Exercise 1.
Show that the short exact sequence from the universal coefficient theorem does not split natural.

Hint: Consider the projection map

\[f : \mathbb{R}P^2 \cong D^2 \cup \mathbb{R}P^1 \to \mathbb{R}P^2 / \mathbb{R}P^1 \cong S^2. \]

Exercise 2.

(a) Compute the homology of the \(n \)-torus \(T^n := S^1 \times \cdots \times S^1 \).

(b) Let \(M \) and \(N \) be closed topological manifolds. Show that \(M \times N \) is orientable if and only if \(M \) and \(N \) are orientable.

Exercise 3.

(a) Let \(p : X' \to X \) be a covering of a connected CW-complex \(X \). Describe a CW-structure on \(X' \) such that \(p \) is cellular and \(X' \) has the same dimension as \(X \).

(b) Assume that \(X \) is a finite CW-complex and \(p \) a covering of finite degree. Compute the Euler characteristic of \(X' \) from the Euler characteristic of \(X \).

Exercise 4.

A map \(f : X \to Y \) induces an isomorphism on homology with \(\mathbb{Z} \)-coefficients if and only if \(f \) induces an isomorphism on homology with \(\mathbb{Q} \)-coefficients and \(\mathbb{Z}_p \)-coefficients for all primes \(p \).

Bonus exercise 1.
Tor(\(A, \mathbb{Q}/\mathbb{Z} \)) is isomorphic to the torsion subgroup of \(A \).

Bonus exercise 2.
\(\mathbb{R}P^3 \) is homeomorphic to \(SO(3) \).
Bonus exercise 3.

(a) Describe the persistent homology (by drawing its barcode diagram) of the filtration on the Christmas star in Figure 1 induced by its height function.

(b) Express the persistent homology groups of a sequence of subcomplexes K_n in terms of cycles and boundaries of the subcomplexes K_n.

(c) Describe an algorithm to compute the homology groups of a simplicial complex with \mathbb{Z}- and \mathbb{Z}_2-coefficients.

(d) Describe an algorithm to compute the persistent homology groups of a sequence of subcomplexes.

(e) Estimate the runtime of your algorithms in (c) and (d).

![Christmas star](image-url)

Abbildung 1: A Christmas star.

This sheet will be discussed on Friday 10.1. and should be solved by then.