we are discussing the
superrotation flow, and set, for simplicity, Upqee = 1. So we have

U(¢) = cos ¢ +n R(¢).

Using the notation of previous sections and the definition of V, a little algebra
gives us the equations

[V'h=Vgl(¢) = =2cos’¢+n[R"(g)cos’ ¢~ R'(¢)sing cosgp — R(9)]
= —2cos® ¢+ ncosd (R cosp) — R(9)],

and thus, abbreviating € = %,
BIV? + (uah)’l(¢) = [VZ+e(V"h—Vg)l(9) (51)
= cos® ¢ (1 —2e cos ) + n? R*(4)
+n[(2cos ¢ — €) R(p) + € cos ¢ (R' cos @)'(¢)].

Equation (51) describes the fluctuation of 5 around zero . From the remarks made
in section 2 about the moments and regularity of R, we know that

E(R(0)*) = 1,
BR(O0?) = [1+4a>r)
E(R"(0)%) = 7—14[3 + 2402 7% + 16a* 7).

Then, it becomes plausible that the term in (50) which contributes most to the
fluctuation of 8 around 0 is given by cos ¢(R' cos ¢)'. In addition, because of the
presence of the two cos functions in this term the amplitude of its fluctuations
will be larger around the equator. To stick to our pathwise analysis, we choose a
typical trajectory of R for which 8 in the interval [¢;, #2] will have several zero
crossings and local minima below 0 of varying depth. Let us, as in the preceding
section,transform the Sturm-Liouville form (49) into a more familiar Schrédinger
type equation by the change of variables

¢
x:T(q)):/%V%(mdo, 61 << o,

with some ¢¢ €]¢1, #2[. Then, writing

w@) = u(T (2)),
W(z) = V(I (2)),
pz) = 29ah(T~'(2)),

vz) = BT (),
we obtain the eigenvalue problem

w" +pWryw+ Aw =0. (52)
A typical trajectory of p W v looks like Figure 3.
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o M:W |

Figure 3

With the same arguments as in the preceding section we see that the potential

function is in the Kato class K7, and obviously we have
lim pW~(z) = 0.
|| —o0

Therefore according to Carmona and Lacroix [2] the essential spectrum of the
operator K is the same as the continuous spectrum of the Laplace operator [0, cof.
Again —K is bounded below by the constant —sup, g pWy(z). Hence we may
apply oscillation theory as before to obtain the main result.

Theorem 7.1. Suppose j1 # 0. Let ¢1,¢2 €]—T, T[ be such that U(¢p;) = 0,U'(¢;) #
0,4 =1,2,Ul)4,,45] # 0. Then the essential part of the spectrum of K is given by
[0,00[. The part of the spectrum contained in | — 0o, 0[ is pure point, and consists
of at most finitely many simple eigenvalues.

Eigenfunctions for X > 1V'(¢1)? near ¢ have an oscillatory structure with
a square root singularity, and given by (43), (44). Eigenfunctions for 0 < \ <
LV'(¢1)? near ¢1 have a singularity of sublinear growth, and are given by (45),
(46). Similar results hold near ¢-.

For eigenvalues \ < 0 there exist intervals [Kk1, k2] Cld1, 2] generically non-
symmetric w.r.t. 0, such that the corresponding eigenfunctions decay exponentially
in (¢— 1)~ 2 resp. (¢2 — ¢)~2 near ¢y resp. ¢, at a rate at least half the spectral
gap.

Corresponding eigenfunctions for the spectral decomposition related to (4) on
the interval [¢1, 2] for X > TV'(¢1)? and near ¢y are oscillatory and have a square
root decay. For 0 < X < 1V'(¢1)? near ¢y they have a decay of a sublinear power.
Similar results hold near ¢o. For the finitely many negative eigenvalues outside of
the compact subintervals generically non-symmetric w.r.t. 0, eigenfunctions decay

. . 1 1
exponentially in (¢ — ¢1)"2 resp. (P2 — @)~ 2 near ¢y resp. ¢z, at a rate at least
half the spectral gap.

A few remarks concerning the difference in localisation with and without fric-
tion are in order. First of all, since the moments of R"(0) are essentially higher
than the ones of R(0), an asymptotic estimate of the number of negative eigen-
values (which in the given setting is another challenge considering that we cannot
employ ergodic theory in an obvious manner), should reveal that the proportion of
the point spectrum to the entire spectrum is much higher for K than for L. Also,
when friction is included, the eigenvalues should be located deeper on average.
Therefore generically the localisation effect outside small characteristic intervals
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defined by the deepest potential wells should be stronger. So we would expect lo-
calisation around the source to overrun the basic localisation by the critical lines
at lower values of the parameter 7. To make these statements precise, one should
perhaps make some assumptions on the stationary process R that would allow
one to bring ergodic theory into the game, especially for applying multiplicative
ergodic theory, and to be able to argue with Lyapunov exponents for describing
localisation.
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