Contact Geometry

Exercise sheet 1

Exercise 1.

Prove (as stated in the lecture) that the standard contact structure on $S^{2 n-1} \subset \mathbb{R}^{2 n}$ is given by the kernel of

$$
\alpha_{s t}=\sum_{j=1}^{n} x_{j} d y_{j}-y_{j} d x_{j}
$$

and compute the Reeb flow of $\alpha_{s t}$. Which orbits of the Reeb flow are closed?

Exercise 2.

Describe an explicit contact form on $S^{1} \times S^{2}$, draw its contact planes and compute the Reeb flow.

Exercise 3.

Consider $S^{1} \times \mathbb{R}^{2}$ with an angular coordinate θ on $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ and cartesian coordinates (x, y) on \mathbb{R}^{2}. Let $n \in \mathbb{Z} \backslash\{0\}$. Show that

$$
\alpha_{n}=\cos (n \theta) d x-\sin (n \theta) d y
$$

is a contact form and sketch the contact structures. Show that $\left(S^{1} \times \mathbb{R}^{2}, \xi_{n}=\operatorname{ker} \alpha_{n}\right)$ is contactomorphic to $\left(S^{1} \times \mathbb{R}^{2}, \xi_{m}=\operatorname{ker} \alpha_{m}\right)$ for all n and m.
Challenge: Are these contact structures also isotopic?

Bonus exercise 1.

(a) Draw sketches of the three contact structures on \mathbb{R}^{3} introduced in the lecture.
(b) Describe a 2-plane field on a 3-manifold that is not contact but to which no surface is tangent.
(c) Describe a hyperplane field $\xi=$ ker α that is not contact but for which $\alpha \wedge d \alpha$ is non-vanishing.
(d) Describe a hyperplane field that is nowhere contact and nowhere a foliation.
(e) Describe a non-coorientable hyperplane field on an orientable manifold.
(f) Describe a non-coorientable hyperplane field on a non-orientable manifold.
(g) Describe a coorientable hyperplane field on a non-orientable manifold.

Bonus exercise 2.

(a) Describe a 1-dimensional foliation on T^{2} that admits only closed leaves.
(b) Describe a 1-dimensional foliation on T^{2} that admits only non-closed leaves.
(c) Describe a 1-dimensional foliation on T^{2} that admits closed and non-closed leaves.
(d) Describe a 2-dimensional foliation of $S^{1} \times D^{2}$ that admits exactly one closed leave.
(e) Describe a 2-dimensional foliation of S^{3} that admits exactly one closed leave. Hint: Consider the boundary of $D^{2} \times D^{2}$ and use (d).
(f) Show that the 2-plane field on \mathbb{R}^{3} defined as the kernel of the 1-form

$$
d z-z d y
$$

is induced by a foliation and describe its leaves.

