(4) X is path-connected, CX is the cone of X, i.e.

$$CX = X \times [011] / X \times [0]$$

Also notice that any space $X \sim a$ subspace of its cone via the identification $X \cong X \times \xi_1 \xi \subset C X$.

Thus we can talk about the relative homotopy growps TT_K (CX, X, x.). We have the following long exact sequence for relative homotopy groups

The cone CX is always contractible, i.e., it has the hom.
type of a point.
(you can prove this as follows:bet H: X × [0,1] × [0,1] → X × [0,1] be defined by
H((x,t), v) = (X, (1-x)t). Clearly H is continuous.
H((x,t), v) = (x, o) and H((x,t), o) = (x,t)
H((x,t), 1) = (x,o)
bo we get an included map H : CX × [0,1] → CX s.t.
H([(x,t)], b) = [(x, (1-x)t)]. Note that H([(x,t)], o)

= [(X,I+)] and $H(E(X,I+)J,I) = [(X,O)] = X \times \frac{1}{5} \circ \frac{1}{6}$ and hence H is the required homotopy $\frac{1}{6}$ id CX to the point $X \times \frac{1}{5} \circ \frac{1}{2}$ we CX. This should also be intuitively clear $\int [x_0]$ as you are contracting CX to the point $[X_0]$.

for the second part, we know from the first part that $T_2(CX, X) \equiv TT_1(X)$, do all we need to do So to prove that given a finitely presented group G \exists $X = \sqrt{TT_1(X)} \cong G$. But this is just an application of the van Kampen theorem. Suppose $G = \langle g_{\alpha} | g_{\beta} \rangle$ where $g_{\alpha} \in T$ are the generators and $g_{\beta} = f_{\beta}$, are the grelations. To construct X, we first take wedge of circles to get the generators of the group: VS'_{α} . To take care of the generators, we attach 2-cells e_{β}^2 (a 2-cell is just

Bonue we have the following commendicipant of each news:
A,
$$\frac{i_1}{1}$$
 to A_2 $\frac{i_2}{2}$ A_3 $\frac{i_3}{2}$ A_4 $\frac{i_4}{4}$ A_5
 f_1 2 f_2 2 f_3 2 f_4 2 f_5
 B_1 $\frac{1}{J_1}$ B_2 $\frac{1}{J_2}$ B_3 $\frac{1}{J_2}$ B_4 $\frac{1}{J_4}$ B_5
This exercise is an example of what is known as
diagnam chosing. Let me do some of the exercise.
Work conditions and f_1, f_2, f_4, f_5 of f_3 is
injective.
Let $a_3 \in A_3$ s.t. $a_3 \in \ker f_3$, not by commutativity
 $i_3 f_3(a_5) = f_4$ $i_3(a_5) = 0$
as injective. Thus if fy is injective them

we get i3 (a3) = 0 = D a3 E Ken i'3 = D by exactness $\exists a_2 \in A_2 \quad s.t. \quad i_2(a_2) = a_3. \quad \longrightarrow \quad (*)$ There is only one thing we can do now in order to get firs into picture and that is to use commutativity. Using that we get. $f_3 i_2(a_2) = f_3(a_3) = j_2 f_2(a_2) = 0.$ $f_2(a_2) \in Kerj_2$ and so again us can only do one thing and that is to use the exactness of the bottom vow. So 3 bie Bi st. $J_1(b_1) = J_2(a_2)$ To get f, into picture, we can only use by from the previous equation, so we assume that f, is surjective. Thus $\exists a_1 \in A_1$ s.t. $b_1 = f_1(a_1)$ $= 0 \quad j_1 f_1(a_1) = f_2(a_2)$ But again using commutativity, we have $J_1 f_1(a_1) = f_2(a_2) = f_2 i_1(a_1)$ to me addume that f2 is injective to get $a_2 = i_1(a_1)$ But if $Q_2 \in \operatorname{inc} i_1 = D$ by exactness, $Q_2 \in \operatorname{ker} i_2$

=
$$i_2(q_2) = 0$$
 and : from (*) $a_3 = i_2(q_2) = 0$
and hence f_3 is injective. Thus the conditions required
one $f_2, f_4 - injective$
 $f_1 - surjective$.

ii) fz is surjective. We want to prove that given b3 < B3 3 some element $Q' \in A_3$ s.f. $f_3(Q') = b_3$ and want to find conditions firs i 73 which make this happon. Even if we want to use commutativity or exactness, On have to reach the top row from the bottom row. Now $j_3(b_3) \in B_4$ so to get to the top row, we assume me that fy is surjective. Thus I ay Effy s.t. $f_4(a_4) = j_3(b_3)$ Now by exactness, j3(b3) e Im j3 = J j3(b3) e Kn j4 $j_{4}j_{3}(b_{3})=0=j_{4}f_{4}(q_{4})=f_{5}i_{4}(q_{4})(b_{4})(b_{4})$ =7 f5 14(Q4) = 0 Thus ue asserve that for is injective to get ao

 $i_4(a_4)=0.$ =D $a_4 \in ker i_4 = 0 \quad a_4 \in im i_3$ 3 Oze A3 w/ iz(a3) = a4 20 we have two elements in B3, b3 and f3(as). A we have $j_3(b_3 - j_3(a_3)) = j_3(b_3) - j_3 j_3(a_3)$ $= f_{4}(a_{4}) - f_{4}i_{3}(a_{3})$ = fy (ay) - fy (ay) =0. b3-f3(a3) e Kenj3 => by erractness 3 b2EB2 Thus $j_2(b_2) = b_3 - f_3(a_3)$. or $b_3 = f_3(a_3) + j_2(b_2)$ 6 So use can already see a glimpse of how to get q's.t. b3 = f3(a'). We have one dement f3(a2), so comehow we need to write $j_2(b_2)$ in im f_3 . No ue assume that f2 is surjective. Then $\exists a_2 \in A_2 \stackrel{s.t}{s} f_2(a_2) = b_2$ Thus $f_3(a_3 + i_2(a_2)) = f_3(a_3) + f_3i_2(a_2)$ $= f_3(a_3) + j_2 f_2(a_2)$ = $f_3(0_3) + j_2(b_2)$ = 63

Thus $a_3 + i_2(a_2) = a'$ and f_3 is surjective. So the requirements are

faify surjective and for injective.

iii) bijective. If you have understood the previous parts than you whould weally attempt this part on your own.

_____x <