Topology II

Exercise sheet 12

Exercise 1.

We consider the ideal I in the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ generated by x_{i}^{2} and $x_{i} x_{j}+x_{j} x_{i}$ for all $i, j=1, \ldots, n$. The exterior algebra $\Lambda\left[x_{1}, \ldots, x_{n}\right]$ is defined to be $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] / I$, where the product is usually denote by \wedge and $\operatorname{deg}\left(x_{j}\right):=1$.
(a) $\Lambda\left[x_{1}, \ldots, x_{n}\right]$ is a free abelian group of rank 2^{n} where a basis is given by

$$
\left\{x_{k_{1}} \wedge \cdots \wedge x_{k_{l}} \mid k_{1}<\cdots<k_{l}\right\}
$$

(b) $\Lambda\left[x_{1}, \ldots, x_{n}\right]$ is isomorphic to $\Lambda\left[x_{1}, \ldots, x_{n-1}\right] \otimes \mathbb{Z}\left[x_{n}\right] /\left(x_{n}^{2}\right)$, where $\operatorname{deg}\left(x_{n}\right):=1$.
(c) The cohomology ring of the n-torus $H^{*}\left(T^{n}\right)$ is isomorphic to $\Lambda\left[x_{1}, \ldots, x_{n}\right]$.
(d) Show that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

by computing the Euler characteristic $\chi\left(T^{n}\right)$ via the alternating ranks of its cohomology groups (using the universal coefficient theorem) and directly via a cell structure of T^{n}.

Exercise 2.

Compute the cup product on the surface of infinite genus (Sheet 8 Exercise 2).

Exercise 3.

Show that the short exact sequence from the universal coefficient theorem does not split natural.

Exercise 4.

A compact connected manifold M does not retract onto its connected boundary ∂M. Hint: Consider the long exact sequence of the pair $(M, \partial M)$.

