WS 2019/2020

Topology II

Exercise sheet 1

Exercise 1.

Consider the category $\mathcal{A}_{\mathbb{Z}}$ of \mathbb{Z} -graded abelian groups, the category \mathcal{C} of chain complexes and the homotopy category \mathcal{H} , defined as follows:

- Objects of $\mathcal{A}_{\mathbb{Z}}$ are \mathbb{Z} -graded abelian groups, i.e. $G_* = \bigoplus_{n \in \mathbb{Z}} G_n$, where G_n is an abelian group, and morphisms from G_* to H_* are group homomorphisms $\phi \colon G_* \to H_*$ satisfying $\phi(G_n) \subset H_n$ for every $n \in \mathbb{Z}$.
- Objects of C are chain complexes (C_{*}, ∂) and morphisms from (C_{*}, ∂_C) to (D_{*}, ∂_D) are chain maps Φ: (C_{*}, ∂_C) → (D_{*}, ∂_D).
- Objects of \mathcal{H} are topolgical spaces and morphisms from X to Y are homotopy classes of continuous maps $X \to Y$.
- (a) Verify that these define categories.
- (b) The homology of a chain complex defines a functor H_* from \mathcal{C} to $\mathcal{A}_{\mathbb{Z}}$.
- (c) Let F be some functor from \mathcal{H} to the category of groups \mathcal{G} such that $F(D^n) = 0$ and $F(S^{n-1}) \neq 0$. Conclude from the existence of F the Brouwer fix point theorem.

Exercise 2.

Let (X, x_0) be a pointed topological space. We denote by $\pi_k(X, x_0)$ the homotopy classes of maps $(I^k, \partial I^k) \to (X, x_0)$.

(a) Complete the proof of Theorem 2.1 from the lecture, i.e. verify that f * g as defined in the lecture really defines a group structure on $\pi_k(X, x_0)$.

Extra task: Describe the same group structure on the homotopy classes of maps $(S^k, N) \rightarrow (X, x_0)$.

- (b) Prove that $\pi_k(X, x_0)$ is abelian (for $k \ge 2$) by explicitly writing down a homotopy between f * g and g * f.
- (c) Let γ be a path from x_0 to x_1 in X. Verify that the map $\gamma_{\#}$ as defined in the lecture induces an isomorphism from $\pi_k(X, x_0)$ to $\pi_k(X, x_1)$.
- (d) The homotopy groups π_k define a covariant functor from the category \mathcal{H} of homotopy classes of pointed topological spaces to the category \mathcal{G} of groups.

Exercise 3.

(a) A map $f: (S^k, N) \to (X, x_0)$ extends to a map $F: D^{k+1} \to X$ if and only if [f] = 0 in $\pi_k(X, x_0)$.

Extra task: Is there a similar statement for relative homotopy groups?

(b) Prove the following generalization to higher dimensions of a special case of the Seifert and van Kampen theorem:
Let X be topological space with X = U∪V such that U and V are open and (n-1)-connected and U ∩ V is n-connected. Then

$$\pi_n(X) \cong \pi_n(U) \times \pi_n(V).$$

Extra task: Can there be a generalization of the general Seifert and van Kampen theorem to higher dimensions?

This sheet will be discussed on Wednesday 23.10. and should be solved by then.