WS 2020/2021

Topology II

Exercise sheet 13

Exercise 1.

Let $Q: \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z}$ be a symmetric bilinear form and let e_i be the standard generators of \mathbb{Z}^n .

- (a) Q is non-singular if and only if its representing matrix $(Q(e_i, e_j))_{1 \le i,j \le n}$ is invertible over \mathbb{Z} (which is equivalent to having determinant ± 1).
- (b) Describe the matrices (in a suitable basis) of the intersection forms of $\pm \mathbb{C}P^2$, $S^2 \times S^2$ and compute its ranks, signatures, parities and definiteness.
- (c) Show that E_8 represents a non-singular symmetric positive definite bilinear form and compute its rank, signature and parity.
- (d) Show that the intersection forms H and -H are isomorphic.
- (e) Show that the intersection forms H and $[+1] \oplus [-1]$ are isomorphic over \mathbb{R} but not over \mathbb{Z} and conclude that $S^2 \times S^2$ is not homeomorphic to $-\mathbb{C}P^2 \#\mathbb{C}P^2$, where $-\mathbb{C}P^2$ denotes $\mathbb{C}P^2$ with opposite orientation.

Exercise 2.

- (a) Use Corollary 8.3 and the intersection form to compute the ring structure of $\mathbb{C}P^n$.
- (b) Show that $\mathbb{C}P^{2m}$ admits no orientation reversing diffeomorphism.
- (c) Show that any map $\mathbb{C}P^{2m} \to \mathbb{C}P^{2m}$ has a fixed point. *Hint:* Use the Lefschetz fixed point theorem.

Bonus: What can you say about maps $\mathbb{C}P^{2m+1} \to \mathbb{C}P^{2m+1}$?

Exercise 3.

Show that $\mathbb{C}P^2 \# (-\mathbb{C}P^2)$ is homeomorphic to an S^2 -bundle over S^2 and use this to deduce results about its homotopy groups.

Exercise 4.

Show that $S^2 \vee S^4$ is not homotopy equivalent to a manifold.

Bonus exercise.

- (a) For every integer $k \in \mathbb{Z}$ there exists a map $T^2 \to T^2$ of degree k. *Hint:* Remember our construction of maps $S^n \to S^n$ of arbitrary degree.
- (b) Now we consider a general genus g surface Σ_g with $g \ge 2$. Construct maps $\Sigma_g \to \Sigma_g$ with degree 0, 1 and -1.
- (c) Any map $\Sigma_g \to \Sigma_g$ of non-vanishing degree 0 induces a surjection on fundamental groups. *Hint:* Lift the map to a suitable covering of Σ_g , deduce from the non-vanishing of the degree that this covering has to be finite and use the behavior of the Euler characteristic under finite coverings.
- (d) Deduce that any map Σ₂ → Σ₂ has degree 0, 1 or -1.
 Hint: Use (c) together with the Hurewicz homomorphism and the cup product structure of Σ₂.
- (e) Show the statement from part (d) for arbitrary genus $g \ge 2$.