WS 2020/2021 Marc Kegel

Topology II

Exercise sheet 6

Exercise 1.

Compute the simplicial homology groups of the n-sphere, the Möbius strip and the Klein bottle using directly the definition of simplicial homology.

Exercise 2.

We call a *smooth* manifold M **orientable** if M admits an atlas in which all charts are compatible and the determinant of the Jocobi matrices of all transition maps (i.e. $\psi \circ \phi^{-1}$ for charts ψ and ϕ) are everywhere positive.

- (a) Show that S is orientable by explicitly describing such an atlas.
- (b) The Möbius strip is not orientable.
- (c) A surface is orientable if and only if it contains no Möbius strip, i.e. if and only if there exists no closed path interchanging right and left.

Exercise 3.

An oriented q-simplex $\sigma = (x_0, \dots, x_q)$ induces an orientation on any of its (q-1)-dimensional faces τ via

$$\tau = (-1)^i(x_0, \dots, \hat{x}_i, \dots, x_q).$$

We call a triangulated n-manifold **orientable**, if there exists orientations on the n-simplices such that any two adjacent n-simplices induce opposite orientations on their common (n-1)-dimensional face.

- (a) Draw sketches in Dimensions 2 and 3.
- (b) Show that this definition of orientability coincides with the definition from Exercise 2 on smooth manifolds.
- (c) Let M be a smooth compact n-manifold. Show that

$$H_n(M, \partial M) \cong \begin{cases} \mathbb{Z}; & \text{if } M \text{ is orientable,} \\ 0; & \text{if } M \text{ is not orientable.} \end{cases}$$

Hint: It might be helpful to work with simplicial homology and start with an explicit triangulation of the 2-torus and to identify an explicit 2-cycle generating the second homology. Next, one can consider the Klein bottle. Does there exists a 2-cycle on the Klein bottle? Finally, try to generalize these arguments.

Exercise 4.

The **degree** deg(f) of a map $f: S^n \to S^n$ is defined by

$$f_* \colon H_n(S^n) \longrightarrow H_n(S^n)$$

 $[S^n] \longmapsto \deg(f)[S^n].$

- (a) Compute the degree of the constant map c: $S^n \to S^n$, the identity Id: $S^n \to S^n$ and the antipodal map -Id: $S^n \to S^n$.
- (b) Construct, for any $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, a map $f: S^n \to S^n$ of degree k. Hint: Construct from a given map $S^{n-1} \to S^{n-1}$ a map $S^n \to S^n$ of the same degree by identifying S^n with the suspension ΣS^{n-1} .

Bonus exercise.

- (a) Classify compact 1-manifolds (possibly with boundary).
- (b) Workout the details from the proof sketch of the classification theorem of surfaces. Hint: It might be helpful to have a look at Chapter 5 of: https://www.mathematik.hu-berlin.de/~kegemarc/19SSTopologie/Skript.pdf

Bonus exercise.

- (a) Prove a version of the Mayer–Vietoris sequence for simplicial homology groups.
- (b) Present a geometric description of the connecting homomorphism in the Mayer–Vietoris sequence.