Exercise 1.

(a) Let A be a finitely generated abelian group, i.e. A is of the form $\mathbb{Z}^r \oplus \bigoplus_{i=1}^n \mathbb{Z}_{a_i}$, for natural numbers a_i. For B isomorphic to \mathbb{Q}, \mathbb{R} or \mathbb{C} we have

$$A \otimes B \cong B^r.$$

(b) For finitely generated abelian groups A and B we have

$$\text{rk}(A \otimes B) = \text{rk}(A) \cdot \text{rk}(B).$$

(c) Let R be a commutative ring. Then

$$A \mapsto A \otimes R$$

$$(f : A \to B) \mapsto (f \otimes \text{id} : A \otimes R \to B \otimes R)$$

defines a functor from the category of abelian groups to the category of R-modules.

Hint: If you are unfamiliar with the notions of rings and modules, it may be helpful to first consider the case that R is a field. (Then R-modules are just the R-vector spaces.)

Exercise 2.

Let \mathbb{F} be an arbitrary field and X a finite CW-complex of dimension n. Then the Euler characteristic of X is given by

$$\chi(X) = \sum_{k=0}^{n} (-1)^k \dim_{\mathbb{F}} H_k(X, \mathbb{F}).$$

Exercise 3.

In the lecture we have seen four different ways to compute homology groups with coefficients:

- via the Mayer–Vietoris sequence,
- directly from the definition and a CW-structure,
- with the Bockstein homomorphism or
- using the universal coefficient theorem.

Compute the homology groups of $\mathbb{R}P^n$ and the Klein bottle with \mathbb{Q}- and \mathbb{Z}_2-coefficients using as many of the above methods as possible.

Bonus: Do the same for \mathbb{Z}_p- and \mathbb{R}-coefficients.

p.t.o.
Exercise 4.

(a) A short exact sequence
\[0 \to B \to C \to D \to 0 \]
of abelian groups induces an exact sequence of the form
\[0 \to \text{Tor}(A, B) \to \text{Tor}(A, C) \to \text{Tor}(A, D) \to A \oplus B \to A \oplus C \to A \oplus D \to 0. \]

(b) Prove Lemma 5.5 from the lecture.

Bonus exercise 1.
Classify finitely generated abelian groups, i.e. prove that any finitely generated abelian group is isomorphic to a group of the form
\[\mathbb{Z}^r \oplus \bigoplus_{i=1}^n \mathbb{Z}_{a_i} \]
for natural numbers \(a_i \).

Bonus exercise 2.

(a) Prove that the Hurewitz homomorphism is a natural homomorphism.

(b) Let \(X \) be an \((n - 1)\)-connected space. Show that
\[\widetilde{H}_k(X) = 0 \]
for all \(k < n \).

\textit{Hint:} Use the strategy from the proof of Theorem 4.17 from the lecture.

This sheet will be discussed on Friday 20.12. and should be solved by then.