WS 2019/2020

Marc Kegel



Exercise sheet 6

## Exercise 1.

- (a)  $\mathbb{R}^{\infty}$  is homeomorphic to  $\mathbb{C}^{\infty}$ .
- (b) Choose an explicit CW-structure on  $S^{\infty}$ , describe the corresponding cellular chain complex and compute the cellular homology of  $S^{\infty}$ .
- (c)  $S^{\infty}$  is contractible.

#### Exercise 2.

Compute the degree of the constant map c:  $S^n \to S^n$ , the identity Id:  $S^n \to S^n$  and the antipodal map -Id:  $S^n \to S^n$ .

## Exercise 3.

Compute the cellular homology groups of all compact surfaces.

#### Exercise 4.

We denote by F a 2-torus with two open 2-balls removed.

The surface of infinite genus  $\Sigma_{\infty}$  is defined to be the direct limit of the nested sequence of topological spaces  $X_0 \subset X_1 \subset X_2 \subset \cdots$  where  $X_0$  is a copy of  $S^1 \times I$  and  $X_{i+1}$  is obtained from  $X_i$  by attaching a copy of F to each boundary component of  $X_i$ .

The Loch Ness monster surface  $L_{\infty}$  is the non-compact surface obtained as direct limit of  $Y_0 \subset Y_1 \subset Y_2 \subset \cdots$  where  $Y_0$  is a 2-disk and  $Y_{i+1}$  is obtained from  $Y_i$  by attaching a copy of F to its boundary.

- (a) Make sketches of  $\Sigma_{\infty}$  and  $L_{\infty}$ . What has  $L_{\infty}$  to do with the Loch Ness monster?
- (b) Describe CW-structures on  $L_{\infty}$  and  $\Sigma_{\infty}$  and compute its cellular homology groups.
- (c) Are  $L_{\infty}$  and  $\Sigma_{\infty}$  homeomorphic?

# Bonus exercise.

Show that the simplicial homology groups of a triangulizable space X are isomorphic to its cellular homology groups.

*Hint:* Let T be a triangulation of a topological space X. In the lecture we defined a CW-structure on X coming from T. Consider the corresponding simplicial- and cellular chain complexes.

# Bonus exercise.

Let M be a smooth compact *n*-manifold. Then we have seen in lecture that there exists a triangulation of M such that  $\partial M$  is a subcomplex. We denote by  $H_n^{simp}(M, \partial M)$  its *n*-th simplicial relative homology group. Show that

$$H_n^{simp}(M, \partial M) \cong \begin{cases} \mathbb{Z}; & \text{if } M \text{ is orientable,} \\ 0; & \text{if } M \text{ is not orientable.} \end{cases}$$

*Hint:* Adapt last semesters proof for closed manifolds.

This sheet will be discussed on Friday 29.11. and should be solved by then.