Topology II

Exercise sheet 2

Exercise 1.

(a) Describe a space-filling curve, i.e. a continuous surjective map

$$
[0,1] \rightarrow[0,1] \times[0,1]
$$

(b) Show that \mathbb{R}^{n} is homeomorphic to \mathbb{R}^{m} if and only if $n=m$.

Exercise 2.

An exact sequence is a sequence of groups and homomorphisms

$$
\cdots \longrightarrow G_{i} \xrightarrow{\varphi_{i}} G_{i-1} \xrightarrow{\varphi_{i-1}} G_{i-2} \longrightarrow \cdots
$$

such that $\operatorname{Im}\left(\varphi_{i}\right)=\operatorname{ker}\left(\varphi_{i-1}\right)$ holds for all i.
(a) We consider the exact sequence

$$
0 \longrightarrow \mathbb{Z}_{3} \longrightarrow G \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow 0
$$

of abelian groups. Then α is an isomorphism and G is isomorphic to Z_{6}.
(b) A short exact sequence of abelian groups is an exact sequence of the form

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

(i) The following are equivalent:

- There exists an homomorphism $\lambda: C \rightarrow B$, such that $\beta \circ \lambda=\mathrm{id}_{C}$.
- There exists an homomorphism $\mu: B \rightarrow A$, such that $\mu \circ \alpha=\operatorname{id}_{A}$.

If one of the above conditions is fulfilled we say that the short exact sequence splits. Show that then $B \cong A \oplus C$ holds.
(ii) If C is a free abelian group, then any exact sequence of the above form splits.
(c) Any exact sequence of vector spaces splits.

Exercise 3.

(a) Every exact sequence of the form

$$
0 \rightarrow Z_{m} \rightarrow G \rightarrow Z_{n} \rightarrow 0
$$

for m and n coprime is split.
(b) For any natural number $n \geq 2$ there exists an exact sequence of the form

$$
0 \rightarrow \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n^{2}} \rightarrow \mathbb{Z}_{n} \rightarrow 0
$$

Is this sequence split?
(c) Find for $n \geq 2$ two non-isomorphic groups G such that there exists an exact sequence of the form

$$
0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow Z_{n} \rightarrow 0
$$

Exercise 4.

Let X be a path-connected space and denote by $C X$ its cone. Show that

$$
\pi_{k}(C X, X) \cong \pi_{k-1}(X)
$$

and construct for a given finitely presented group G a pair of path-connected spaces (Y, A) with $\pi_{2}(Y, A) \cong G$.

Bonus exercise.

We consider the following commutative diagram of abelian groups with exact rows:

Find minimal conditions on $f_{1}, f_{2}, f_{4}, f_{5}$ (w.r.t. injectivity and surjectivity), that imply that f_{3} is
(i) injektive,
(ii) surjektive,
(iii) bijektive.

Show by writing down examples that these conditions cannot be wakened further.

This sheet will be discussed on Friday 3.11 . and should be solved by then.

